diff --git a/Reconstruct_and_RoBERTa_baseline_train_dev_dataset.ipynb b/Reconstruct_and_RoBERTa_baseline_train_dev_dataset.ipynb index 3ad02ccff44092be88f86a6b113a0b3ecee4ded4..90edad574c7b9389991cd11dce7d30b13826cbf7 100644 --- a/Reconstruct_and_RoBERTa_baseline_train_dev_dataset.ipynb +++ b/Reconstruct_and_RoBERTa_baseline_train_dev_dataset.ipynb @@ -1,8440 +1,8486 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "H08esTFOYO99" - }, - "source": [ - "# Main imports and code" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EnHQoayhBYlm", - "outputId": "eb747576-9a2a-474c-dbc7-4d6c042f68e6" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sat Feb 26 13:12:45 2022 \n", - "+-----------------------------------------------------------------------------+\n", - "| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.4 |\n", - "|-------------------------------+----------------------+----------------------+\n", - "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", - "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", - "| | | MIG M. |\n", - "|===============================+======================+======================|\n", - "| 0 Quadro P4000 Off | 00000000:00:05.0 Off | N/A |\n", - "| 46% 33C P8 5W / 105W | 0MiB / 8119MiB | 0% Default |\n", - "| | | N/A |\n", - "+-------------------------------+----------------------+----------------------+\n", - " \n", - "+-----------------------------------------------------------------------------+\n", - "| Processes: |\n", - "| GPU GI CI PID Type Process name GPU Memory |\n", - "| ID ID Usage |\n", - "|=============================================================================|\n", - "| No running processes found |\n", - "+-----------------------------------------------------------------------------+\n", - "WARNING: infoROM is corrupted at gpu 0000:00:05.0\n" - ] - } - ], - "source": [ - "# check which gpu we're using\n", - "!nvidia-smi" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "hYhFR7nSYOjG", - "outputId": "23ed0686-29d3-45ff-dc22-b2fe54e86ec4" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", - "Collecting simpletransformers\n", - " Downloading simpletransformers-0.63.4-py3-none-any.whl (248 kB)\n", - "\u001b[K |████████████████████████████████| 248 kB 16.4 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting tensorflow\n", - " Downloading tensorflow-2.8.0-cp38-cp38-manylinux2010_x86_64.whl (497.6 MB)\n", - "\u001b[K |████████████████████████████████| 497.6 MB 27.2 MB/s eta 0:00:01 |████████████▎ | 190.3 MB 20.1 MB/s eta 0:00:16\n", - "\u001b[?25hRequirement already satisfied: scikit-learn in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.0)\n", - "Requirement already satisfied: scipy in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.6.3)\n", - "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2021.10.8)\n", - "Collecting tokenizers\n", - " Downloading tokenizers-0.11.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.8 MB)\n", - "\u001b[K |████████████████████████████████| 6.8 MB 28.6 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.21.2)\n", - "Collecting datasets\n", - " Downloading datasets-1.18.3-py3-none-any.whl (311 kB)\n", - "\u001b[K |████████████████████████████████| 311 kB 31.9 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting pandas\n", - " Downloading pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB)\n", - "\u001b[K |████████████████████████████████| 11.7 MB 27.1 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting wandb>=0.10.32\n", - " Downloading wandb-0.12.10-py2.py3-none-any.whl (1.7 MB)\n", - "\u001b[K |████████████████████████████████| 1.7 MB 32.9 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting transformers>=4.6.0\n", - " Downloading transformers-4.16.2-py3-none-any.whl (3.5 MB)\n", - "\u001b[K |████████████████████████████████| 3.5 MB 29.6 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: tensorboard in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2.6.0)\n", - "Requirement already satisfied: requests in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2.26.0)\n", - "Collecting sentencepiece\n", - " Downloading sentencepiece-0.1.96-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", - "\u001b[K |████████████████████████████████| 1.2 MB 29.2 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting seqeval\n", - " Downloading seqeval-1.2.2.tar.gz (43 kB)\n", - "\u001b[K |████████████████████████████████| 43 kB 41.0 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting streamlit\n", - " Downloading streamlit-1.6.0-py2.py3-none-any.whl (9.7 MB)\n", - "\u001b[K |████████████████████████████████| 9.7 MB 33.1 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: tqdm>=4.47.0 in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (4.62.3)\n", - "Collecting gast>=0.2.1\n", - " Downloading gast-0.5.3-py3-none-any.whl (19 kB)\n", - "Requirement already satisfied: six>=1.12.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.16.0)\n", - "Requirement already satisfied: absl-py>=0.4.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.14.1)\n", - "Collecting opt-einsum>=2.3.2\n", - " Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\n", - "\u001b[K |████████████████████████████████| 65 kB 31.3 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting keras-preprocessing>=1.1.1\n", - " Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)\n", - "\u001b[K |████████████████████████████████| 42 kB 28.8 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: typing-extensions>=3.6.6 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.10.0.2)\n", - "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.41.0)\n", - "Collecting wrapt>=1.11.0\n", - " Downloading wrapt-1.13.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (84 kB)\n", - "\u001b[K |████████████████████████████████| 84 kB 46.4 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: setuptools in /opt/conda/lib/python3.8/site-packages (from tensorflow) (58.2.0)\n", - "Collecting tensorboard\n", - " Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB)\n", - "\u001b[K |████████████████████████████████| 5.8 MB 28.6 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting astunparse>=1.6.0\n", - " Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n", - "Collecting h5py>=2.9.0\n", - " Downloading h5py-3.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB)\n", - "\u001b[K |████████████████████████████████| 4.5 MB 31.7 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting libclang>=9.0.1\n", - " Downloading libclang-13.0.0-py2.py3-none-manylinux1_x86_64.whl (14.5 MB)\n", - "\u001b[K |████████████████████████████████| 14.5 MB 68.4 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting termcolor>=1.1.0\n", - " Downloading termcolor-1.1.0.tar.gz (3.9 kB)\n", - "Collecting tf-estimator-nightly==2.8.0.dev2021122109\n", - " Downloading tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl (462 kB)\n", - "\u001b[K |████████████████████████████████| 462 kB 30.7 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting tensorflow-io-gcs-filesystem>=0.23.1\n", - " Downloading tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB)\n", - "\u001b[K |████████████████████████████████| 2.1 MB 32.1 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting google-pasta>=0.1.1\n", - " Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\n", - "\u001b[K |████████████████████████████████| 57 kB 54.4 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting flatbuffers>=1.12\n", - " Downloading flatbuffers-2.0-py2.py3-none-any.whl (26 kB)\n", - "Requirement already satisfied: protobuf>=3.9.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.18.1)\n", - "Collecting keras<2.9,>=2.8.0rc0\n", - " Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB)\n", - "\u001b[K |████████████████████████████████| 1.4 MB 35.4 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: wheel<1.0,>=0.23.0 in /opt/conda/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.0)\n", - "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (0.6.1)\n", - "Requirement already satisfied: werkzeug>=0.11.15 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (2.0.2)\n", - "Requirement already satisfied: markdown>=2.6.8 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (3.3.4)\n", - "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (0.4.6)\n", - "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (1.8.0)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (1.35.0)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (0.2.8)\n", - "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (4.2.4)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (4.7.2)\n", - "Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/conda/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->simpletransformers) (1.3.0)\n", - "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->simpletransformers) (0.4.8)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (2.0.0)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (1.26.7)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (2021.5.30)\n", - "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (3.1)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->simpletransformers) (3.1.1)\n", - "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (21.0)\n", - "Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (5.4.1)\n", - "Requirement already satisfied: sacremoses in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (0.0.46)\n", - "Requirement already satisfied: filelock in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (3.3.0)\n", - "Collecting huggingface-hub<1.0,>=0.1.0\n", - " Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n", - "\u001b[K |████████████████████████████████| 67 kB 44.8 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.8/site-packages (from packaging>=20.0->transformers>=4.6.0->simpletransformers) (2.4.7)\n", - "Collecting promise<3,>=2.0\n", - " Downloading promise-2.3.tar.gz (19 kB)\n", - "Requirement already satisfied: Click!=8.0.0,>=7.0 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (8.0.1)\n", - "Collecting sentry-sdk>=1.0.0\n", - " Downloading sentry_sdk-1.5.6-py2.py3-none-any.whl (144 kB)\n", - "\u001b[K |████████████████████████████████| 144 kB 38.2 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: python-dateutil>=2.6.1 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (2.8.2)\n", - "Collecting yaspin>=1.0.0\n", - " Downloading yaspin-2.1.0-py3-none-any.whl (18 kB)\n", - "Collecting shortuuid>=0.5.0\n", - " Downloading shortuuid-1.0.8-py3-none-any.whl (9.5 kB)\n", - "Requirement already satisfied: psutil>=5.0.0 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (5.8.0)\n", - "Collecting docker-pycreds>=0.4.0\n", - " Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n", - "Collecting pathtools\n", - " Downloading pathtools-0.1.2.tar.gz (11 kB)\n", - "Collecting GitPython>=1.0.0\n", - " Downloading GitPython-3.1.27-py3-none-any.whl (181 kB)\n", - "\u001b[K |████████████████████████████████| 181 kB 31.2 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting gitdb<5,>=4.0.1\n", - " Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)\n", - "\u001b[K |████████████████████████████████| 63 kB 33.7 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting smmap<6,>=3.0.1\n", - " Downloading smmap-5.0.0-py3-none-any.whl (24 kB)\n", - "Collecting dill\n", - " Downloading dill-0.3.4-py2.py3-none-any.whl (86 kB)\n", - "\u001b[K |████████████████████████████████| 86 kB 34.0 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting fsspec[http]>=2021.05.0\n", - " Downloading fsspec-2022.2.0-py3-none-any.whl (134 kB)\n", - "\u001b[K |████████████████████████████████| 134 kB 33.1 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting xxhash\n", - " Downloading xxhash-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", - "\u001b[K |████████████████████████████████| 212 kB 29.0 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting pyarrow!=4.0.0,>=3.0.0\n", - " Downloading pyarrow-7.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.7 MB)\n", - "\u001b[K |████████████████████████████████| 26.7 MB 19.7 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting aiohttp\n", - " Downloading aiohttp-3.8.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.3 MB)\n", - "\u001b[K |████████████████████████████████| 1.3 MB 29.1 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting multiprocess\n", - " Downloading multiprocess-0.70.12.2-py38-none-any.whl (128 kB)\n", - "\u001b[K |████████████████████████████████| 128 kB 30.7 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting async-timeout<5.0,>=4.0.0a3\n", - " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", - "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets->simpletransformers) (21.2.0)\n", - "Collecting frozenlist>=1.1.1\n", - " Downloading frozenlist-1.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n", - "\u001b[K |████████████████████████████████| 158 kB 36.8 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting yarl<2.0,>=1.0\n", - " Downloading yarl-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (308 kB)\n", - "\u001b[K |████████████████████████████████| 308 kB 30.1 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting multidict<7.0,>=4.5\n", - " Downloading multidict-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (121 kB)\n", - "\u001b[K |████████████████████████████████| 121 kB 30.2 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting aiosignal>=1.1.2\n", - " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n", - "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.8/site-packages (from pandas->simpletransformers) (2021.3)\n", - "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers>=4.6.0->simpletransformers) (1.1.0)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from scikit-learn->simpletransformers) (3.0.0)\n", - "Collecting semver\n", - " Downloading semver-2.13.0-py2.py3-none-any.whl (12 kB)\n", - "Collecting astor\n", - " Downloading astor-0.8.1-py2.py3-none-any.whl (27 kB)\n", - "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (8.2.0)\n", - "Collecting importlib-metadata>=1.4\n", - " Downloading importlib_metadata-4.11.1-py3-none-any.whl (17 kB)\n", - "Collecting altair>=3.2.0\n", - " Downloading altair-4.2.0-py3-none-any.whl (812 kB)\n", - "\u001b[K |████████████████████████████████| 812 kB 35.6 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting pydeck>=0.1.dev5\n", - " Downloading pydeck-0.7.1-py2.py3-none-any.whl (4.3 MB)\n", - "\u001b[K |████████████████████████████████| 4.3 MB 29.4 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting tzlocal\n", - " Downloading tzlocal-4.1-py3-none-any.whl (19 kB)\n", - "Requirement already satisfied: toml in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (0.10.2)\n", - "Requirement already satisfied: tornado>=5.0 in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (6.1)\n", - "Collecting pympler>=0.9\n", - " Downloading Pympler-1.0.1-py3-none-any.whl (164 kB)\n", - "\u001b[K |████████████████████████████████| 164 kB 30.0 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting validators\n", - " Downloading validators-0.18.2-py3-none-any.whl (19 kB)\n", - "Collecting base58\n", - " Downloading base58-2.1.1-py3-none-any.whl (5.6 kB)\n", - "Collecting blinker\n", - " Downloading blinker-1.4.tar.gz (111 kB)\n", - "\u001b[K |████████████████████████████████| 111 kB 74.6 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting watchdog\n", - " Downloading watchdog-2.1.6-py3-none-manylinux2014_x86_64.whl (76 kB)\n", - "\u001b[K |████████████████████████████████| 76 kB 44.0 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: entrypoints in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (0.3)\n", - "Requirement already satisfied: jsonschema>=3.0 in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (4.0.1)\n", - "Collecting toolz\n", - " Downloading toolz-0.11.2-py3-none-any.whl (55 kB)\n", - "\u001b[K |████████████████████████████████| 55 kB 45.7 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: jinja2 in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (3.0.1)\n", - "Collecting zipp>=0.5\n", - " Downloading zipp-3.7.0-py3-none-any.whl (5.3 kB)\n", - "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /opt/conda/lib/python3.8/site-packages (from jsonschema>=3.0->altair>=3.2.0->streamlit->simpletransformers) (0.18.0)\n", - "Collecting ipywidgets>=7.0.0\n", - " Downloading ipywidgets-7.6.5-py2.py3-none-any.whl (121 kB)\n", - "\u001b[K |████████████████████████████████| 121 kB 27.1 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: traitlets>=4.3.2 in /opt/conda/lib/python3.8/site-packages (from pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.0)\n", - "Requirement already satisfied: ipykernel>=5.1.2 in /opt/conda/lib/python3.8/site-packages (from pydeck>=0.1.dev5->streamlit->simpletransformers) (6.4.1)\n", - "Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.0)\n", - "Requirement already satisfied: debugpy<2.0,>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.0)\n", - "Requirement already satisfied: jupyter-client<8.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (7.0.6)\n", - "Requirement already satisfied: matplotlib-inline<0.2.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.1.3)\n", - "Requirement already satisfied: ipython<8.0,>=7.23.1 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (7.28.0)\n", - "Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.18.0)\n", - "Requirement already satisfied: pickleshare in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.5)\n", - "Requirement already satisfied: backcall in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.0)\n", - "Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.8.0)\n", - "Requirement already satisfied: pygments in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (2.10.0)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (3.0.20)\n", - "Requirement already satisfied: decorator in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.0)\n", - "Requirement already satisfied: nbformat>=4.2.0 in /opt/conda/lib/python3.8/site-packages (from ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.3)\n", - "Collecting widgetsnbextension~=3.5.0\n", - " Downloading widgetsnbextension-3.5.2-py2.py3-none-any.whl (1.6 MB)\n", - "\u001b[K |████████████████████████████████| 1.6 MB 28.1 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting jupyterlab-widgets>=1.0.0\n", - " Downloading jupyterlab_widgets-1.0.2-py3-none-any.whl (243 kB)\n", - "\u001b[K |████████████████████████████████| 243 kB 28.5 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /opt/conda/lib/python3.8/site-packages (from jedi>=0.16->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.8.2)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.8/site-packages (from jinja2->altair>=3.2.0->streamlit->simpletransformers) (2.0.1)\n", - "Requirement already satisfied: jupyter-core>=4.6.0 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.8.1)\n", - "Requirement already satisfied: nest-asyncio>=1.5 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.1)\n", - "Requirement already satisfied: pyzmq>=13 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (22.3.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.8/site-packages (from pexpect>4.3->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /opt/conda/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.5)\n", - "Requirement already satisfied: notebook>=4.4.1 in /opt/conda/lib/python3.8/site-packages (from widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (6.4.1)\n", - "Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (21.1.0)\n", - "Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.11.0)\n", - "Requirement already satisfied: Send2Trash>=1.5.0 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.8.0)\n", - "Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.12.1)\n", - "Requirement already satisfied: nbconvert in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (6.2.0)\n", - "Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.14.6)\n", - "Requirement already satisfied: pycparser in /opt/conda/lib/python3.8/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (2.20)\n", - "Requirement already satisfied: defusedxml in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.1.2)\n", - "Requirement already satisfied: testpath in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.0)\n", - "Requirement already satisfied: mistune<2,>=0.8.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.8.4)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.0)\n", - "Requirement already satisfied: bleach in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.1.0)\n", - "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.4)\n", - "Requirement already satisfied: webencodings in /opt/conda/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.1)\n", - "Collecting backports.zoneinfo\n", - " Downloading backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl (74 kB)\n", - "\u001b[K |████████████████████████████████| 74 kB 32.2 MB/s eta 0:00:01\n", - "\u001b[?25hCollecting pytz-deprecation-shim\n", - " Downloading pytz_deprecation_shim-0.1.0.post0-py2.py3-none-any.whl (15 kB)\n", - "Collecting tzdata\n", - " Downloading tzdata-2021.5-py2.py3-none-any.whl (339 kB)\n", - "\u001b[K |████████████████████████████████| 339 kB 30.1 MB/s eta 0:00:01\n", - "\u001b[?25hBuilding wheels for collected packages: termcolor, promise, pathtools, seqeval, blinker\n", - " Building wheel for termcolor (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4847 sha256=067672b2f7f28ac472a6b1cd07b584b83890568140bc85c553cbaa0039a98989\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/a0/16/9c/5473df82468f958445479c59e784896fa24f4a5fc024b0f501\n", - " Building wheel for promise (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for promise: filename=promise-2.3-py3-none-any.whl size=21502 sha256=504dc84248d0ec44574cc67d80dc391414827e3989a427d5413e1e9700612bc8\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/54/aa/01/724885182f93150035a2a91bce34a12877e8067a97baaf5dc8\n", - " Building wheel for pathtools (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=3cb49e1e70fc8dd8f3f0b0ddb00cc631f925b930abe92201655bbd0fc83e8a6c\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/4c/8e/7e/72fbc243e1aeecae64a96875432e70d4e92f3d2d18123be004\n", - " Building wheel for seqeval (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for seqeval: filename=seqeval-1.2.2-py3-none-any.whl size=16181 sha256=8d4e2b51b4af004a5815585543b1e879616e537a93a913477ffd89a206c5f552\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/ad/5c/ba/05fa33fa5855777b7d686e843ec07452f22a66a138e290e732\n", - " Building wheel for blinker (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for blinker: filename=blinker-1.4-py3-none-any.whl size=13478 sha256=3c30aa2407f8981ced9bced863d768115b6e523fe33184a32b3585b400c9e006\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/b7/a5/68/fe632054a5eadd531c7a49d740c50eb6adfbeca822b4eab8d4\n", - "Successfully built termcolor promise pathtools seqeval blinker\n", - "Installing collected packages: multidict, frozenlist, yarl, widgetsnbextension, tzdata, smmap, jupyterlab-widgets, backports.zoneinfo, async-timeout, aiosignal, zipp, toolz, termcolor, pytz-deprecation-shim, pandas, ipywidgets, gitdb, fsspec, dill, aiohttp, yaspin, xxhash, watchdog, validators, tzlocal, tokenizers, shortuuid, sentry-sdk, semver, pympler, pydeck, pyarrow, promise, pathtools, multiprocess, importlib-metadata, huggingface-hub, GitPython, docker-pycreds, blinker, base58, astor, altair, wrapt, wandb, transformers, tf-estimator-nightly, tensorflow-io-gcs-filesystem, tensorboard, streamlit, seqeval, sentencepiece, opt-einsum, libclang, keras-preprocessing, keras, h5py, google-pasta, gast, flatbuffers, datasets, astunparse, tensorflow, simpletransformers\n", - " Attempting uninstall: tensorboard\n", - " Found existing installation: tensorboard 2.6.0\n", - " Uninstalling tensorboard-2.6.0:\n", - " Successfully uninstalled tensorboard-2.6.0\n", - "Successfully installed GitPython-3.1.27 aiohttp-3.8.1 aiosignal-1.2.0 altair-4.2.0 astor-0.8.1 astunparse-1.6.3 async-timeout-4.0.2 backports.zoneinfo-0.2.1 base58-2.1.1 blinker-1.4 datasets-1.18.3 dill-0.3.4 docker-pycreds-0.4.0 flatbuffers-2.0 frozenlist-1.3.0 fsspec-2022.2.0 gast-0.5.3 gitdb-4.0.9 google-pasta-0.2.0 h5py-3.6.0 huggingface-hub-0.4.0 importlib-metadata-4.11.1 ipywidgets-7.6.5 jupyterlab-widgets-1.0.2 keras-2.8.0 keras-preprocessing-1.1.2 libclang-13.0.0 multidict-6.0.2 multiprocess-0.70.12.2 opt-einsum-3.3.0 pandas-1.4.1 pathtools-0.1.2 promise-2.3 pyarrow-7.0.0 pydeck-0.7.1 pympler-1.0.1 pytz-deprecation-shim-0.1.0.post0 semver-2.13.0 sentencepiece-0.1.96 sentry-sdk-1.5.6 seqeval-1.2.2 shortuuid-1.0.8 simpletransformers-0.63.4 smmap-5.0.0 streamlit-1.6.0 tensorboard-2.8.0 tensorflow-2.8.0 tensorflow-io-gcs-filesystem-0.24.0 termcolor-1.1.0 tf-estimator-nightly-2.8.0.dev2021122109 tokenizers-0.11.5 toolz-0.11.2 transformers-4.16.2 tzdata-2021.5 tzlocal-4.1 validators-0.18.2 wandb-0.12.10 watchdog-2.1.6 widgetsnbextension-3.5.2 wrapt-1.13.3 xxhash-3.0.0 yarl-1.7.2 yaspin-2.1.0 zipp-3.7.0\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n", - "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", - "Collecting tensorboardx\n", - " Downloading tensorboardX-2.5-py2.py3-none-any.whl (125 kB)\n", - "\u001b[K |████████████████████████████████| 125 kB 17.3 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (1.16.0)\n", - "Requirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (1.21.2)\n", - "Requirement already satisfied: protobuf>=3.8.0 in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (3.18.1)\n", - "Installing collected packages: tensorboardx\n", - "Successfully installed tensorboardx-2.5\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install simpletransformers tensorflow\n", - "!pip install tensorboardx" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "RJC8wj73Zd_p" - }, - "outputs": [], - "source": [ - "from simpletransformers.classification import ClassificationModel, ClassificationArgs, MultiLabelClassificationModel, MultiLabelClassificationArgs\n", - "from urllib import request\n", - "import pandas as pd\n", - "import logging\n", - "import torch\n", - "from collections import Counter\n", - "from ast import literal_eval" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "H08esTFOYO99" + }, + "source": [ + "# Main imports and code" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "EnHQoayhBYlm", + "outputId": "eb747576-9a2a-474c-dbc7-4d6c042f68e6" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "bsX3b7ZNYVZe", - "outputId": "845660e8-c68b-4a52-d9ce-3c06bf7356d8" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cuda available? True\n" - ] - } - ], - "source": [ - "# prepare logger\n", - "logging.basicConfig(level=logging.INFO)\n", - "\n", - "transformers_logger = logging.getLogger(\"transformers\")\n", - "transformers_logger.setLevel(logging.WARNING)\n", - "\n", - "# check gpu\n", - "cuda_available = torch.cuda.is_available()\n", - "\n", - "print('Cuda available? ',cuda_available)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Sat Feb 26 13:12:45 2022 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.4 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|===============================+======================+======================|\n", + "| 0 Quadro P4000 Off | 00000000:00:05.0 Off | N/A |\n", + "| 46% 33C P8 5W / 105W | 0MiB / 8119MiB | 0% Default |\n", + "| | | N/A |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=============================================================================|\n", + "| No running processes found |\n", + "+-----------------------------------------------------------------------------+\n", + "WARNING: infoROM is corrupted at gpu 0000:00:05.0\n" + ] + } + ], + "source": [ + "# check which gpu we're using\n", + "!nvidia-smi" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 }, + "id": "hYhFR7nSYOjG", + "outputId": "23ed0686-29d3-45ff-dc22-b2fe54e86ec4" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", - "Requirement already satisfied: tensorflow in /opt/conda/lib/python3.8/site-packages (2.8.0)\n", - "Requirement already satisfied: astunparse>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.6.3)\n", - "Requirement already satisfied: setuptools in /opt/conda/lib/python3.8/site-packages (from tensorflow) (58.2.0)\n", - "Requirement already satisfied: typing-extensions>=3.6.6 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.10.0.2)\n", - "Requirement already satisfied: libclang>=9.0.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (13.0.0)\n", - "Requirement already satisfied: numpy>=1.20 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.21.2)\n", - "Requirement already satisfied: keras-preprocessing>=1.1.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.1.2)\n", - "Requirement already satisfied: h5py>=2.9.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.6.0)\n", - "Requirement already satisfied: gast>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.5.3)\n", - "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.24.0)\n", - "Requirement already satisfied: google-pasta>=0.1.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.2.0)\n", - "Requirement already satisfied: flatbuffers>=1.12 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.0)\n", - "Requirement already satisfied: termcolor>=1.1.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.1.0)\n", - "Requirement already satisfied: tf-estimator-nightly==2.8.0.dev2021122109 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.8.0.dev2021122109)\n", - "Requirement already satisfied: six>=1.12.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.16.0)\n", - "Requirement already satisfied: keras<2.9,>=2.8.0rc0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.8.0)\n", - "Requirement already satisfied: tensorboard<2.9,>=2.8 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.8.0)\n", - "Requirement already satisfied: wrapt>=1.11.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.13.3)\n", - "Requirement already satisfied: protobuf>=3.9.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.18.1)\n", - "Requirement already satisfied: absl-py>=0.4.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.14.1)\n", - "Requirement already satisfied: opt-einsum>=2.3.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.3.0)\n", - "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.41.0)\n", - "Requirement already satisfied: wheel<1.0,>=0.23.0 in /opt/conda/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.0)\n", - "Requirement already satisfied: markdown>=2.6.8 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (3.3.4)\n", - "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.4.6)\n", - "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.6.1)\n", - "Requirement already satisfied: werkzeug>=0.11.15 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.0.2)\n", - "Requirement already satisfied: requests<3,>=2.21.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.26.0)\n", - "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.8.0)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.35.0)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.2.8)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.7.2)\n", - "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.2.4)\n", - "Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/conda/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (1.3.0)\n", - "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.4.8)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (1.26.7)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2021.5.30)\n", - "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (3.1)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2.0.0)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (3.1.1)\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install tensorflow" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Collecting simpletransformers\n", + " Downloading simpletransformers-0.63.4-py3-none-any.whl (248 kB)\n", + "\u001B[K |████████████████████████████████| 248 kB 16.4 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting tensorflow\n", + " Downloading tensorflow-2.8.0-cp38-cp38-manylinux2010_x86_64.whl (497.6 MB)\n", + "\u001B[K |████████████████████████████████| 497.6 MB 27.2 MB/s eta 0:00:01 |████████████▎ | 190.3 MB 20.1 MB/s eta 0:00:16\n", + "\u001B[?25hRequirement already satisfied: scikit-learn in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.0)\n", + "Requirement already satisfied: scipy in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.6.3)\n", + "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2021.10.8)\n", + "Collecting tokenizers\n", + " Downloading tokenizers-0.11.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.8 MB)\n", + "\u001B[K |████████████████████████████████| 6.8 MB 28.6 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.21.2)\n", + "Collecting datasets\n", + " Downloading datasets-1.18.3-py3-none-any.whl (311 kB)\n", + "\u001B[K |████████████████████████████████| 311 kB 31.9 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting pandas\n", + " Downloading pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB)\n", + "\u001B[K |████████████████████████████████| 11.7 MB 27.1 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting wandb>=0.10.32\n", + " Downloading wandb-0.12.10-py2.py3-none-any.whl (1.7 MB)\n", + "\u001B[K |████████████████████████████████| 1.7 MB 32.9 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting transformers>=4.6.0\n", + " Downloading transformers-4.16.2-py3-none-any.whl (3.5 MB)\n", + "\u001B[K |████████████████████████████████| 3.5 MB 29.6 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: tensorboard in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2.6.0)\n", + "Requirement already satisfied: requests in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2.26.0)\n", + "Collecting sentencepiece\n", + " Downloading sentencepiece-0.1.96-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", + "\u001B[K |████████████████████████████████| 1.2 MB 29.2 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting seqeval\n", + " Downloading seqeval-1.2.2.tar.gz (43 kB)\n", + "\u001B[K |████████████████████████████████| 43 kB 41.0 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting streamlit\n", + " Downloading streamlit-1.6.0-py2.py3-none-any.whl (9.7 MB)\n", + "\u001B[K |████████████████████████████████| 9.7 MB 33.1 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: tqdm>=4.47.0 in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (4.62.3)\n", + "Collecting gast>=0.2.1\n", + " Downloading gast-0.5.3-py3-none-any.whl (19 kB)\n", + "Requirement already satisfied: six>=1.12.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.16.0)\n", + "Requirement already satisfied: absl-py>=0.4.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.14.1)\n", + "Collecting opt-einsum>=2.3.2\n", + " Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\n", + "\u001B[K |████████████████████████████████| 65 kB 31.3 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting keras-preprocessing>=1.1.1\n", + " Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)\n", + "\u001B[K |████████████████████████████████| 42 kB 28.8 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: typing-extensions>=3.6.6 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.10.0.2)\n", + "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.41.0)\n", + "Collecting wrapt>=1.11.0\n", + " Downloading wrapt-1.13.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (84 kB)\n", + "\u001B[K |████████████████████████████████| 84 kB 46.4 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: setuptools in /opt/conda/lib/python3.8/site-packages (from tensorflow) (58.2.0)\n", + "Collecting tensorboard\n", + " Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB)\n", + "\u001B[K |████████████████████████████████| 5.8 MB 28.6 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting astunparse>=1.6.0\n", + " Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n", + "Collecting h5py>=2.9.0\n", + " Downloading h5py-3.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB)\n", + "\u001B[K |████████████████████████████████| 4.5 MB 31.7 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting libclang>=9.0.1\n", + " Downloading libclang-13.0.0-py2.py3-none-manylinux1_x86_64.whl (14.5 MB)\n", + "\u001B[K |████████████████████████████████| 14.5 MB 68.4 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting termcolor>=1.1.0\n", + " Downloading termcolor-1.1.0.tar.gz (3.9 kB)\n", + "Collecting tf-estimator-nightly==2.8.0.dev2021122109\n", + " Downloading tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl (462 kB)\n", + "\u001B[K |████████████████████████████████| 462 kB 30.7 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting tensorflow-io-gcs-filesystem>=0.23.1\n", + " Downloading tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB)\n", + "\u001B[K |████████████████████████████████| 2.1 MB 32.1 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting google-pasta>=0.1.1\n", + " Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\n", + "\u001B[K |████████████████████████████████| 57 kB 54.4 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting flatbuffers>=1.12\n", + " Downloading flatbuffers-2.0-py2.py3-none-any.whl (26 kB)\n", + "Requirement already satisfied: protobuf>=3.9.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.18.1)\n", + "Collecting keras<2.9,>=2.8.0rc0\n", + " Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB)\n", + "\u001B[K |████████████████████████████████| 1.4 MB 35.4 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: wheel<1.0,>=0.23.0 in /opt/conda/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.0)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (0.6.1)\n", + "Requirement already satisfied: werkzeug>=0.11.15 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (2.0.2)\n", + "Requirement already satisfied: markdown>=2.6.8 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (3.3.4)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (0.4.6)\n", + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (1.8.0)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (1.35.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (0.2.8)\n", + "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (4.2.4)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (4.7.2)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/conda/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->simpletransformers) (1.3.0)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->simpletransformers) (0.4.8)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (2.0.0)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (1.26.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (2021.5.30)\n", + "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (3.1)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->simpletransformers) (3.1.1)\n", + "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (21.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (5.4.1)\n", + "Requirement already satisfied: sacremoses in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (0.0.46)\n", + "Requirement already satisfied: filelock in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (3.3.0)\n", + "Collecting huggingface-hub<1.0,>=0.1.0\n", + " Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n", + "\u001B[K |████████████████████████████████| 67 kB 44.8 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.8/site-packages (from packaging>=20.0->transformers>=4.6.0->simpletransformers) (2.4.7)\n", + "Collecting promise<3,>=2.0\n", + " Downloading promise-2.3.tar.gz (19 kB)\n", + "Requirement already satisfied: Click!=8.0.0,>=7.0 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (8.0.1)\n", + "Collecting sentry-sdk>=1.0.0\n", + " Downloading sentry_sdk-1.5.6-py2.py3-none-any.whl (144 kB)\n", + "\u001B[K |████████████████████████████████| 144 kB 38.2 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: python-dateutil>=2.6.1 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (2.8.2)\n", + "Collecting yaspin>=1.0.0\n", + " Downloading yaspin-2.1.0-py3-none-any.whl (18 kB)\n", + "Collecting shortuuid>=0.5.0\n", + " Downloading shortuuid-1.0.8-py3-none-any.whl (9.5 kB)\n", + "Requirement already satisfied: psutil>=5.0.0 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (5.8.0)\n", + "Collecting docker-pycreds>=0.4.0\n", + " Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n", + "Collecting pathtools\n", + " Downloading pathtools-0.1.2.tar.gz (11 kB)\n", + "Collecting GitPython>=1.0.0\n", + " Downloading GitPython-3.1.27-py3-none-any.whl (181 kB)\n", + "\u001B[K |████████████████████████████████| 181 kB 31.2 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting gitdb<5,>=4.0.1\n", + " Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)\n", + "\u001B[K |████████████████████████████████| 63 kB 33.7 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting smmap<6,>=3.0.1\n", + " Downloading smmap-5.0.0-py3-none-any.whl (24 kB)\n", + "Collecting dill\n", + " Downloading dill-0.3.4-py2.py3-none-any.whl (86 kB)\n", + "\u001B[K |████████████████████████████████| 86 kB 34.0 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting fsspec[http]>=2021.05.0\n", + " Downloading fsspec-2022.2.0-py3-none-any.whl (134 kB)\n", + "\u001B[K |████████████████████████████████| 134 kB 33.1 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting xxhash\n", + " Downloading xxhash-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", + "\u001B[K |████████████████████████████████| 212 kB 29.0 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting pyarrow!=4.0.0,>=3.0.0\n", + " Downloading pyarrow-7.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.7 MB)\n", + "\u001B[K |████████████████████████████████| 26.7 MB 19.7 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting aiohttp\n", + " Downloading aiohttp-3.8.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.3 MB)\n", + "\u001B[K |████████████████████████████████| 1.3 MB 29.1 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting multiprocess\n", + " Downloading multiprocess-0.70.12.2-py38-none-any.whl (128 kB)\n", + "\u001B[K |████████████████████████████████| 128 kB 30.7 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting async-timeout<5.0,>=4.0.0a3\n", + " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", + "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets->simpletransformers) (21.2.0)\n", + "Collecting frozenlist>=1.1.1\n", + " Downloading frozenlist-1.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n", + "\u001B[K |████████████████████████████████| 158 kB 36.8 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting yarl<2.0,>=1.0\n", + " Downloading yarl-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (308 kB)\n", + "\u001B[K |████████████████████████████████| 308 kB 30.1 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting multidict<7.0,>=4.5\n", + " Downloading multidict-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (121 kB)\n", + "\u001B[K |████████████████████████████████| 121 kB 30.2 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting aiosignal>=1.1.2\n", + " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n", + "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.8/site-packages (from pandas->simpletransformers) (2021.3)\n", + "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers>=4.6.0->simpletransformers) (1.1.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from scikit-learn->simpletransformers) (3.0.0)\n", + "Collecting semver\n", + " Downloading semver-2.13.0-py2.py3-none-any.whl (12 kB)\n", + "Collecting astor\n", + " Downloading astor-0.8.1-py2.py3-none-any.whl (27 kB)\n", + "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (8.2.0)\n", + "Collecting importlib-metadata>=1.4\n", + " Downloading importlib_metadata-4.11.1-py3-none-any.whl (17 kB)\n", + "Collecting altair>=3.2.0\n", + " Downloading altair-4.2.0-py3-none-any.whl (812 kB)\n", + "\u001B[K |████████████████████████████████| 812 kB 35.6 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting pydeck>=0.1.dev5\n", + " Downloading pydeck-0.7.1-py2.py3-none-any.whl (4.3 MB)\n", + "\u001B[K |████████████████████████████████| 4.3 MB 29.4 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting tzlocal\n", + " Downloading tzlocal-4.1-py3-none-any.whl (19 kB)\n", + "Requirement already satisfied: toml in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (0.10.2)\n", + "Requirement already satisfied: tornado>=5.0 in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (6.1)\n", + "Collecting pympler>=0.9\n", + " Downloading Pympler-1.0.1-py3-none-any.whl (164 kB)\n", + "\u001B[K |████████████████████████████████| 164 kB 30.0 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting validators\n", + " Downloading validators-0.18.2-py3-none-any.whl (19 kB)\n", + "Collecting base58\n", + " Downloading base58-2.1.1-py3-none-any.whl (5.6 kB)\n", + "Collecting blinker\n", + " Downloading blinker-1.4.tar.gz (111 kB)\n", + "\u001B[K |████████████████████████████████| 111 kB 74.6 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting watchdog\n", + " Downloading watchdog-2.1.6-py3-none-manylinux2014_x86_64.whl (76 kB)\n", + "\u001B[K |████████████████████████████████| 76 kB 44.0 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: entrypoints in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (0.3)\n", + "Requirement already satisfied: jsonschema>=3.0 in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (4.0.1)\n", + "Collecting toolz\n", + " Downloading toolz-0.11.2-py3-none-any.whl (55 kB)\n", + "\u001B[K |████████████████████████████████| 55 kB 45.7 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: jinja2 in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (3.0.1)\n", + "Collecting zipp>=0.5\n", + " Downloading zipp-3.7.0-py3-none-any.whl (5.3 kB)\n", + "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /opt/conda/lib/python3.8/site-packages (from jsonschema>=3.0->altair>=3.2.0->streamlit->simpletransformers) (0.18.0)\n", + "Collecting ipywidgets>=7.0.0\n", + " Downloading ipywidgets-7.6.5-py2.py3-none-any.whl (121 kB)\n", + "\u001B[K |████████████████████████████████| 121 kB 27.1 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: traitlets>=4.3.2 in /opt/conda/lib/python3.8/site-packages (from pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.0)\n", + "Requirement already satisfied: ipykernel>=5.1.2 in /opt/conda/lib/python3.8/site-packages (from pydeck>=0.1.dev5->streamlit->simpletransformers) (6.4.1)\n", + "Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.0)\n", + "Requirement already satisfied: debugpy<2.0,>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.0)\n", + "Requirement already satisfied: jupyter-client<8.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (7.0.6)\n", + "Requirement already satisfied: matplotlib-inline<0.2.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.1.3)\n", + "Requirement already satisfied: ipython<8.0,>=7.23.1 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (7.28.0)\n", + "Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.18.0)\n", + "Requirement already satisfied: pickleshare in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.5)\n", + "Requirement already satisfied: backcall in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.0)\n", + "Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.8.0)\n", + "Requirement already satisfied: pygments in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (2.10.0)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (3.0.20)\n", + "Requirement already satisfied: decorator in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.0)\n", + "Requirement already satisfied: nbformat>=4.2.0 in /opt/conda/lib/python3.8/site-packages (from ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.3)\n", + "Collecting widgetsnbextension~=3.5.0\n", + " Downloading widgetsnbextension-3.5.2-py2.py3-none-any.whl (1.6 MB)\n", + "\u001B[K |████████████████████████████████| 1.6 MB 28.1 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting jupyterlab-widgets>=1.0.0\n", + " Downloading jupyterlab_widgets-1.0.2-py3-none-any.whl (243 kB)\n", + "\u001B[K |████████████████████████████████| 243 kB 28.5 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /opt/conda/lib/python3.8/site-packages (from jedi>=0.16->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.8.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.8/site-packages (from jinja2->altair>=3.2.0->streamlit->simpletransformers) (2.0.1)\n", + "Requirement already satisfied: jupyter-core>=4.6.0 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.8.1)\n", + "Requirement already satisfied: nest-asyncio>=1.5 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.1)\n", + "Requirement already satisfied: pyzmq>=13 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (22.3.0)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.8/site-packages (from pexpect>4.3->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /opt/conda/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.5)\n", + "Requirement already satisfied: notebook>=4.4.1 in /opt/conda/lib/python3.8/site-packages (from widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (6.4.1)\n", + "Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (21.1.0)\n", + "Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.11.0)\n", + "Requirement already satisfied: Send2Trash>=1.5.0 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.8.0)\n", + "Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.12.1)\n", + "Requirement already satisfied: nbconvert in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (6.2.0)\n", + "Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.14.6)\n", + "Requirement already satisfied: pycparser in /opt/conda/lib/python3.8/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (2.20)\n", + "Requirement already satisfied: defusedxml in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.1.2)\n", + "Requirement already satisfied: testpath in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.0)\n", + "Requirement already satisfied: mistune<2,>=0.8.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.8.4)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.0)\n", + "Requirement already satisfied: bleach in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.1.0)\n", + "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.4)\n", + "Requirement already satisfied: webencodings in /opt/conda/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.1)\n", + "Collecting backports.zoneinfo\n", + " Downloading backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl (74 kB)\n", + "\u001B[K |████████████████████████████████| 74 kB 32.2 MB/s eta 0:00:01\n", + "\u001B[?25hCollecting pytz-deprecation-shim\n", + " Downloading pytz_deprecation_shim-0.1.0.post0-py2.py3-none-any.whl (15 kB)\n", + "Collecting tzdata\n", + " Downloading tzdata-2021.5-py2.py3-none-any.whl (339 kB)\n", + "\u001B[K |████████████████████████████████| 339 kB 30.1 MB/s eta 0:00:01\n", + "\u001B[?25hBuilding wheels for collected packages: termcolor, promise, pathtools, seqeval, blinker\n", + " Building wheel for termcolor (setup.py) ... \u001B[?25ldone\n", + "\u001B[?25h Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4847 sha256=067672b2f7f28ac472a6b1cd07b584b83890568140bc85c553cbaa0039a98989\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/a0/16/9c/5473df82468f958445479c59e784896fa24f4a5fc024b0f501\n", + " Building wheel for promise (setup.py) ... \u001B[?25ldone\n", + "\u001B[?25h Created wheel for promise: filename=promise-2.3-py3-none-any.whl size=21502 sha256=504dc84248d0ec44574cc67d80dc391414827e3989a427d5413e1e9700612bc8\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/54/aa/01/724885182f93150035a2a91bce34a12877e8067a97baaf5dc8\n", + " Building wheel for pathtools (setup.py) ... \u001B[?25ldone\n", + "\u001B[?25h Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=3cb49e1e70fc8dd8f3f0b0ddb00cc631f925b930abe92201655bbd0fc83e8a6c\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/4c/8e/7e/72fbc243e1aeecae64a96875432e70d4e92f3d2d18123be004\n", + " Building wheel for seqeval (setup.py) ... \u001B[?25ldone\n", + "\u001B[?25h Created wheel for seqeval: filename=seqeval-1.2.2-py3-none-any.whl size=16181 sha256=8d4e2b51b4af004a5815585543b1e879616e537a93a913477ffd89a206c5f552\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/ad/5c/ba/05fa33fa5855777b7d686e843ec07452f22a66a138e290e732\n", + " Building wheel for blinker (setup.py) ... \u001B[?25ldone\n", + "\u001B[?25h Created wheel for blinker: filename=blinker-1.4-py3-none-any.whl size=13478 sha256=3c30aa2407f8981ced9bced863d768115b6e523fe33184a32b3585b400c9e006\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-r6lr5xzv/wheels/b7/a5/68/fe632054a5eadd531c7a49d740c50eb6adfbeca822b4eab8d4\n", + "Successfully built termcolor promise pathtools seqeval blinker\n", + "Installing collected packages: multidict, frozenlist, yarl, widgetsnbextension, tzdata, smmap, jupyterlab-widgets, backports.zoneinfo, async-timeout, aiosignal, zipp, toolz, termcolor, pytz-deprecation-shim, pandas, ipywidgets, gitdb, fsspec, dill, aiohttp, yaspin, xxhash, watchdog, validators, tzlocal, tokenizers, shortuuid, sentry-sdk, semver, pympler, pydeck, pyarrow, promise, pathtools, multiprocess, importlib-metadata, huggingface-hub, GitPython, docker-pycreds, blinker, base58, astor, altair, wrapt, wandb, transformers, tf-estimator-nightly, tensorflow-io-gcs-filesystem, tensorboard, streamlit, seqeval, sentencepiece, opt-einsum, libclang, keras-preprocessing, keras, h5py, google-pasta, gast, flatbuffers, datasets, astunparse, tensorflow, simpletransformers\n", + " Attempting uninstall: tensorboard\n", + " Found existing installation: tensorboard 2.6.0\n", + " Uninstalling tensorboard-2.6.0:\n", + " Successfully uninstalled tensorboard-2.6.0\n", + "Successfully installed GitPython-3.1.27 aiohttp-3.8.1 aiosignal-1.2.0 altair-4.2.0 astor-0.8.1 astunparse-1.6.3 async-timeout-4.0.2 backports.zoneinfo-0.2.1 base58-2.1.1 blinker-1.4 datasets-1.18.3 dill-0.3.4 docker-pycreds-0.4.0 flatbuffers-2.0 frozenlist-1.3.0 fsspec-2022.2.0 gast-0.5.3 gitdb-4.0.9 google-pasta-0.2.0 h5py-3.6.0 huggingface-hub-0.4.0 importlib-metadata-4.11.1 ipywidgets-7.6.5 jupyterlab-widgets-1.0.2 keras-2.8.0 keras-preprocessing-1.1.2 libclang-13.0.0 multidict-6.0.2 multiprocess-0.70.12.2 opt-einsum-3.3.0 pandas-1.4.1 pathtools-0.1.2 promise-2.3 pyarrow-7.0.0 pydeck-0.7.1 pympler-1.0.1 pytz-deprecation-shim-0.1.0.post0 semver-2.13.0 sentencepiece-0.1.96 sentry-sdk-1.5.6 seqeval-1.2.2 shortuuid-1.0.8 simpletransformers-0.63.4 smmap-5.0.0 streamlit-1.6.0 tensorboard-2.8.0 tensorflow-2.8.0 tensorflow-io-gcs-filesystem-0.24.0 termcolor-1.1.0 tf-estimator-nightly-2.8.0.dev2021122109 tokenizers-0.11.5 toolz-0.11.2 transformers-4.16.2 tzdata-2021.5 tzlocal-4.1 validators-0.18.2 wandb-0.12.10 watchdog-2.1.6 widgetsnbextension-3.5.2 wrapt-1.13.3 xxhash-3.0.0 yarl-1.7.2 yaspin-2.1.0 zipp-3.7.0\n", + "\u001B[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001B[0m\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Collecting tensorboardx\n", + " Downloading tensorboardX-2.5-py2.py3-none-any.whl (125 kB)\n", + "\u001B[K |████████████████████████████████| 125 kB 17.3 MB/s eta 0:00:01\n", + "\u001B[?25hRequirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (1.16.0)\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (1.21.2)\n", + "Requirement already satisfied: protobuf>=3.8.0 in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (3.18.1)\n", + "Installing collected packages: tensorboardx\n", + "Successfully installed tensorboardx-2.5\n", + "\u001B[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001B[0m\n" + ] + } + ], + "source": [ + "!pip install simpletransformers tensorflow\n", + "!pip install tensorboardx" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "RJC8wj73Zd_p" + }, + "outputs": [], + "source": [ + "from simpletransformers.classification import ClassificationModel, ClassificationArgs, MultiLabelClassificationModel, MultiLabelClassificationArgs\n", + "from urllib import request\n", + "import pandas as pd\n", + "import logging\n", + "import torch\n", + "from collections import Counter\n", + "from ast import literal_eval" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "bsX3b7ZNYVZe", + "outputId": "845660e8-c68b-4a52-d9ce-3c06bf7356d8" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "HpRLLRzkTwdL", - "outputId": "9dc072ea-e419-4bc1-ad99-507cdd4e1394" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found GPU at: /device:GPU:0\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2022-02-26 13:14:29.325853: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", - "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2022-02-26 13:14:29.327245: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2022-02-26 13:14:29.328399: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2022-02-26 13:14:29.329348: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2022-02-26 13:14:32.919742: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2022-02-26 13:14:32.920448: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2022-02-26 13:14:32.921064: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2022-02-26 13:14:32.921610: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /device:GPU:0 with 6966 MB memory: -> device: 0, name: Quadro P4000, pci bus id: 0000:00:05.0, compute capability: 6.1\n" - ] - } - ], - "source": [ - "if cuda_available:\n", - " import tensorflow as tf\n", - " # Get the GPU device name.\n", - " device_name = tf.test.gpu_device_name()\n", - " # The device name should look like the following:\n", - " if device_name == '/device:GPU:0':\n", - " print('Found GPU at: {}'.format(device_name))\n", - " else:\n", - " raise SystemError('GPU device not found')" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Cuda available? True\n" + ] + } + ], + "source": [ + "# prepare logger\n", + "logging.basicConfig(level=logging.INFO)\n", + "\n", + "transformers_logger = logging.getLogger(\"transformers\")\n", + "transformers_logger.setLevel(logging.WARNING)\n", + "\n", + "# check gpu\n", + "cuda_available = torch.cuda.is_available()\n", + "\n", + "print('Cuda available? ',cuda_available)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "BMQDATlOZHxu" - }, - "source": [ - "# Fetch Don't Patronize Me! data manager module" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: tensorflow in /opt/conda/lib/python3.8/site-packages (2.8.0)\n", + "Requirement already satisfied: astunparse>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.6.3)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.8/site-packages (from tensorflow) (58.2.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.6 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.10.0.2)\n", + "Requirement already satisfied: libclang>=9.0.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (13.0.0)\n", + "Requirement already satisfied: numpy>=1.20 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.21.2)\n", + "Requirement already satisfied: keras-preprocessing>=1.1.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.1.2)\n", + "Requirement already satisfied: h5py>=2.9.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.6.0)\n", + "Requirement already satisfied: gast>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.5.3)\n", + "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.24.0)\n", + "Requirement already satisfied: google-pasta>=0.1.1 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.2.0)\n", + "Requirement already satisfied: flatbuffers>=1.12 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.0)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.1.0)\n", + "Requirement already satisfied: tf-estimator-nightly==2.8.0.dev2021122109 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.8.0.dev2021122109)\n", + "Requirement already satisfied: six>=1.12.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.16.0)\n", + "Requirement already satisfied: keras<2.9,>=2.8.0rc0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.8.0)\n", + "Requirement already satisfied: tensorboard<2.9,>=2.8 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (2.8.0)\n", + "Requirement already satisfied: wrapt>=1.11.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.13.3)\n", + "Requirement already satisfied: protobuf>=3.9.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.18.1)\n", + "Requirement already satisfied: absl-py>=0.4.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.14.1)\n", + "Requirement already satisfied: opt-einsum>=2.3.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.3.0)\n", + "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.41.0)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /opt/conda/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.0)\n", + "Requirement already satisfied: markdown>=2.6.8 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (3.3.4)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.4.6)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.6.1)\n", + "Requirement already satisfied: werkzeug>=0.11.15 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.0.2)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (2.26.0)\n", + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.8.0)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.35.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.2.8)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.7.2)\n", + "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.2.4)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/conda/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (1.3.0)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.4.8)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (1.26.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2021.5.30)\n", + "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (3.1)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2.0.0)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow) (3.1.1)\n", + "\u001B[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001B[0m\n" + ] + } + ], + "source": [ + "!pip install tensorflow" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "HpRLLRzkTwdL", + "outputId": "9dc072ea-e419-4bc1-ad99-507cdd4e1394" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "UW903YxwThrH", - "outputId": "4dc91901-fa9f-446a-a883-dca331443d3d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fetching https://raw.githubusercontent.com/Perez-AlmendrosC/dontpatronizeme/master/semeval-2022/dont_patronize_me.py\n" - ] - } - ], - "source": [ - "module_url = f\"https://raw.githubusercontent.com/Perez-AlmendrosC/dontpatronizeme/master/semeval-2022/dont_patronize_me.py\"\n", - "module_name = module_url.split('/')[-1]\n", - "print(f'Fetching {module_url}')\n", - "#with open(\"file_1.txt\") as f1, open(\"file_2.txt\") as f2\n", - "with request.urlopen(module_url) as f, open(module_name,'w') as outf:\n", - " a = f.read()\n", - " outf.write(a.decode('utf-8'))" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Found GPU at: /device:GPU:0\n" + ] }, { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "id": "PRxm0179aqzw" - }, - "outputs": [], - "source": [ - "# helper function to save predictions to an output file\n", - "def labels2file(p, outf_path):\n", - "\twith open(outf_path,'w') as outf:\n", - "\t\tfor pi in p:\n", - "\t\t\toutf.write(','.join([str(k) for k in pi])+'\\n')" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-02-26 13:14:29.325853: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2022-02-26 13:14:29.327245: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-02-26 13:14:29.328399: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-02-26 13:14:29.329348: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-02-26 13:14:32.919742: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-02-26 13:14:32.920448: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-02-26 13:14:32.921064: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-02-26 13:14:32.921610: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /device:GPU:0 with 6966 MB memory: -> device: 0, name: Quadro P4000, pci bus id: 0000:00:05.0, compute capability: 6.1\n" + ] + } + ], + "source": [ + "if cuda_available:\n", + " import tensorflow as tf\n", + " # Get the GPU device name.\n", + " device_name = tf.test.gpu_device_name()\n", + " # The device name should look like the following:\n", + " if device_name == '/device:GPU:0':\n", + " print('Found GPU at: {}'.format(device_name))\n", + " else:\n", + " raise SystemError('GPU device not found')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BMQDATlOZHxu" + }, + "source": [ + "# Fetch Don't Patronize Me! data manager module" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "UW903YxwThrH", + "outputId": "4dc91901-fa9f-446a-a883-dca331443d3d" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "id": "gcDThFWVBxGb" - }, - "outputs": [], - "source": [ - "from dont_patronize_me import DontPatronizeMe" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Fetching https://raw.githubusercontent.com/Perez-AlmendrosC/dontpatronizeme/master/semeval-2022/dont_patronize_me.py\n" + ] + } + ], + "source": [ + "module_url = f\"https://raw.githubusercontent.com/Perez-AlmendrosC/dontpatronizeme/master/semeval-2022/dont_patronize_me.py\"\n", + "module_name = module_url.split('/')[-1]\n", + "print(f'Fetching {module_url}')\n", + "#with open(\"file_1.txt\") as f1, open(\"file_2.txt\") as f2\n", + "with request.urlopen(module_url) as f, open(module_name,'w') as outf:\n", + " a = f.read()\n", + " outf.write(a.decode('utf-8'))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "PRxm0179aqzw" + }, + "outputs": [], + "source": [ + "# helper function to save predictions to an output file\n", + "def labels2file(p, outf_path):\n", + "\twith open(outf_path,'w') as outf:\n", + "\t\tfor pi in p:\n", + "\t\t\toutf.write(','.join([str(k) for k in pi])+'\\n')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "gcDThFWVBxGb" + }, + "outputs": [], + "source": [ + "from dont_patronize_me import DontPatronizeMe" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "3Ay5_5Y0ThrI" + }, + "outputs": [], + "source": [ + "dpm = DontPatronizeMe('.', '.')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "2r3USK4eThrJ", + "outputId": "53bbe18a-47df-4079-d28a-cf890c08b306" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "3Ay5_5Y0ThrI" - }, - "outputs": [], - "source": [ - "dpm = DontPatronizeMe('.', '.')" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Map of label to numerical label:\n", + "{'Unbalanced_power_relations': 0, 'Shallow_solution': 1, 'Presupposition': 2, 'Authority_voice': 3, 'Metaphors': 4, 'Compassion': 5, 'The_poorer_the_merrier': 6}\n" + ] + } + ], + "source": [ + "dpm.load_task1()\n", + "dpm.load_task2(return_one_hot=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P0YcdU80IbiS" + }, + "source": [ + "# Load paragraph IDs" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "8AReWYHYOUqx" + }, + "outputs": [], + "source": [ + "trids = pd.read_csv('./practice_splits/train_semeval_parids-labels.csv')\n", + "teids = pd.read_csv('./practice_splits/dev_semeval_parids-labels.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 205 }, + "id": "a-_ADoJAOWJA", + "outputId": "85dbe757-4ee5-4887-deac-60185515e141" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "2r3USK4eThrJ", - "outputId": "53bbe18a-47df-4079-d28a-cf890c08b306" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Map of label to numerical label:\n", - "{'Unbalanced_power_relations': 0, 'Shallow_solution': 1, 'Presupposition': 2, 'Authority_voice': 3, 'Metaphors': 4, 'Compassion': 5, 'The_poorer_the_merrier': 6}\n" - ] - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" ], - "source": [ - "dpm.load_task1()\n", - "dpm.load_task2(return_one_hot=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "P0YcdU80IbiS" - }, - "source": [ - "# Load paragraph IDs" + "text/plain": [ + " par_id label\n", + "0 4341 [1, 0, 0, 1, 0, 0, 0]\n", + "1 4136 [0, 1, 0, 0, 0, 0, 0]\n", + "2 10352 [1, 0, 0, 0, 0, 1, 0]\n", + "3 8279 [0, 0, 0, 1, 0, 0, 0]\n", + "4 1164 [1, 0, 0, 1, 1, 1, 0]" ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "id": "8AReWYHYOUqx" - }, - "outputs": [], - "source": [ - "trids = pd.read_csv('./practice_splits/train_semeval_parids-labels.csv')\n", - "teids = pd.read_csv('./practice_splits/dev_semeval_parids-labels.csv')" - ] - }, + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trids.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "7IfCZjwQ16MS" + }, + "outputs": [], + "source": [ + "trids.par_id = trids.par_id.astype(str)\n", + "teids.par_id = teids.par_id.astype(str)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8lXrNj_Ww_FC" + }, + "source": [ + "\n", + "\n", + "# Rebuild training set (Task 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "BOxDR1H2g_3p" + }, + "outputs": [], + "source": [ + "rows = [] # will contain par_id, label and text\n", + "for idx in range(len(trids)): \n", + " parid = trids.par_id[idx]\n", + " #print(parid)\n", + " # select row from original dataset to retrieve `text` and binary label\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " label = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].label.values[0]\n", + " rows.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "8e3E08Yown5p" + }, + "outputs": [], + "source": [ + "trdf1 = pd.DataFrame(rows)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 205 - }, - "id": "a-_ADoJAOWJA", - "outputId": "85dbe757-4ee5-4887-deac-60185515e141" - }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>label</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " par_id label\n", - "0 4341 [1, 0, 0, 1, 0, 0, 0]\n", - "1 4136 [0, 1, 0, 0, 0, 0, 0]\n", - "2 10352 [1, 0, 0, 0, 0, 1, 0]\n", - "3 8279 [0, 0, 0, 1, 0, 0, 0]\n", - "4 1164 [1, 0, 0, 1, 1, 1, 0]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" ], - "source": [ - "trids.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "id": "7IfCZjwQ16MS" - }, - "outputs": [], - "source": [ - "trids.par_id = trids.par_id.astype(str)\n", - "teids.par_id = teids.par_id.astype(str)" + "text/plain": [ + " par_id text label\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1\n", + "1 4136 Durban 's homeless communities reconciliation ... 1\n", + "2 10352 The next immediate problem that cropped up was... 1\n", + "3 8279 Far more important than the implications for t... 1\n", + "4 1164 To strengthen child-sensitive social protectio... 1" ] - }, + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "8lXrNj_Ww_FC" - }, - "source": [ - "\n", - "\n", - "# Rebuild training set (Task 1)" + "data": { + "text/plain": [ + "8375" ] - }, + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "id": "BOxDR1H2g_3p" - }, - "outputs": [], - "source": [ - "rows = [] # will contain par_id, label and text\n", - "for idx in range(len(trids)): \n", - " parid = trids.par_id[idx]\n", - " #print(parid)\n", - " # select row from original dataset to retrieve `text` and binary label\n", - " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", - " label = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].label.values[0]\n", - " rows.append({\n", - " 'par_id':parid,\n", - " 'text':text,\n", - " 'label':label\n", - " })\n", - " " + "data": { + "text/plain": [ + "0 7581\n", + "1 794\n", + "Name: label, dtype: int64" ] - }, + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1[\"label\"].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Discussion regarding Analysis of class labels**\n", + "\n", + "The dataset is a skewed dataset, with 10 times more sentences not exhibiting pcl compared to sentences exhibiting pcl." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "8e3E08Yown5p" - }, - "outputs": [], - "source": [ - "trdf1 = pd.DataFrame(rows)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Collecting py-readability-metrics\n", + " Downloading py_readability_metrics-1.4.5-py3-none-any.whl (26 kB)\n", + "Requirement already satisfied: nltk in /opt/conda/lib/python3.8/site-packages (from py-readability-metrics) (3.6.4)\n", + "Requirement already satisfied: tqdm in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (4.62.3)\n", + "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (2021.10.8)\n", + "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (1.1.0)\n", + "Requirement already satisfied: click in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (8.0.1)\n", + "Installing collected packages: py-readability-metrics\n", + "Successfully installed py-readability-metrics-1.4.5\n", + "\u001B[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001B[0m\n", + "/opt/conda/lib/python3.8/runpy.py:127: RuntimeWarning: 'nltk.downloader' found in sys.modules after import of package 'nltk', but prior to execution of 'nltk.downloader'; this may result in unpredictable behaviour\n", + " warn(RuntimeWarning(msg))\n", + "[nltk_data] Downloading package punkt to /root/nltk_data...\n", + "[nltk_data] Unzipping tokenizers/punkt.zip.\n" + ] + } + ], + "source": [ + "!pip install py-readability-metrics\n", + "!python -m nltk.downloader punkt" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from readability import Readability\n", + "\n", + "def calculate_readability(text):\n", + " try:\n", + " r = Readability(text)\n", + " return r.flesch_kincaid().score\n", + " except:\n", + " return 0" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>The scheme saw an estimated 150,000 children f...</td>\n", - " <td>1</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>Durban 's homeless communities reconciliation ...</td>\n", - " <td>1</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>The next immediate problem that cropped up was...</td>\n", - " <td>1</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>Far more important than the implications for t...</td>\n", - " <td>1</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>To strengthen child-sensitive social protectio...</td>\n", - " <td>1</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " par_id text label\n", - "0 4341 The scheme saw an estimated 150,000 children f... 1\n", - "1 4136 Durban 's homeless communities reconciliation ... 1\n", - "2 10352 The next immediate problem that cropped up was... 1\n", - "3 8279 Far more important than the implications for t... 1\n", - "4 1164 To strengthen child-sensitive social protectio... 1" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" ], - "source": [ - "trdf1.head()" + "text/plain": [ + " par_id text label \\\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", + "1 4136 Durban 's homeless communities reconciliation ... 1 \n", + "2 10352 The next immediate problem that cropped up was... 1 \n", + "3 8279 Far more important than the implications for t... 1 \n", + "4 1164 To strengthen child-sensitive social protectio... 1 \n", + "\n", + " num_sentences_in_paragraph \n", + "0 2 \n", + "1 1 \n", + "2 3 \n", + "3 2 \n", + "4 2 " ] - }, + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "paragraphs = trdf1[\"text\"]\n", + "\n", + "trdf1[\"num_sentences_in_paragraph\"] = paragraphs.apply(lambda x: len(x.split(\".\")))\n", + "\n", + "trdf1.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "trdf1[\"readability_score\"] = trdf1[\"text\"].apply(lambda x: calculate_readability(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "def avg_sentence_length(para):\n", + " sentences = para.split(\".\")\n", + " s_len = [len(s.split(\" \")) for s in sentences]\n", + " return sum(s_len) / len(s_len)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "trdf1[\"avg_sentence_length\"] = paragraphs.apply(lambda x : avg_sentence_length(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8375" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "trdf1.shape[0]" + "data": { + "text/plain": [ + "count 8375.000000\n", + "mean 0.544217\n", + "std 2.946594\n", + "min 0.000000\n", + "25% 0.000000\n", + "50% 0.000000\n", + "75% 0.000000\n", + "max 67.778221\n", + "Name: readability_score, dtype: float64" ] - }, + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1[\"readability_score\"].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 7581\n", - "1 794\n", - "Name: label, dtype: int64" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " <th>readability_score</th>\n", + " <th>avg_sentence_length</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>18.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>0.0</td>\n", + " <td>6.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>24.666667</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>23.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>25.000000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" ], - "source": [ - "trdf1[\"label\"].value_counts()" + "text/plain": [ + " par_id text label \\\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", + "1 4136 Durban 's homeless communities reconciliation ... 1 \n", + "2 10352 The next immediate problem that cropped up was... 1 \n", + "3 8279 Far more important than the implications for t... 1 \n", + "4 1164 To strengthen child-sensitive social protectio... 1 \n", + "\n", + " num_sentences_in_paragraph readability_score avg_sentence_length \n", + "0 2 0.0 18.500000 \n", + "1 1 0.0 6.000000 \n", + "2 3 0.0 24.666667 \n", + "3 2 0.0 23.000000 \n", + "4 2 0.0 25.000000 " ] - }, + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pat_sent = trdf1.loc[trdf1['label'] == 1]\n", + "non_pat_sent = trdf1.loc[trdf1['label'] == 0]\n", + "\n", + "pat_sent.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:matplotlib.font_manager:generated new fontManager\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Discussion regarding Analysis of class labels**\n", - "\n", - "The dataset is a skewed dataset, with 10 times more sentences not exhibiting pcl compared to sentences exhibiting pcl." + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABEaUlEQVR4nO3deZhlVX3v//dHmkkgAtIShtY2iAMmEbWDGEkkogjoDehVg9cBFYMmmGiiSVBzIw7cYKKS+IshQUFwljhEoiaCxiEmCjYKSANqq41000AzgxgU+P7+2KvDoqyqruqqc7qA9+t5zlP7rD181x5qn+9Ze+19UlVIkiRJGtxnU1dAkiRJWkhMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEv3cklOTfKWTRQ7Sd6b5Lok52yKOix0SR6Y5OYkm23qusy3JP+a5IgZTHdzkl8aR53uKZIsTVJJFm3qukh3R/7jSAtMklXAfYEHV9WPW9lLgedX1f6bsGqjsB/wFGD39es6DkkK2LOqVo4r5saqqh8B2447bpKlwA+BzavqtlHEqKqDZzjd2Ndf0r2bLcjSwrQZ8MpNXYnZ2ohWzgcBq8aZHGv+2Dp5p/neFm5badMyQZYWpr8GXpNk+4kjJrt0muRLrZWZJC9K8p9JTkhyfZIfJPn1Vn5Zkqsmuay9U5KzktyU5MtJHtQt++Ft3LVJvpPkOd24U5OcmOSzSX4M/NYk9d01yRlt/pVJfreVHwm8B3h8u4T+xknmfUirzw1Jrk7y0VnU611JPtPW6ewke7RxX2mTnd/i/k4rf3qS89o2+68kv9otb1WS1yS5oNXlo0m26sYf2ua9Mcn3kxzUyu+X5OQka5OsSfKW9V8iplu36fZ329dvbvv4piRnJtlpinn3T7I6yetajFVJnteNf1qSb7V6X5bk2G729dvp+radHj/h2LoGOLat4/uSrEtyaZI/T3KftvwXJflqkrdl6EbzwyQHd/H743a6fV1JHrKhfdvGH9iOhxuS/H1b5kun2D7HJvlY2583Jflmkkd1449p+/OmJBcleUY3brJtsUeSf09yTVuHD6b7H07ymLa9b0ryTy3uWybsqz9LcgXw3iQ7JPl027bXteHdJ2y/v0xyTtuHn0qy44TVfF6SH7X6vH6y7SBpElXly5evBfQCVgFPBj4BvKWVvRT4UhteChSwqJvnS8BL2/CLgNuAFzO0RL8F+BHwLmBL4EDgJmDbNv2p7f1vtvF/C3y1jdsGuKwtaxHwaOBqYK9u3huAJzB84d5qkvX5CvD3wFbA3sA64EldXb86zbb4MPD69csG9ptFva4B9mnjPwh8pFtuAQ/p3j8auAp4XNtmR7T9sGW3T84BdgV2BC4GXt7G7dO2wVNaPXcDHt7GfRL4x1bfB7RlvGy6dZtkG9xlf7d9/X3gocDW7f3xU8y7fzsW3tH27ROBHwMP68b/SqvDrwJXAodNc5y9qC3vD9p23Rp4H/ApYLs2z3eBI7vpfwb8btuuvwdcDmSS43bK7dHvr+n2LbATcCPwzDbulS3+S6fYPse28c8CNgdew53dSgCe3fb5fYDfadtul2m2xUMYjoMtgcUMx/7ftOm3AC5tddq81fGn3Pk/vn5fvbXNvzVwf+B/M3S52g74J+CfJ/zfrwF+meEY+zjwgQn7791tWY8CbgUesanPcb583R1etiBLC9dfAH+QZPFGzPvDqnpvVd0OfBRYArypqm6tqjMZPpgf0k3/mar6SlXdypCkPD7JEuDpDF0g3ltVt1XVtxg+hJ/dzfupqvrPqrqjqv67r0RbxhOAP6uq/66q8xhajV84w/X4GUM3jF3b/F9t5TOp1yer6pwa+s9+kCE5n8pRwD9W1dlVdXtVncaQTOzbTfPOqrq8qq4F/qVb3pHAKVV1VtsGa6rqkiQ7A4cAr6qqH1fVVcAJwOEbWLeZeG9VfbeqfgKcvoF1A/i/bd9/GfgM8ByAqvpSVX271fsChiT1iRtY1uVV9f+17frTtj6vraqbqmoV8HbgBd30l1bVu9uxeBqwC7DzJMudzfaYat8eAqyoqk+0ce8ErtjA+pxbVR+rqp8xfJHYirbfq+qf2j6/o6o+CnyPITH/uW1RVT+pqpXtOLi1qta15a3fnvsyJNLvrKqfVdUnGL4w9e4A3tDm/0lVXVNVH6+qW6rqJuA4fn7/vL+qLqyhm9L/BZ6Tu3Z1emNb1vnA+QyJsqQNMEGWFqiquhD4NHDMRsx+ZTf8k7a8iWX9jU+XdXFvBq5laDl7EPC4DN0Ork9yPfA84Bcnm3cSuwLXtg/39S5laGWdiT8FApyTZEWSl7TymdSrT4xuYfob3R4EvHrC8pa0+m9oeUsYWnQnW+bmwNpumf/I0JI83brNxGzW7bq6ax/vS2nrleRxSb7YLuHfALycoRV2Ov3+3olhHS+dsPx+//5PXavqljY4WX1nsz2mWv9dueuxXMDqaZbDhOnvaNOv3z4vzJ3dbq5naKndabJ52/Q7J/lIhu40NwIf6KbfFVjT6jTp/MC6/ktmkvsm+cfWdeVGhhbp7SckwP0yLmXYH30dZ3OsSGq8CUBa2N4AfJOhVW699cnOfRkuJ8NdE8ONsWT9QJJtGboRXM7w4fvlqnrKNPPWNOMuB3ZMsl2XJD+Q4bLwBlXVFQyX50myH/D5DH2IZ1Kv2bgMOK6qjtvIefeYovxWYKea5CkQU61bzf+TNXZIsk2XJD8QuLANfwj4O+DgqvrvJH/DncnVVPu1L7+aO1t+L+qWP6P9e5eFzs/2WAv0fXTTv59Cf+zfp01/eYZ++O8GDgC+VlW3JzmPIYn/n2pPWNb/a2W/UlXXJjmMYfuur9tuSdIlyRO/XE1c3quBhwGPq6orkuwNfGtCHZZ0ww9k2B9XTyiXNEu2IEsLWEsOPgr8YVe2jiEBeX6SzVpL22QJ2mwckmS/JFsAbwa+XlWXMbRgPzTJC5Js3l6/luQRM6z/ZcB/AX+ZZKsMN74dydCytkFJnt3dlHQdQwJxx1zrxdDC3j9X993Ay1uLapJsk+EGtu1msKyTgRcnOSDJfZLsluThVbUWOBN4e5JfaOP2SPLEDazbKLwxyRZJfoOhe8o/tfLtGFr4/zvJPsD/6eZZ1+oz5fOHW7eJ04HjkmzXkso/Zob7tzdP2+MzwK8kOSzDTY1Hs+Evj49N8sw2/asYvtR8naFPbzFsB5K8mKEFeTrbATcDNyTZDfiTbtzXgNuBVyRZlORQ7tpdY6rl/YThRskdGb4wT/T8JHsluS/wJuBjbb9ImgMTZGnhexPDh3Xvdxk+fK8BHsmQhM7Fhxg+fK8FHgs8H6C1+h7I0M/0cobLtetvIpqp5zLcMHQ5w01rb6iqz89w3l8Dzk5yM3AG8Mqq+sE81OtY4LR26fw5VbWcYZv+HUNytpLhJqwNqqpzGG4WPIHhZr0vM7SowtDXeguG1tXrgI8x9MGdct1mWP/ZuKLFvpyhv+7Lq+qSNu73gTcluYmhz/vp3XrdwtDn9T/bdtqXyf0Bw1WNHwBfZTiWTtmIes55e1TV1Qz90P+K4X9jL2A5Q9I7lU8x3IB3HUPf6We2PsIXMVy5+RrDF6pfAf5zA1V4I/AYhuPgMww32q6v208Zbsw7Erie4X/s0xuo298w3GB3NUPS/m+TTPN+hhsXr2DoP/2Hk0wjaZZSNd3VUUnS3VWS/RmearChbgb3SK3LxGrgeVX1xUnGH8vwdIznj7tuLf7ZwD9U1Xs3cv4vMezf98xrxSTZgixJuudI8tQk2yfZEngdQ3/dr2/iagGQ5IlJfrF1sTiC4dF6k7UKS9rEvElPknRP8niGbh7ru7Yc1h6HtxA8jKEbyzYMXVKe1fqqS1pg7GIhSZIkdexiIUmSJHUWdBeLnXbaqZYuXbqpqyFJkqS7qXPPPffqqprVr9Iu6AR56dKlLF++fFNXQ5IkSXdTSS7d8FR3ZRcLSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdRb0T03fky095jOzmn7V8U8bUU0kSZLUswVZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJnY1OkJNsleScJOcnWZHkja38wUnOTrIyyUeTbNHKt2zvV7bxS+dpHSRJkqR5M5cW5FuBJ1XVo4C9gYOS7Au8FTihqh4CXAcc2aY/EriulZ/QppMkSZIWlI1OkGtwc3u7eXsV8CTgY638NOCwNnxoe08bf0CSbGx8SZIkaRTm1Ac5yWZJzgOuAs4Cvg9cX1W3tUlWA7u14d2AywDa+BuA+88lviRJkjTf5pQgV9XtVbU3sDuwD/DwuVYoyVFJlidZvm7durkuTpIkSZqVeXmKRVVdD3wReDywfZJFbdTuwJo2vAZYAtDG3w+4ZpJlnVRVy6pq2eLFi+ejepIkSdKMzeUpFouTbN+GtwaeAlzMkCg/q012BPCpNnxGe08b/+9VVRsbX5IkSRqFRRueZEq7AKcl2Ywh0T69qj6d5CLgI0neAnwLOLlNfzLw/iQrgWuBw+cQW5IkSRqJjU6Qq+oC4NGTlP+AoT/yxPL/Bp69sfEkSZKkcfCX9CRJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOhudICdZkuSLSS5KsiLJK1v5sUnWJDmvvQ7p5nltkpVJvpPkqfOxApIkSdJ8WjSHeW8DXl1V30yyHXBukrPauBOq6m39xEn2Ag4HHgnsCnw+yUOr6vY51EGSJEmaVxvdglxVa6vqm234JuBiYLdpZjkU+EhV3VpVPwRWAvtsbHxJkiRpFOalD3KSpcCjgbNb0SuSXJDklCQ7tLLdgMu62VYzSUKd5Kgky5MsX7du3XxUT5IkSZqxOSfISbYFPg68qqpuBE4E9gD2BtYCb5/N8qrqpKpaVlXLFi9ePNfqSZIkSbMypwQ5yeYMyfEHq+oTAFV1ZVXdXlV3AO/mzm4Ua4Al3ey7tzJJkiRpwZjLUywCnAxcXFXv6Mp36SZ7BnBhGz4DODzJlkkeDOwJnLOx8SVJkqRRmMtTLJ4AvAD4dpLzWtnrgOcm2RsoYBXwMoCqWpHkdOAihidgHO0TLCRJkrTQbHSCXFVfBTLJqM9OM89xwHEbG1OSJEkaNX9JT5IkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEmdjU6QkyxJ8sUkFyVZkeSVrXzHJGcl+V77u0MrT5J3JlmZ5IIkj5mvlZAkSZLmy1xakG8DXl1VewH7Akcn2Qs4BvhCVe0JfKG9BzgY2LO9jgJOnENsSZIkaSQ2OkGuqrVV9c02fBNwMbAbcChwWpvsNOCwNnwo8L4afB3YPskuGxtfkiRJGoV56YOcZCnwaOBsYOeqWttGXQHs3IZ3Ay7rZlvdyiYu66gky5MsX7du3XxUT5IkSZqxOSfISbYFPg68qqpu7MdVVQE1m+VV1UlVtayqli1evHiu1ZMkSZJmZU4JcpLNGZLjD1bVJ1rxleu7TrS/V7XyNcCSbvbdW5kkSZK0YMzlKRYBTgYurqp3dKPOAI5ow0cAn+rKX9ieZrEvcEPXFUOSJElaEBbNYd4nAC8Avp3kvFb2OuB44PQkRwKXAs9p4z4LHAKsBG4BXjyH2JIkSdJIbHSCXFVfBTLF6AMmmb6Aozc2niRJkjQOc2lB1gK29JjPzHqeVcc/bQQ1kSRJunvxp6YlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1JlTgpzklCRXJbmwKzs2yZok57XXId241yZZmeQ7SZ46l9iSJEnSKMy1BflU4KBJyk+oqr3b67MASfYCDgce2eb5+ySbzTG+JEmSNK/mlCBX1VeAa2c4+aHAR6rq1qr6IbAS2Gcu8SVJkqT5Nqo+yK9IckHrgrFDK9sNuKybZnUru4skRyVZnmT5unXrRlQ9SZIkaXKjSJBPBPYA9gbWAm+fzcxVdVJVLauqZYsXLx5B9SRJkqSpzXuCXFVXVtXtVXUH8G7u7EaxBljSTbp7K5MkSZIWjHlPkJPs0r19BrD+CRdnAIcn2TLJg4E9gXPmO74kSZI0F4vmMnOSDwP7AzslWQ28Adg/yd5AAauAlwFU1YokpwMXAbcBR1fV7XOJL0mSJM23OSXIVfXcSYpPnmb644Dj5hJTkiRJGiV/SU+SJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJnTklyElOSXJVkgu7sh2TnJXke+3vDq08Sd6ZZGWSC5I8Zq6VlyRJkubbXFuQTwUOmlB2DPCFqtoT+EJ7D3AwsGd7HQWcOMfYkiRJ0rxbNJeZq+orSZZOKD4U2L8NnwZ8CfizVv6+qirg60m2T7JLVa2dSx1097H0mM/MavpVxz9tRDWRJEma2ij6IO/cJb1XADu34d2Ay7rpVreyu0hyVJLlSZavW7duBNWTJEmSpjbSm/Raa3HNcp6TqmpZVS1bvHjxiGomSZIkTW4UCfKVSXYBaH+vauVrgCXddLu3MkmSJGnBGEWCfAZwRBs+AvhUV/7C9jSLfYEb7H8sSZKkhWZON+kl+TDDDXk7JVkNvAE4Hjg9yZHApcBz2uSfBQ4BVgK3AC+eS2xJkiRpFOb6FIvnTjHqgEmmLeDoucSTJEmSRs1f0pMkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6iwa1YKTrAJuAm4HbquqZUl2BD4KLAVWAc+pqutGVQdJkiRptkaWIDe/VVVXd++PAb5QVccnOaa9/7MR10H3IkuP+cyspl91/NNGVBNJknR3Ne4uFocCp7Xh04DDxhxfkiRJmtYoE+QCzkxybpKjWtnOVbW2DV8B7DxxpiRHJVmeZPm6detGWD1JkiTp542yi8V+VbUmyQOAs5Jc0o+sqkpSE2eqqpOAkwCWLVv2c+MlSZKkURpZglxVa9rfq5J8EtgHuDLJLlW1NskuwFWjij8Xs+3HCvZllSRJuqcYSReLJNsk2W79MHAgcCFwBnBEm+wI4FOjiC9JkiRtrFG1IO8MfDLJ+hgfqqp/S/IN4PQkRwKXAs8ZUXxJkiRpo4wkQa6qHwCPmqT8GuCAUcSUJEmS5oO/pCdJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjqj/KEQ6V7PZ2pLknT3YwuyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLU8Zf0pLu52f5an7/UJ0nS9GxBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHV8zJukeeej5yRJd2e2IEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpM7Yb9JLchDwt8BmwHuq6vhx10HS3Zs3AUqSRmmsLchJNgPeBRwM7AU8N8le46yDJEmSNJ1xtyDvA6ysqh8AJPkIcChw0ZjrIUnzatSt2vfGVvPZrjPcM9Zburu4J5+XUlXjC5Y8Czioql7a3r8AeFxVvaKb5ijgqPb2l4ELx1bBO+0EXG1c4xrXuMY1rnGNa9y7fdyHVdV2s5lhwf1QSFWdBJwEkGR5VS0bdx2Ma1zjGte4xjWucY17z4k723nG/RSLNcCS7v3urUySJElaEMadIH8D2DPJg5NsARwOnDHmOkiSJElTGmsXi6q6LckrgM8xPObtlKpaMc0sJ42nZsY1rnGNa1zjGte4xjXuYKw36UmSJEkLnb+kJ0mSJHVMkCVJkqTOgk2QkxyU5DtJViY5ZkwxT0lyVZKxPns5yZIkX0xyUZIVSV45prhbJTknyfkt7hvHEbeLv1mSbyX59Bhjrkry7STnbcxjX+YQd/skH0tySZKLkzx+DDEf1tZz/evGJK8addwW+4/aMXVhkg8n2WpMcV/ZYq4Y5bpOdq5IsmOSs5J8r/3dYUxxn93W944kI3l80hRx/7odzxck+WSS7ccU980t5nlJzkyy6zjiduNenaSS7DSOuEmOTbKm+z8+ZBxxW/kftH28IslfjSNuko9267oqyXljirt3kq+v/2xIss+Y4j4qydfa59K/JPmFEcSdNMcY9TlrmrgjPWdNE3d256yqWnAvhhv4vg/8ErAFcD6w1xji/ibwGODCMa/vLsBj2vB2wHfHtL4Btm3DmwNnA/uOcb3/GPgQ8OkxxlwF7DTO/dvinga8tA1vAWw/5vibAVcADxpDrN2AHwJbt/enAy8aQ9z1Pyx0X4YbkD8PPGREsX7uXAH8FXBMGz4GeOuY4j4CeBjwJWDZGNf3QGBRG37rGNf3F7rhPwT+YRxxW/kShpvMLx3FeWSK9T0WeM0o9usG4v5W+x/asr1/wLi2czf+7cBfjGl9zwQObsOHAF8aU9xvAE9swy8B3jyCuJPmGKM+Z00Td6TnrGnizuqctVBbkP/nJ6mr6qfA+p+kHqmq+gpw7ajjTBJ3bVV9sw3fBFzMkGSMOm5V1c3t7ebtNZa7NpPsDjwNeM844m1KSe7HcGI8GaCqflpV14+5GgcA36+qS8cUbxGwdZJFDAnr5WOI+Qjg7Kq6papuA74MPHMUgaY4VxzK8EWI9vewccStqour6jvzHWsGcc9s2xng6wzPtR9H3Bu7t9swgnPWNJ8FJwB/OoqYG4g7UlPE/T3g+Kq6tU1z1ZjiApAkwHOAD48pbgHrW2/vxwjOWVPEfSjwlTZ8FvC/RxB3qhxjpOesqeKO+pw1TdxZnbMWaoK8G3BZ9341Y0gYF4IkS4FHM7TmjiPeZu0S1lXAWVU1lrjA3zB80NwxpnjrFXBmknMz/Kz5ODwYWAe8N0OXkvck2WZMsdc7nBF80EymqtYAbwN+BKwFbqiqM8cQ+kLgN5LcP8l9GVqBlmxgnvm0c1WtbcNXADuPMfam9hLgX8cVLMlxSS4Dngf8xZhiHgqsqarzxxFvgle0y8KnjKLrzhQeyvD/dHaSLyf5tTHFXe83gCur6ntjivcq4K/bcfU24LVjiruCOxsAn82Iz1kTcoyxnbPGndvMIO4Gz1kLNUG+V0qyLfBx4FUTWklGpqpur6q9Gb5J7ZPkl0cdM8nTgauq6txRx5rEflX1GOBg4OgkvzmGmIsYLqudWFWPBn7McDlrLDL8KM9vA/80png7MJzwHwzsCmyT5PmjjltVFzNcNjsT+DfgPOD2Ucedoi7FmK7GbGpJXg/cBnxwXDGr6vVVtaTFfMWo47UvXK9jTMn4BCcCewB7M3zhfPuY4i4CdgT2Bf4EOL216o7LcxnTl/rm94A/asfVH9Gu+I3BS4DfT3IuQ3eAn44q0HQ5xijPWZsit5ku7kzPWQs1Qb7X/SR1ks0ZduQHq+oT447fLvl/EThoDOGeAPx2klUM3WeelOQDY4i7vnVz/eXCTzJ05xm11cDqrnX+YwwJ87gcDHyzqq4cU7wnAz+sqnVV9TPgE8CvjyNwVZ1cVY+tqt8ErmPoezYuVybZBaD9nfdL0gtNkhcBTwee1z5gx+2DjOCS9CT2YPjCd347b+0OfDPJL446cFVd2Roy7gDezXjOWTCctz7RuuKdw3C1b95vTJxM65r1TOCj44jXHMFwroKhMWEs27mqLqmqA6vqsQxfCL4/ijhT5BgjP2dtqtxmqrizOWct1AT5XvWT1O1b+cnAxVX1jjHGXbz+Ls4kWwNPAS4Zddyqem1V7V5VSxn27b9X1chbGJNsk2S79cMMHfZH/sSSqroCuCzJw1rRAcBFo47bGXdLzI+AfZPctx3bBzD0ARu5JA9ofx/I8AH7oXHEbc5g+JCl/f3UGGOPXZKDGLpJ/XZV3TLGuHt2bw9lPOesb1fVA6pqaTtvrWa4CeiKUcden8A0z2AM56zmnxlu1CPJQxluLr56TLGfDFxSVavHFA+GPsdPbMNPAsbStaM7Z90H+HPgH0YQY6ocY6TnrE2Y20wad9bnrOnu4NuUL4b+g99l+Db1+jHF/DDDJayfMZwAjxxT3P0YLm1cwHBZ+DzgkDHE/VXgWy3uhYzgbuEZ1GF/xvQUC4anopzfXivGdVy12HsDy9u2/mdghzHF3Qa4BrjfmPfrGxkSlwuB99PuhB9D3P9g+PJxPnDACOP83LkCuD/wBYYP1s8DO44p7jPa8K3AlcDnxhR3JcO9IuvPWaN4msRkcT/ejqsLgH9huPlm5HEnjF/FaJ5iMdn6vh/4dlvfM4BdxhR3C+ADbVt/E3jSuLYzcCrw8vmOt4H13Q84t507zgYeO6a4r2TIdb4LHE/7heN5jjtpjjHqc9Y0cUd6zpom7qzOWf7UtCRJktRZqF0sJEmSpE3CBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4Is3YMkOTXJWzZR7CR5b5LrkpyzKeqw0CV5YJKbk2y2qetyd5ZkRZL9NzCN23ojJNk/yepNXQ9pUzNBlkYoyaokVyXZpit7aZIvbcJqjcp+wFOA3atqn3EFTVJJHjKueHNRVT+qqm2r6vZNXZdRGUeCVVWPrKovbWCae/y2ljQ6JsjS6G0GvHJTV2K2NqLl7UHAqqr68Sjqo3uOJIs2dR0WivneFm5baX6YIEuj99fAa5JsP3FEkqWtBXRRV/alJC9twy9K8p9JTkhyfZIfJPn1Vn5Za50+YsJid0pyVpKbknw5yYO6ZT+8jbs2yXeSPKcbd2qSE5N8NsmPgd+apL67Jjmjzb8yye+28iOB9wCPb5e13zjJvA9p9bkhydVJPjqLer0ryWfaOp2dZI827ittsvNb3N9p5U9Pcl7bZv+V5Fe75a1K8pokF7S6fDTJVt34Q9u8Nyb5fpKDWvn9kpycZG2SNUnesv5LxHTrNt3+bvv6zW0f35TkzCQ7TTHv/klWJ3l12+9rk7y4G3+/JO9Lsi7JpUn+PMl92rgXJflqkrdl6ALzwyQHTxanm/4/k/xdW6dLkhzQjX9xkotbnX+Q5GWtfBvgX4Fd2/64uR0zxyb5WJIPJLkReNFUx1JbzrFJTm/rc1OGLhXLJuzDJ7fhfZIsb/vryiTv2JhtneSFbbtdk+T/9jEm2T6nJvmHTP1/9rcZ/j9vTHJukt+YsG4Tt8U+Sb6W4Xhd27b7Ft08B2b4v7ghyd+3eJOdI64Bjk2yR5J/b+tydZIPpjv/tHV7bZKL2vHw3nT/A22aSY8z6V6jqnz58jWiF7AKeDLwCeAtreylwJfa8FKggEXdPF8CXtqGXwTcBryYoSX6LcCPgHcBWwIHAjcB27bpT23vf7ON/1vgq23cNsBlbVmLgEcDVwN7dfPeADyB4cvzVpOsz1eAvwe2AvYG1gFP6ur61Wm2xYeB169fNrDfLOp1DbBPG/9B4CPdcgt4SPf+0cBVwOPaNjui7Yctu31yDrArsCNwMfDyNm6ftg2e0uq5G/DwNu6TwD+2+j6gLeNl063bJNvgLvu77evvAw8Ftm7vj59i3v3bsfAmYHPgEOAWYIc2/n3Ap4DtWpzvAkd2++ZnwO+2bfJ7wOVApoj1ohbrj1qs32nbZcc2/mnAHkCAJ7Z6PKar5+oJyzu2xT+sbaOtmf5YOhb477aOmwF/CXx94v9VG/4a8II2vC2w72y3NbAXcDNDN6EtgLe1+j55iu1zKlP8n7Xxzwfuz3C8vhq4gvb/NMW2eCywb5t+KcMx+ao2/U7AjcAz2/hXtvknniP+oI3fGngIwzG8JbC4beu/mbD9LgSWMPwP/Cd3np/2Z5rjzJeve8trk1fAl6978os7E+RfZkgwFjP7BPl73bhfadPv3JVdA+zdhk/lrsnjtsDt7YPwd4D/mFC/fwTe0M37vmnWZUlb1nZd2V8Cp3Z1nS5Bfh9wEkMf5b58JvV6TzfuEOCS7v3EBPlE4M0Tlvcd4IndPnl+N+6vgH/o4p4wSd13Bm4Ftu7Kngt8cbp1m2Q5d9nfbV//eTf+94F/m2Le/YGfTDhWrmJIrDYDfkr7UtHGvaw7zl4ErOzG3bfV4xeniPUiJiTQDF8IXjDF9P8MvLKr52QJ8ldmcSwdC3y+G7cX8JOJ/1dt+CvAG4GdNnZbA38BfHjC9vkp0yfIk/6fTTH9dcCjJtsWU0z/KuCTbfiFwNe6cWH4QtmfI360geUdBnxrwvZ7+YT/qe9v6DibLoYvX/e0l10spDGoqguBTwPHbMTsV3bDP2nLm1i2bff+si7uzcC1DK2lDwIe1y7jXp/keuB5wC9ONu8kdgWuraqburJLGVpZZ+JPGT7cz2mXzF/SymdSryu64Vu46/pO9CDg1ROWt6TVf0PLW8LQyjjZMjcH1nbL/EeGluTp1m0mZrNu11TVbZNMv1Or36XduIn75n/iVNUtbXDbJL/RdYdY0U2/pqpqwvJ2BUhycJKvt+4R1zMkWJN2Den0x9ZMjqWJ22WrTN6/9kiGVuFLknwjydOnqcNU23pX7vp/cwvDF8/pTPV/RoYuPBe3LhHXA/fjrtvnLv9nSR6a5NNJrmjdLv5fN/3EuhUw8SbIicvbOclHMnQFuhH4AD+/f/p5/mffNlMdZ9K9hp35pfF5A/BN4O1d2fob2u7LcBkV7poYbowl6weSbMtwCfVyhg/EL1fVU6aZt6YZdzmwY5LtusTmgcCamVSqqq5guMRPkv2Az2foQzyTes3GZcBxVXXcRs67xxTltzK0Ut42ceRU61ZVKzeiDhvjaobL7g8CLmplM9o3VfUfTJ787JYkXZL8QOCMJFsCH2do2fxUVf0syT8zfEGAqY+hvnxOx9KE+n8PeG6G/tbPBD6W5P6zXMxa4GHr3yTZmqGLxHQm/T9r/Y3/FDgAWFFVdyS5jju3D/z8NjoR+Bbw3Kq6KcmrgGd1ddu9i5X+/RTL+3+t7Feq6tokhwF/N1X9Gbb95VOvqnTvYwuyNCYtWfoo8Idd2TqGpOD5STZrLY+TJWizcUiS/dpNPm9m6Lt5GUML9kOTvCDJ5u31a0keMcP6Xwb8F/CXSbbKcOPbkQytUxuU5NlJ1n+wX8fwAX7HXOvF0ML+S937dwMvT/K4DLZJ8rQk281gWScDL05yQJL7JNktycOrai1wJvD2JL/Qxu2R5IkbWLexqOFRZqcDxyXZLsMNY3/MDPfNFB4A/GHbH88GHgF8lqGP7pYMfYZvy3Cz34HdfFcC909yv2nqO6djqZfk+UkWV9UdwPWteLbb/mPA/8pwA+wWDN0gMv0sU/6fbcfQh3cdsCjJXwC/sIFlbcfwBfnmJA9n6CO+3meAX0lyWGtBP5oNf4nejqFP9Q1JdgP+ZJJpjk6ye5IdGfrPT3pjqXRvZYIsjdebGG7y6v0uwwfYNcAjGRKHufgQQ2v1tQw3/zwfoLXUHQgcztBadAXwVoZkZ6aey9C383KGm9beUFWfn+G8vwacneRm4AyGPqs/mId6HQuc1ro+PKeqljNs079jSFZXMvTT3KCqOofhZsETGPqMf5mhVRaGFtMtGFpor2NIqnaZbt1mWP/58gcMVyR+AHyV4Tg4ZQ7LOxvYk6F1+jjgWVV1Tdtff8iQkF8H/B+GdQagqi5huGnxB22f7PpzSx7M5VjqHQSsaNv+b4HDq+ons1lAVa1g2H4fYWixvZmh3+2t08w26f8Z8Dng3xhukryU4WbD6bouAbyGYTvexPAF73+S1aq6Gng2Q1/5axj6Yy/fQN3eCDyG4Rj+DMNNwpPV/0yG4+X7DDcAS2py1y5mkqR7uyQvYrgJbL9NXZdNoXWZuB7Ys6p+OMn4UxluRPzzMVeN1pVkNfC8qvriRi5jFcP+3ZgvJNK9gi3IkqR7vST/K8l9MzzL+W3Atxme9rDJJXlqku1b/+/XMXT/+PomrpZ0j2aCLEkSHMrQ3eNyhq4lh9fCucT6eIZuEFcD/ws4bLbdSCTNjl0sJEmSpI4tyJIkSVJnQT8HeaeddqqlS5du6mpIkiTpburcc8+9uqoWz2aeBZ0gL126lOXLl2/qakiSJOluKsmlG57qruxiIUmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdRb0L+ndky095jOzmn7V8U8bUU0kSZLUswVZkiRJ6mwwQU6yVZJzkpyfZEWSN7byU5P8MMl57bV3K0+SdyZZmeSCJI/plnVEku+11xEjWytJkiRpI82ki8WtwJOq6uYkmwNfTfKvbdyfVNXHJkx/MLBnez0OOBF4XJIdgTcAy4ACzk1yRlVdNx8rIkmSJM2HDbYg1+Dm9nbz9qppZjkUeF+b7+vA9kl2AZ4KnFVV17ak+CzgoLlVX5IkSZpfM+qDnGSzJOcBVzEkuWe3Uce1bhQnJNmyle0GXNbNvrqVTVUuSZIkLRgzSpCr6vaq2hvYHdgnyS8DrwUeDvwasCPwZ/NRoSRHJVmeZPm6devmY5GSJEnSjM3qKRZVdT3wReCgqlrbulHcCrwX2KdNtgZY0s22eyubqnxijJOqallVLVu8ePFsqidJkiTN2UyeYrE4yfZteGvgKcAlrV8xSQIcBlzYZjkDeGF7msW+wA1VtRb4HHBgkh2S7AAc2MokSZKkBWMmT7HYBTgtyWYMCfXpVfXpJP+eZDEQ4Dzg5W36zwKHACuBW4AXA1TVtUneDHyjTfemqrp23tZEkiRJmgcbTJCr6gLg0ZOUP2mK6Qs4eopxpwCnzLKOkiRJ0tj4S3qSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktTZYIKcZKsk5yQ5P8mKJG9s5Q9OcnaSlUk+mmSLVr5le7+yjV/aLeu1rfw7SZ46srWSJEmSNtJMWpBvBZ5UVY8C9gYOSrIv8FbghKp6CHAdcGSb/kjgulZ+QpuOJHsBhwOPBA4C/j7JZvO4LpIkSdKcbTBBrsHN7e3m7VXAk4CPtfLTgMPa8KHtPW38AUnSyj9SVbdW1Q+BlcA+87ESkiRJ0nyZUR/kJJslOQ+4CjgL+D5wfVXd1iZZDezWhncDLgNo428A7t+XTzJPH+uoJMuTLF+3bt2sV0iSJEmaixklyFV1e1XtDezO0Or78FFVqKpOqqplVbVs8eLFowojSZIkTWpWT7GoquuBLwKPB7ZPsqiN2h1Y04bXAEsA2vj7Adf05ZPMI0mSJC0IM3mKxeIk27fhrYGnABczJMrPapMdAXyqDZ/R3tPG/3tVVSs/vD3l4sHAnsA587QekiRJ0rxYtOFJ2AU4rT1x4j7A6VX16SQXAR9J8hbgW8DJbfqTgfcnWQlcy/DkCqpqRZLTgYuA24Cjq+r2+V0dSZIkaW42mCBX1QXAoycp/wGTPIWiqv4bePYUyzoOOG721ZQkSZLGw1/SkyRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzgYT5CRLknwxyUVJViR5ZSs/NsmaJOe11yHdPK9NsjLJd5I8tSs/qJWtTHLMaFZJkiRJ2niLZjDNbcCrq+qbSbYDzk1yVht3QlW9rZ84yV7A4cAjgV2Bzyd5aBv9LuApwGrgG0nOqKqL5mNFJEmSpPmwwQS5qtYCa9vwTUkuBnabZpZDgY9U1a3AD5OsBPZp41ZW1Q8AknykTWuCLEmSpAVjVn2QkywFHg2c3YpekeSCJKck2aGV7QZc1s22upVNVT4xxlFJlidZvm7dutlUT5IkSZqzGSfISbYFPg68qqpuBE4E9gD2Zmhhfvt8VKiqTqqqZVW1bPHixfOxSEmSJGnGZtIHmSSbMyTHH6yqTwBU1ZXd+HcDn25v1wBLutl3b2VMUy5JkiQtCDN5ikWAk4GLq+odXfku3WTPAC5sw2cAhyfZMsmDgT2Bc4BvAHsmeXCSLRhu5DtjflZDkiRJmh8zaUF+AvAC4NtJzmtlrwOem2RvoIBVwMsAqmpFktMZbr67DTi6qm4HSPIK4HPAZsApVbVi3tZEkiRJmgczeYrFV4FMMuqz08xzHHDcJOWfnW4+SZIkaVPzl/QkSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKmzwQQ5yZIkX0xyUZIVSV7ZyndMclaS77W/O7TyJHlnkpVJLkjymG5ZR7Tpv5fkiNGtliRJkrRxZtKCfBvw6qraC9gXODrJXsAxwBeqak/gC+09wMHAnu11FHAiDAk18AbgccA+wBvWJ9WSJEnSQrHBBLmq1lbVN9vwTcDFwG7AocBpbbLTgMPa8KHA+2rwdWD7JLsATwXOqqprq+o64CzgoPlcGUmSJGmuZtUHOclS4NHA2cDOVbW2jboC2LkN7wZc1s22upVNVT4xxlFJlidZvm7dutlUT5IkSZqzGSfISbYFPg68qqpu7MdVVQE1HxWqqpOqallVLVu8ePF8LFKSJEmasRklyEk2Z0iOP1hVn2jFV7auE7S/V7XyNcCSbvbdW9lU5ZIkSdKCMZOnWAQ4Gbi4qt7RjToDWP8kiiOAT3XlL2xPs9gXuKF1xfgccGCSHdrNeQe2MkmSJGnBWDSDaZ4AvAD4dpLzWtnrgOOB05McCVwKPKeN+yxwCLASuAV4MUBVXZvkzcA32nRvqqpr52MlJEmSpPmywQS5qr4KZIrRB0wyfQFHT7GsU4BTZlNBSZIkaZz8JT1JkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzqJNXQGNxtJjPjPreVYd/7QR1ESSJOnuxRZkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdTaYICc5JclVSS7syo5NsibJee11SDfutUlWJvlOkqd25Qe1spVJjpn/VZEkSZLmbiYtyKcCB01SfkJV7d1enwVIshdwOPDINs/fJ9ksyWbAu4CDgb2A57ZpJUmSpAVl0YYmqKqvJFk6w+UdCnykqm4FfphkJbBPG7eyqn4AkOQjbdqLZl9lSZIkaXTm0gf5FUkuaF0wdmhluwGXddOsbmVTlUuSJEkLysYmyCcCewB7A2uBt89XhZIclWR5kuXr1q2br8VKkiRJM7JRCXJVXVlVt1fVHcC7ubMbxRpgSTfp7q1sqvLJln1SVS2rqmWLFy/emOpJkiRJG22jEuQku3RvnwGsf8LFGcDhSbZM8mBgT+Ac4BvAnkkenGQLhhv5ztj4akuSJEmjscGb9JJ8GNgf2CnJauANwP5J9gYKWAW8DKCqViQ5neHmu9uAo6vq9racVwCfAzYDTqmqFfO9MpIkSdJczeQpFs+dpPjkaaY/DjhukvLPAp+dVe0kSZKkMfOX9CRJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqbPBBDnJKUmuSnJhV7ZjkrOSfK/93aGVJ8k7k6xMckGSx3TzHNGm/16SI0azOpIkSdLczKQF+VTgoAllxwBfqKo9gS+09wAHA3u211HAiTAk1MAbgMcB+wBvWJ9US5IkSQvJBhPkqvoKcO2E4kOB09rwacBhXfn7avB1YPskuwBPBc6qqmur6jrgLH4+6ZYkSZI2uY3tg7xzVa1tw1cAO7fh3YDLuulWt7Kpyn9OkqOSLE+yfN26dRtZPUmSJGnjzPkmvaoqoOahLuuXd1JVLauqZYsXL56vxUqSJEkzsrEJ8pWt6wTt71WtfA2wpJtu91Y2VbkkSZK0oGxsgnwGsP5JFEcAn+rKX9ieZrEvcEPrivE54MAkO7Sb8w5sZZIkSdKCsmhDEyT5MLA/sFOS1QxPozgeOD3JkcClwHPa5J8FDgFWArcALwaoqmuTvBn4RpvuTVU18cY/SZIkaZPbYIJcVc+dYtQBk0xbwNFTLOcU4JRZ1U6SJEkaM39JT5IkSepssAVZmi9Lj/nMrKZfdfzTRlQTSZKkqdmCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVJnTglyklVJvp3kvCTLW9mOSc5K8r32d4dWniTvTLIyyQVJHjMfKyBJkiTNp/loQf6tqtq7qpa198cAX6iqPYEvtPcABwN7ttdRwInzEFuSJEmaV6PoYnEocFobPg04rCt/Xw2+DmyfZJcRxJckSZI22lwT5ALOTHJukqNa2c5VtbYNXwHs3IZ3Ay7r5l3dyu4iyVFJlidZvm7dujlWT5IkSZqdRXOcf7+qWpPkAcBZSS7pR1ZVJanZLLCqTgJOAli2bNms5pUkSZLmak4tyFW1pv29CvgksA9w5fquE+3vVW3yNcCSbvbdW5kkSZK0YGx0gpxkmyTbrR8GDgQuBM4AjmiTHQF8qg2fAbywPc1iX+CGriuGJEmStCDMpYvFzsAnk6xfzoeq6t+SfAM4PcmRwKXAc9r0nwUOAVYCtwAvnkNsaVJLj/nMrKZfdfzTRlQTSZJ0d7XRCXJV/QB41CTl1wAHTFJewNEbG0+SJEkaB39JT5IkSerM9SkW90izvUwPXqqXJEm6p7AFWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6PgdZGiGfqS1J0t2PLciSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjr+UIh0NzfbHyPxh0gkSZqeLciSJElSxwRZkiRJ6tjFQtK8s9uHJOnuzBZkSZIkqTP2FuQkBwF/C2wGvKeqjh93HSTdvdlCLUkapbG2ICfZDHgXcDCwF/DcJHuNsw6SJEnSdMbdgrwPsLKqfgCQ5CPAocBFY66HJM2rUbdqj6PVfKG1zM+2PuDVAknzI1U1vmDJs4CDquql7f0LgMdV1Su6aY4Cjmpvfxm4cGwVvNNOwNXGNa5xjWtc4xrXuMa928d9WFVtN5sZFtxTLKrqJOAkgCTLq2rZuOtgXOMa17jGNa5xjWvce07c2c4z7qdYrAGWdO93b2WSJEnSgjDuBPkbwJ5JHpxkC+Bw4Iwx10GSJEma0li7WFTVbUleAXyO4TFvp1TVimlmOWk8NTOucY1rXOMa17jGNa5xB2O9SU+SJEla6PwlPUmSJKljgixJkiR1FmyCnOSgJN9JsjLJMWOKeUqSq5KM9dnLSZYk+WKSi5KsSPLKMcXdKsk5Sc5vcd84jrhd/M2SfCvJp8cYc1WSbyc5b2Me+zKHuNsn+ViSS5JcnOTxY4j5sLae6183JnnVqOO22H/UjqkLk3w4yVZjivvKFnPFKNd1snNFkh2TnJXke+3vDmOK++y2vnckGcnjk6aI+9fteL4gySeTbD+muG9uMc9LcmaSXccRtxv36iSVZKdxxE1ybJI13f/xIeOI28r/oO3jFUn+ahxxk3y0W9dVSc4bU9y9k3x9/WdDkn3GFPdRSb7WPpf+JckvjCDupDnGqM9Z08Qd6TlrmrizO2dV1YJ7MdzA933gl4AtgPOBvcYQ9zeBxwAXjnl9dwEe04a3A747pvUNsG0b3hw4G9h3jOv9x8CHgE+PMeYqYKdx7t8W9zTgpW14C2D7McffDLgCeNAYYu0G/BDYur0/HXjRGOKu/2Gh+zLcgPx54CEjivVz5wrgr4Bj2vAxwFvHFPcRwMOALwHLxri+BwKL2vBbx7i+v9AN/yHwD+OI28qXMNxkfukoziNTrO+xwGtGsV83EPe32v/Qlu39A8a1nbvxbwf+YkzreyZwcBs+BPjSmOJ+A3hiG34J8OYRxJ00xxj1OWuauCM9Z00Td1bnrIXagvw/P0ldVT8F1v8k9UhV1VeAa0cdZ5K4a6vqm234JuBihiRj1HGrqm5ubzdvr7HctZlkd+BpwHvGEW9TSnI/hhPjyQBV9dOqun7M1TgA+H5VXTqmeIuArZMsYkhYLx9DzEcAZ1fVLVV1G/Bl4JmjCDTFueJQhi9CtL+HjSNuVV1cVd+Z71gziHtm284AX2d4rv044t7Yvd2GEZyzpvksOAH401HE3EDckZoi7u8Bx1fVrW2aq8YUF4AkAZ4DfHhMcQtY33p7P0Zwzpoi7kOBr7Ths4D/PYK4U+UYIz1nTRV31OesaeLO6py1UBPk3YDLuverGUPCuBAkWQo8mqE1dxzxNmuXsK4CzqqqscQF/obhg+aOMcVbr4Azk5yb4WfNx+HBwDrgvRm6lLwnyTZjir3e4Yzgg2YyVbUGeBvwI2AtcENVnTmG0BcCv5Hk/knuy9AKtGQD88ynnatqbRu+Ath5jLE3tZcA/zquYEmOS3IZ8DzgL8YU81BgTVWdP454E7yiXRY+ZRRdd6bwUIb/p7OTfDnJr40p7nq/AVxZVd8bU7xXAX/djqu3Aa8dU9wV3NkA+GxGfM6akGOM7Zw17txmBnE3eM5aqAnyvVKSbYGPA6+a0EoyMlV1e1XtzfBNap8kvzzqmEmeDlxVVeeOOtYk9quqxwAHA0cn+c0xxFzEcFntxKp6NPBjhstZY5HhR3l+G/inMcXbgeGE/2BgV2CbJM8fddyqupjhstmZwL8B5wG3jzruFHUpxnQ1ZlNL8nrgNuCD44pZVa+vqiUt5itGHa994XodY0rGJzgR2APYm+EL59vHFHcRsCOwL/AnwOmtVXdcnsuYvtQ3vwf8UTuu/oh2xW8MXgL8fpJzGboD/HRUgabLMUZ5ztoUuc10cWd6zlqoCfK97iepk2zOsCM/WFWfGHf8dsn/i8BBYwj3BOC3k6xi6D7zpCQfGEPc9a2b6y8XfpKhO8+orQZWd63zH2NImMflYOCbVXXlmOI9GfhhVa2rqp8BnwB+fRyBq+rkqnpsVf0mcB1D37NxuTLJLgDt77xfkl5okrwIeDrwvPYBO24fZASXpCexB8MXvvPbeWt34JtJfnHUgavqytaQcQfwbsZzzoLhvPWJ1hXvHIarffN+Y+JkWtesZwIfHUe85giGcxUMjQlj2c5VdUlVHVhVj2X4QvD9UcSZIscY+TlrU+U2U8WdzTlroSbI96qfpG7fyk8GLq6qd4wx7uL1d3Em2Rp4CnDJqONW1WuraveqWsqwb/+9qkbewphkmyTbrR9m6LA/8ieWVNUVwGVJHtaKDgAuGnXczrhbYn4E7Jvkvu3YPoChD9jIJXlA+/tAhg/YD40jbnMGw4cs7e+nxhh77JIcxNBN6rer6pYxxt2ze3so4zlnfbuqHlBVS9t5azXDTUBXjDr2+gSmeQZjOGc1/8xwox5JHspwc/HVY4r9ZOCSqlo9pngw9Dl+Yht+EjCWrh3dOes+wJ8D/zCCGFPlGCM9Z23C3GbSuLM+Z013B9+mfDH0H/wuw7ep148p5ocZLmH9jOEEeOSY4u7HcGnjAobLwucBh4wh7q8C32pxL2QEdwvPoA77M6anWDA8FeX89loxruOqxd4bWN629T8DO4wp7jbANcD9xrxf38iQuFwIvJ92J/wY4v4Hw5eP84EDRhjn584VwP2BLzB8sH4e2HFMcZ/Rhm8FrgQ+N6a4KxnuFVl/zhrF0yQmi/vxdlxdAPwLw803I487YfwqRvMUi8nW9/3At9v6ngHsMqa4WwAfaNv6m8CTxrWdgVOBl893vA2s737Aue3ccTbw2DHFfSVDrvNd4HjaLxzPc9xJc4xRn7OmiTvSc9Y0cWd1zvKnpiVJkqTOQu1iIUmSJG0SJsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzv8PWwU0YKKaJjQAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 720x576 with 2 Axes>" ] - }, + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax1, ax2) = plt.subplots(nrows=2)\n", + "ax1.hist(pat_sent[\"num_sentences_in_paragraph\"], bins=np.linspace(1, 21))\n", + "ax1.xaxis.set_major_locator(plt.MultipleLocator(1))\n", + "ax1.set_title(\"Number of sentences in patronising paragraph\")\n", + "ax2.hist(non_pat_sent[\"num_sentences_in_paragraph\"], bins=np.linspace(1, 21))\n", + "ax2.xaxis.set_major_locator(plt.MultipleLocator(1))\n", + "ax2.set_title(\"Number of sentences in non-patronising paragraph\")\n", + "fig.set_figwidth(10)\n", + "fig.set_figheight(8)\n", + "fig.tight_layout()\n", + "plt.show()\n", + "# ax.xaxis.set_major_locator()\n", + "# pat_sent.hist(grid=False,column=\"num_sentences_in_paragraph\", bins=21, figsize=(10, 8), xticks=pat_sent[\"num_sentences_in_paragraph\"], ax=ax)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", - "Collecting py-readability-metrics\n", - " Downloading py_readability_metrics-1.4.5-py3-none-any.whl (26 kB)\n", - "Requirement already satisfied: nltk in /opt/conda/lib/python3.8/site-packages (from py-readability-metrics) (3.6.4)\n", - "Requirement already satisfied: tqdm in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (4.62.3)\n", - "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (2021.10.8)\n", - "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (1.1.0)\n", - "Requirement already satisfied: click in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (8.0.1)\n", - "Installing collected packages: py-readability-metrics\n", - "Successfully installed py-readability-metrics-1.4.5\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n", - "/opt/conda/lib/python3.8/runpy.py:127: RuntimeWarning: 'nltk.downloader' found in sys.modules after import of package 'nltk', but prior to execution of 'nltk.downloader'; this may result in unpredictable behaviour\n", - " warn(RuntimeWarning(msg))\n", - "[nltk_data] Downloading package punkt to /root/nltk_data...\n", - "[nltk_data] Unzipping tokenizers/punkt.zip.\n" - ] - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " <th>readability_score</th>\n", + " <th>avg_sentence_length</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>7590</th>\n", + " <td>7525</td>\n", + " <td>The Trawler : targets anyone with a Muslim con...</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>50.294912</td>\n", + " <td>133.0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" ], - "source": [ - "!pip install py-readability-metrics\n", - "!python -m nltk.downloader punkt" + "text/plain": [ + " par_id text label \\\n", + "7590 7525 The Trawler : targets anyone with a Muslim con... 0 \n", + "\n", + " num_sentences_in_paragraph readability_score avg_sentence_length \n", + "7590 1 50.294912 133.0 " ] - }, + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1[trdf1[\"avg_sentence_length\"] == 133]" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "from readability import Readability\n", - "\n", - "def calculate_readability(text):\n", - " try:\n", - " r = Readability(text)\n", - " return r.flesch_kincaid().score\n", - " except:\n", - " return 0" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAI4CAYAAACcFxlBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3y0lEQVR4nO3df5Sdd30f+PcnFg4JoRhjVXEsm3GCF+pNi6EKmEIJwQfW4JzY6SEuhB8KdatmF1JymjaIdFsgIY3obsKPJmXjYEAkEOw4sPYiluAaSE7SYJBj88uGRXHk2sZGAmx+JlDDZ/+4j8IwzEgzc2d8H828XufozPPzPp/7na90733r+31udXcAAAAAxuy7Zl0AAAAAwLEIMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAbRlW9qapeMaNrV1W9sarurqoPzqKGsauqM6rqy1V1wqxrWWtV9f9W1c5lHPflqvrB+6KmjaKq5qqqq2rLrGsBYLa8EACwbqrqYJLvTXJmd39l2PbPkzynu580w9LWwxOSPCXJ9iPP9b5QVZ3krO4+cF9dc7W6+78n+b77+rpVNZfkr5Lcr7vvXY9rdPfTlnncff78AWCjMAIDgPV2QpIXzbqIlVrFKIGHJjl4X4YXrB3/u/8ta90W2haAtSLAAGC9/R9J/k1VnbRwx2JDw6vq/cMojVTVz1TVn1XVq6rqnqq6par+0bD9tqo6tMiw/VOq6pqq+lJV/XFVPXTeYz9i2Pf5qvpkVV08b9+bqup1VfWuqvpKkh9bpN4fqKqrh/MPVNW/GLZfkuT1SR43TBF4+SLnPmyo5wtV9dmqunwFdf1WVe0bntN1VfVDw74/GQ778HDdfzps//GqunFos/9WVf9g3uMdrKp/U1UfGWq5vKruP2//hcO5X6yqv6yq84ftD6qqy6rqzqq6o6pecSTkOdpzO9rve/hd/8rwO/5SVb2nqk5Z4twnVdXtVfVLwzUOVtWz5+2/oKpuGOq+rapeNu/0I+10z9BOj1vQtz6X5GXDc3xzVR2uqlur6n+vqu8aHv9nqupPq+r/rMk0ob+qqqfNu/78fnu033VX1cOO9bsd9j916A9fqKr/MjzmP1+ifV5WVVcOv88vVdVfVNUj5+3fPfw+v1RVN1XVT87bt1hb/FBVvbeqPjc8h7fUvL/DVfXoob2/VFV/MFz3FQt+Vy+uqruSvLGqHlxV7xza9u5hefuC9vu1qvrg8Du8qqpOXvA0n11V/32o598t1g4AbGwCDADW2/4k70/yb1Z5/mOTfCTJQ5K8NcnbkvxIkocleU6S36yq+cPyn53kV5KckuTGJG9Jkqp6QJJrhsf4u0memeS/VNXZ88796SS/muSBSf50kVreluT2JD+Q5BlJ/mNVPbm7L0vys0n+vLu/r7tfusi5v5LkPUkenGR7kv+8grqemeTlw7kHhhrT3U8c9j9yuO7lVfWoJG9I8i+HNvvtJFdX1XfPe7yLk5yf5Mwk/yDJzwy1PCbJm5P82yQnJXlikoPDOW9Kcm8m7f6oJE9NcuTD9KLPbZl+Osnzh+d+Yo7eT74/k9/raUl2Jrm0qh4+7PtKkucNdV+Q5H+tqouGfUfa6aShnf58WH9skluSbMukTf9zkgcl+cEkPzo83vPnXf+xST451PCfklxWVbVInStpj0V/t0OQc2WSl2Tye/xkkn90lMdJkguT/EGSkzPpT/93Vd1v2PeXSf7x8PxenuT3qurUBc9tfltUkl/LpK//vSSnJ3nZUNuJSd6RSZ84OcnvJ/nJfLvvH/Y9NMmuTN5zvnFYPyPJXyf5zQXnPC/JP0tyaiZ97bUL9j8hycOTnJfkP1TV3ztGewCwwQgwALgv/IckP1dVW1dx7l919xu7+xtJLs/kg9Qvd/fXuvs9Sb6eyYfqI/Z1959099eS/LtMRkWcnuTHM5ni8cbuvre7b0jyh0l+at65V3X3n3X3N7v7b+YXMTzG45O8uLv/prtvzGTUxfOW+Tz+RyYf3n5gOP9IQLKcut7R3R8c7t/wliTnHOU6u5L8dndf193f6O69Sb6W5Nx5x7y2uz/d3Z9P8v/Me7xLkryhu68Z2uCO7v5EVW1L8vQkP9/dX+nuQ0lelcmH76M9t+V4Y3f/f93910muOMZzS5J/P/zu/zjJvkzCmHT3+7v7o0PdH8nkQ/WPHuOxPt3d/3lo168Pz+cl3f2l7j6Y5NeTPHfe8bd29+8MfXFvJh+0ty3yuCtpj6V+t09P8vHufvuw77VJ7jrG87m+u6/s7v+R5DeS3D/D7727/2D4nX+zuy9P8qkkj1msLbr7r7v7wNAPvtbdh4fHO9Ke52ZyH7XXdvf/6O63J1l449pvJnnpcP5fd/fnuvsPu/ur3f2lTEKShb+f3+3ujw3TsP59kovr26dyvXx4rA8n+XCSRwaATUWAAcC66+6PJXlnkt2rOP0z85b/eni8hdvmj8C4bd51v5zk85n8L/JDkzy2JtMq7qmqezIZrfH9i527iB9I8vnhw9cRt2YyGmA5fjGT/9X+YFV9vKr+2bB9OXXN/+D61Rz9RpgPTfILCx7v9KH+Yz3e6Zn8T/1ij3m/JHfOe8zfzmTUxNGe23Ks5LndveAeI7dmeF5V9diqet8wReELmYyIWXQ6yjzzf9+nZPIcb13w+PN/v39ba3d/dVhcrN6VtMdSz/8H8u19uTMZ/XM084//Zr41WihV9bz61rSie5L8cL69fb6t71fVtqp6W02mC30xye/NO/4Hktwx1LTo+UkOzw8Bq+p7q+q3azI154uZTOs5aUFAMf8xbs3k9zG/xpX0FQA2IDdVAuC+8tIkf5HJ/2ofceTD6Pcm+eKwPP+D+2qcfmRhmFpycpJPZ/Lh6I+7+ylHObePsu/TSU6uqgfOCzHOSHLHcorq7ruSHLlnxhOS/Nea3MNiOXWtxG1JfrW7f3WV5/7QEtu/luSUxb7FY6nntg7fjPLgqnrAvBDjjCQfG5bfmsmUhKd1999U1avzrQ+/S/1e52//bL41cuKmeY+/rN/vtz3o2rTHnZlMP8nwODV/fQnz+/53Dcd/uib3gfmdTKZe/Hl3f6OqbswkZPnbshc81n8ctv397v78MB3nyJSPO5OcVlU1L8RYGH4tfLxfyGT6x2O7+66qOifJDQtqOH3e8hmZ/D4+u2A7AJuYERgA3CeGD2+XJ/lX87YdzuQD4nOq6oThf6oX+wC9Ek+vqicM8/R/JckHuvu2TEaA/E9V9dyqut/w50eWO49+eIz/luTXqur+Nbkx5iWZ/M/0MVXVT827aeHdmXzA++a0dWUyQuUH563/TpKfHUYkVFU9oCY3uHzgMh7rsiTPr6rzquq7quq0qnpEd9+ZyT0dfr2q/s6w74eq6keP8dzWw8ur6sSq+seZTL/5g2H7AzMZIfM3w708fnreOYeHen4wSximhVyR5Fer6oHDh/5/nWX+fudbo/bYl+TvV9VFNbnp6Qty7HDvH1bVPxmO//lMQqcPJHnAUMPhob7nZzIC42gemOTLSb5QVadlcl+UI/48yTeSvLCqtlTVhfn26ShLPd5fZ3Ij1ZMzCTQXek5VnV1V35vkl5NcOfxeACCJAAOA+9YvZ/Jhar5/kcmHo88l+Z8zCQmm8dZMPhx9Psk/zORGnxlGTTw1k/scfDqT4eivTPLdiz/Mop6VZG44/x2ZzPH/r8s890eSXFdVX05ydZIXdfcta1DXy5LsHaYGXNzd+zNp09/M5MPzgQw36TyW7v5gJjetfFWSLyT540xGJCSTe32cmMnohLszucHkkZtALvrclln/Stw1XPvTmdwv4me7+xPDvv8tyS9X1ZcyuefKFfOe11czuefCnw3tdG4W93OZjAq6JZObuL41kxuirtTU7dHdn83kPij/KZO/G2dnckPcrx3ltKuS/NNM2ui5Sf7JcI+KmzIZ+fTnmQRefz/Jnx2jhJcneXQm/WBfkrfPq+3rSf5JJgHePZn8HXvnMWp7dZLvyWRExQeSvHuRY343kxuD3pXJ/Tv+1SLHALCJ1bdPXwQAGJ+qelKS3+vuY02j2JCGKSG3J3l2d79vkf0vS/Kw7n7OfV3bcP3rkvxf3f3GVZ7//kx+v69f08IA2FCMwAAAGKGq+l+q6qSafAXuL2Vyv4gPzLisJElV/WhVff8whWRnJl/Hu9ioCgBYM27iCQAwTo/LZBrLkak7Fw1fNzsGD89kms4DMply84zhXikAsG5MIQEAAABGzxQSAAAAYPRGMYXklFNO6bm5uVmXAQAAAMzY9ddf/9nu3rpw+ygCjLm5uezfv3/WZQAAAAAzVlW3LrbdFBIAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOhtmXUBABvB3O59U51/cM8Fa1QJAABsTEZgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZnm5Ko6Kcnrk/xwkk7yz5J8MsnlSeaSHExycXffPc11ANbb3O59sy4BAAA4imlHYLwmybu7+xFJHpnk5iS7k1zb3WcluXZYBwAAAFi1VQcYVfWgJE9MclmSdPfXu/ueJBcm2TsctjfJRdOVCAAAAGx204zAODPJ4SRvrKobqur1VfWAJNu6+87hmLuSbFvs5KraVVX7q2r/4cOHpygDAAAA2OimCTC2JHl0ktd196OSfCULpot0d2dyb4zv0N2XdveO7t6xdevWKcoAAAAANrppAozbk9ze3dcN61dmEmh8pqpOTZLh56HpSgQAAAA2u1UHGN19V5Lbqurhw6bzktyU5OokO4dtO5NcNVWFAAAAwKY31deoJvm5JG+pqhOT3JLk+ZmEIldU1SVJbk1y8ZTXAAAAADa5qQKM7r4xyY5Fdp03zeMCAAAAzDfNPTAAAAAA7hMCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjt2XWBQAwe3O79039GAf3XLAGlQAAwOKMwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZnm5Ko6mORLSb6R5N7u3lFVJye5PMlckoNJLu7uu6crEwAAANjM1mIExo919zndvWNY353k2u4+K8m1wzoAAADAqq3HFJILk+wdlvcmuWgdrgEAAABsItMGGJ3kPVV1fVXtGrZt6+47h+W7kmyb8hoAAADAJjfVPTCSPKG776iqv5vkmqr6xPyd3d1V1YudOAQeu5LkjDPOmLIMYJbmdu+b6vyDey5Yo0oAAICNaqoRGN19x/DzUJJ3JHlMks9U1alJMvw8tMS5l3b3ju7esXXr1mnKAAAAADa4VQcYVfWAqnrgkeUkT03ysSRXJ9k5HLYzyVXTFgkAAABsbtNMIdmW5B1VdeRx3trd766qDyW5oqouSXJrkounLxMAAADYzFYdYHT3LUkeucj2zyU5b5qiAAAAAOZbj69RBQAAAFhTAgwAAABg9Kb9GlWAUZj2q1wBAIBxMwIDAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDR2zLrAgCY3tzufbMuAQAA1pURGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb+oAo6pOqKobquqdw/qZVXVdVR2oqsur6sTpywQAAAA2s7UYgfGiJDfPW39lkld198OS3J3kkjW4BgAAALCJTRVgVNX2JBckef2wXkmenOTK4ZC9SS6a5hoAAAAAW6Y8/9VJfjHJA4f1hyS5p7vvHdZvT3LaYidW1a4ku5LkjDPOmLIM2Nzmdu+bdQkwdT88uOeCNaoEAICNaNUjMKrqx5Mc6u7rV3N+d1/a3Tu6e8fWrVtXWwYAAACwCUwzAuPxSX6iqp6e5P5J/k6S1yQ5qaq2DKMwtie5Y/oyAQAAgM1s1SMwuvsl3b29u+eSPDPJe7v72Unel+QZw2E7k1w1dZUAAADApjbtPTAW8+Ikb6uqVyS5Icll63ANgA3FfUwAAODo1iTA6O73J3n/sHxLksesxeMCAAAAJFN+jSoAAADAfWE9ppAArIjpEwAAwLEYgQEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDR2zLrAgBgLczt3jfV+Qf3XLBGlQAAsB6MwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9VQcYVXX/qvpgVX24qj5eVS8ftp9ZVddV1YGquryqTly7cgEAAIDNaJoRGF9L8uTufmSSc5KcX1XnJnllkld198OS3J3kkqmrBAAAADa1VQcYPfHlYfV+w59O8uQkVw7b9ya5aJoCAQAAAKa6B0ZVnVBVNyY5lOSaJH+Z5J7uvnc45PYkpy1x7q6q2l9V+w8fPjxNGQAAAMAGN1WA0d3f6O5zkmxP8pgkj1jBuZd2947u3rF169ZpygAAAAA2uDX5FpLuvifJ+5I8LslJVbVl2LU9yR1rcQ0AAABg85rmW0i2VtVJw/L3JHlKkpszCTKeMRy2M8lVU9YIAAAAbHJbjn3Ikk5NsreqTsgkCLmiu99ZVTcleVtVvSLJDUkuW4M6Adjg5nbvm3UJAACM2KoDjO7+SJJHLbL9lkzuhwEAAACwJtbkHhgAAAAA60mAAQAAAIzeNPfAANaIuf8AAABHZwQGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0tsy6ADjeze3eN+sSAAAANjwjMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6W1Z7YlWdnuTNSbYl6SSXdvdrqurkJJcnmUtyMMnF3X339KXC+pjbvW/WJQAAAHAM04zAuDfJL3T32UnOTfKCqjo7ye4k13b3WUmuHdYBAAAAVm3VAUZ339ndfzEsfynJzUlOS3Jhkr3DYXuTXDRljQAAAMAmtyb3wKiquSSPSnJdkm3dfeew665MppgAAAAArNqq74FxRFV9X5I/TPLz3f3Fqvrbfd3dVdVLnLcrya4kOeOMM6YtAwBmai3up3NwzwVrUAkAwMY01QiMqrpfJuHFW7r77cPmz1TVqcP+U5McWuzc7r60u3d0946tW7dOUwYAAACwwa06wKjJUIvLktzc3b8xb9fVSXYOyzuTXLX68gAAAACmm0Ly+CTPTfLRqrpx2PZLSfYkuaKqLklya5KLp6oQAAAA2PRWHWB0958mqSV2n7faxwUAAABYaE2+hQQAAABgPQkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYvVV/jSoAbCRzu/fNugQAAI7CCAwAAABg9AQYAAAAwOiZQgIAIzHtNJaDey5Yo0oAAMbHCAwAAABg9AQYAAAAwOgJMAAAAIDRcw8MANgg3EMDANjIjMAAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNGbKsCoqjdU1aGq+ti8bSdX1TVV9anh54OnLxMAAADYzKYdgfGmJOcv2LY7ybXdfVaSa4d1AAAAgFWbKsDo7j9J8vkFmy9MsndY3pvkommuAQAAALAe98DY1t13Dst3Jdm22EFVtauq9lfV/sOHD69DGQAAAMBGsa438ezuTtJL7Lu0u3d0946tW7euZxkAAADAcW49AozPVNWpSTL8PLQO1wAAAAA2kfUIMK5OsnNY3pnkqnW4BgAAALCJbJnm5Kr6/SRPSnJKVd2e5KVJ9iS5oqouSXJrkounLRIAGL+53fumOv/gngvWqBIAYCOaKsDo7mctseu8aR4XAAAAYL51vYknAAAAwFqYagQGALBxTDsFBABgPRmBAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHpbZl0Ax7+53fumOv/gngtmen0AxmEt/j2f9WvKtNef1vFePwAcjREYAAAAwOgJMAAAAIDRM4UEANgwjvdphcd7/QCwnozAAAAAAEZPgAEAAACMngADAAAAGL3q7lnXkB07dvT+/ftnXQarZL4uAHCEr2IFYFpVdX1371i43QgMAAAAYPQEGAAAAMDoCTAAAACA0dsy6wIAANg4Zn1vrFnfg2Mtnv+snwPAWBmBAQAAAIyeAAMAAAAYPVNImPlQTwCAsRjD+6Ix1DBLptBsDNP24+O9H2z2579e1mUERlWdX1WfrKoDVbV7Pa4BAAAAbB5rHmBU1QlJfivJ05KcneRZVXX2Wl8HAAAA2DzWYwTGY5Ic6O5buvvrSd6W5MJ1uA4AAACwSVR3r+0DVj0jyfnd/c+H9ecmeWx3v3DBcbuS7BpWH57kk2tayPKdkuSzM7r2RqENp6cNp6cNp6P9pqcNp6cNp6cNp6cNp6cNp6cNp6cNpzfLNnxod29duHFmN/Hs7kuTXDqr6x9RVfu7e8es6zieacPpacPpacPpaL/pacPpacPpacPpacPpacPpacPpacPpjbEN12MKyR1JTp+3vn3YBgAAALAq6xFgfCjJWVV1ZlWdmOSZSa5eh+sAAAAAm8SaTyHp7nur6oVJ/ijJCUne0N0fX+vrrKGZT2PZALTh9LTh9LThdLTf9LTh9LTh9LTh9LTh9LTh9LTh9LTh9EbXhmt+E08AAACAtbYeU0gAAAAA1pQAAwAAABi9TRtgVNX5VfXJqjpQVbtnXc/xqKoOVtVHq+rGqto/63qOB1X1hqo6VFUfm7ft5Kq6pqo+Nfx88CxrHLsl2vBlVXXH0BdvrKqnz7LGsauq06vqfVV1U1V9vKpeNGzXF5fpKG2oLy5TVd2/qj5YVR8e2vDlw/Yzq+q64fX58uGG4CziKG34pqr6q3n98JwZlzpqVXVCVd1QVe8c1vXBFVqkDfXBFVrsfbXX5eVbov28Jq9AVZ1UVVdW1Seq6uaqetwY++CmDDCq6oQkv5XkaUnOTvKsqjp7tlUdt36su88Z2/cDj9ibkpy/YNvuJNd291lJrh3WWdqb8p1tmCSvGvriOd39rvu4puPNvUl+obvPTnJukhcM/wbqi8u3VBsm+uJyfS3Jk7v7kUnOSXJ+VZ2b5JWZtOHDktyd5JLZlTh6S7Vhkvzbef3wxlkVeJx4UZKb563rgyu3sA0TfXA1Fr6v9rq8Mot9LvGavHyvSfLu7n5Ekkdm8nd6dH1wUwYYSR6T5EB339LdX0/ytiQXzrgmNoHu/pMkn1+w+cIke4flvUkuui9rOt4s0YasQHff2d1/MSx/KZMXqNOiLy7bUdqQZeqJLw+r9xv+dJInJ7ly2K4fHsVR2pBlqqrtSS5I8vphvaIPrsjCNmRNeV3mPlFVD0ryxCSXJUl3f72778kI++BmDTBOS3LbvPXb443nanSS91TV9VW1a9bFHMe2dfedw/JdSbbNspjj2Aur6iPDFJOZD287XlTVXJJHJbku+uKqLGjDRF9ctmHY+Y1JDiW5JslfJrmnu+8dDvH6fAwL27C7j/TDXx364auq6rtnV+HovTrJLyb55rD+kOiDK/XqfHsbHqEPrsxi76u9Li/fUp9LvCYvz5lJDid54zAd7PVV9YCMsA9u1gCDtfGE7n50JlNxXlBVT5x1Qce7nnyvsf89W7nXJfmhTIZQ35nk12dazXGiqr4vyR8m+fnu/uL8ffri8izShvriCnT3N7r7nCTbMxkd+YjZVnT8WdiGVfXDSV6SSVv+SJKTk7x4dhWOV1X9eJJD3X39rGs5Xh2lDfXBlTvq+2qvy8e0WPt5TV6+LUkeneR13f2oJF/JgukiY+mDmzXAuCPJ6fPWtw/bWIHuvmP4eSjJOzJ588nKfaaqTk2S4eehGddz3Onuzwxv4r+Z5HeiLx5TVd0vkw/eb+nutw+b9cUVWKwN9cXVGYapvi/J45KcVFVbhl1en5dpXhueP0xx6u7+WpI3Rj9cyuOT/ERVHcxkOvGTM5kDrg8u33e0YVX9nj64cku8r/a6vEyLtZ/X5BW5Pcnt80bxXZlJoDG6PrhZA4wPJTlruMv0iUmemeTqGdd0XKmqB1TVA48sJ3lqko8d/SyWcHWSncPyziRXzbCW49KRf1gHPxl98aiGOd6XJbm5u39j3i59cZmWakN9cfmqamtVnTQsf0+Sp2RyL5H3JXnGcJh+eBRLtOEn5r3ZrEzmK+uHi+jul3T39u6ey+S94Hu7+9nRB5dtiTZ8jj64Mkd5X+11eRmWaj+vycvX3Xclua2qHj5sOi/JTRlhH9xy7EM2nu6+t6pemOSPkpyQ5A3d/fEZl3W82ZbkHZPXpWxJ8tbufvdsSxq/qvr9JE9KckpV3Z7kpUn2JLmiqi5JcmuSi2dX4fgt0YZPqslXtHWSg0n+5azqO048Pslzk3x0mDufJL8UfXEllmrDZ+mLy3Zqkr3DN4N9V5IruvudVXVTkrdV1SuS3JDhhmIsaqk2fG9VbU1SSW5M8rMzrPF49OLog9N6iz64Iou+r66qD8Xr8nIs1X6/6zV5RX4uk7+7Jya5JcnzM7y2jKkP1mQqCwAAAMB4bdYpJAAAAMBxRIABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9LbMuIElOOeWUnpubm3UZAAAAwIxdf/31n+3urQu3jyLAmJuby/79+2ddBgAAADBjVXXrYtuXNYWkqk6qqiur6hNVdXNVPa6qTq6qa6rqU8PPBw/HVlW9tqoOVNVHqurRa/lEAAAAgM1nuffAeE2Sd3f3I5I8MsnNSXYnuba7z0py7bCeJE9LctbwZ1eS161pxQAAAMCmc8wAo6oelOSJSS5Lku7+enffk+TCJHuHw/YmuWhYvjDJm3viA0lOqqpT17huAAAAYBNZzgiMM5McTvLGqrqhql5fVQ9Isq277xyOuSvJtmH5tCS3zTv/9mHbt6mqXVW1v6r2Hz58ePXPAAAAANjwlhNgbEny6CSv6+5HJflKvjVdJEnS3Z2kV3Lh7r60u3d0946tW7/j5qIAAAAAf2s5AcbtSW7v7uuG9SszCTQ+c2RqyPDz0LD/jiSnzzt/+7ANAAAAYFWOGWB0911Jbquqhw+bzktyU5Krk+wctu1MctWwfHWS5w3fRnJuki/Mm2oCAAAAsGJblnnczyV5S1WdmOSWJM/PJPy4oqouSXJrkouHY9+V5OlJDiT56nAsAAAAwKotK8Do7huT7Fhk13mLHNtJXjBdWQAAAADfspx7YAAAAADM1HKnkACM2tzufVOdf3DPBWtUCQAAsB6MwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZl1AQBjMLd731TnH9xzwRpVAgAALMYIDAAAAGD0BBgAAADA6JlCArAGTEEBAID1ZQQGAAAAMHpGYAAzN+3oBQAAYOMzAgMAAAAYvWUFGFV1sKo+WlU3VtX+YdvJVXVNVX1q+PngYXtV1Wur6kBVfaSqHr2eTwAAAADY+FYyAuPHuvuc7t4xrO9Ocm13n5Xk2mE9SZ6W5Kzhz64kr1urYgEAAIDNaZp7YFyY5EnD8t4k70/y4mH7m7u7k3ygqk6qqlO7+85pCgXGyz0sAACA9bbcERid5D1VdX1V7Rq2bZsXStyVZNuwfFqS2+ade/uw7dtU1a6q2l9V+w8fPryK0gEAAIDNYrkjMJ7Q3XdU1d9Nck1VfWL+zu7uquqVXLi7L01yaZLs2LFjRecCAAAAm8uyRmB09x3Dz0NJ3pHkMUk+U1WnJsnw89Bw+B1JTp93+vZhGwAAAMCqHDPAqKoHVNUDjywneWqSjyW5OsnO4bCdSa4alq9O8rzh20jOTfIF978AAAAAprGcKSTbkryjqo4c/9bufndVfSjJFVV1SZJbk1w8HP+uJE9PciDJV5M8f82rBgAAADaVYwYY3X1Lkkcusv1zSc5bZHsnecGaVAcAAACQ5X8LCQAAAMDMCDAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb8usCwAgmdu9b6bXP7jngpleHwAAjsUIDAAAAGD0BBgAAADA6AkwAAAAgNFzDwxg5vdfAAAAOBYjMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6yw4wquqEqrqhqt45rJ9ZVddV1YGquryqThy2f/ewfmDYP7dOtQMAAACbxEpGYLwoyc3z1l+Z5FXd/bAkdye5ZNh+SZK7h+2vGo4DAAAAWLVlBRhVtT3JBUleP6xXkicnuXI4ZG+Si4blC4f1DPvPG44HAAAAWJXljsB4dZJfTPLNYf0hSe7p7nuH9duTnDYsn5bktiQZ9n9hOB4AAABgVY4ZYFTVjyc51N3Xr+WFq2pXVe2vqv2HDx9ey4cGAAAANpjljMB4fJKfqKqDSd6WydSR1yQ5qaq2DMdsT3LHsHxHktOTZNj/oCSfW/ig3X1pd+/o7h1bt26d6kkAAAAAG9sxA4zufkl3b+/uuSTPTPLe7n52kvclecZw2M4kVw3LVw/rGfa/t7t7TasGAAAANpWVfAvJQi9O8q+r6kAm97i4bNh+WZKHDNv/dZLd05UIAAAAbHZbjn3It3T3+5O8f1i+JcljFjnmb5L81BrUBizT3O59sy4BAABgXU0zAgMAAADgPiHAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6K/oWEgA2prX4JpuDey5Yg0oAAGBxRmAAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9LbMugAANoa53fumOv/gngvWqBIAADYiIzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABG75gBRlXdv6o+WFUfrqqPV9XLh+1nVtV1VXWgqi6vqhOH7d89rB8Y9s+t83MAAAAANrjljMD4WpInd/cjk5yT5PyqOjfJK5O8qrsfluTuJJcMx1+S5O5h+6uG4wAAAABWbcuxDujuTvLlYfV+w59O8uQkPz1s35vkZUlel+TCYTlJrkzym1VVw+MAi5jbvW/WJQAAAIzasu6BUVUnVNWNSQ4luSbJXya5p7vvHQ65Pclpw/JpSW5LkmH/F5I8ZJHH3FVV+6tq/+HDh6d6EgAAAMDGtqwAo7u/0d3nJNme5DFJHjHthbv70u7e0d07tm7dOu3DAQAAABvYir6FpLvvSfK+JI9LclJVHZmCsj3JHcPyHUlOT5Jh/4OSfG4tigUAAAA2p+V8C8nWqjppWP6eJE9JcnMmQcYzhsN2JrlqWL56WM+w/73ufwEAAABM45g38UxyapK9VXVCJoHHFd39zqq6KcnbquoVSW5Ictlw/GVJfreqDiT5fJJnrkPdAAAAwCaynG8h+UiSRy2y/ZZM7oexcPvfJPmpNakOAAAAICu8BwYAAADALCxnCgkArLu53fumOv/gngvWqBIAAMbICAwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGL0tsy4Ajndzu/fNugQAAIANzwgMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPS2zLoAAFgLc7v3TXX+wT0XrFElAACsByMwAAAAgNETYAAAAACjJ8AAAAAARu+Y98CoqtOTvDnJtiSd5NLufk1VnZzk8iRzSQ4mubi7766qSvKaJE9P8tUkP9Pdf7E+5QPA2nAPDQCAcVvOCIx7k/xCd5+d5NwkL6iqs5PsTnJtd5+V5NphPUmeluSs4c+uJK9b86oBAACATeWYAUZ333lkBEV3fynJzUlOS3Jhkr3DYXuTXDQsX5jkzT3xgSQnVdWpa104AAAAsHms6B4YVTWX5FFJrkuyrbvvHHbdlckUk2QSbtw277Tbh20LH2tXVe2vqv2HDx9ead0AAADAJrLsAKOqvi/JHyb5+e7+4vx93d2Z3B9j2br70u7e0d07tm7dupJTAQAAgE1mWQFGVd0vk/DiLd399mHzZ45MDRl+Hhq235Hk9Hmnbx+2AQAAAKzKMQOM4VtFLktyc3f/xrxdVyfZOSzvTHLVvO3Pq4lzk3xh3lQTAAAAgBU75teoJnl8kucm+WhV3Ths+6Uke5JcUVWXJLk1ycXDvndl8hWqBzL5GtXnr2XBAAAAwOZzzACju/80SS2x+7xFju8kL5iyLgAAAIC/taJvIQEAAACYBQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHpbZl0AzNrc7n2zLgEAAIBjMAIDAAAAGD0jMABgDazFaK6Dey5Yg0oAADYmIzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN6WWRcAAEzM7d431fkH91ywRpUAAIyPAIPj3rRv+AEAABg/U0gAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN4xA4yqekNVHaqqj83bdnJVXVNVnxp+PnjYXlX12qo6UFUfqapHr2fxAAAAwOawnBEYb0py/oJtu5Nc291nJbl2WE+SpyU5a/izK8nr1qZMAAAAYDM75teodvefVNXcgs0XJnnSsLw3yfuTvHjY/ubu7iQfqKqTqurU7r5zzSoGABY17ddKH9xzwRpVAgCw9lZ7D4xt80KJu5JsG5ZPS3LbvONuH7Z9h6raVVX7q2r/4cOHV1kGAAAAsBlMfRPPYbRFr+K8S7t7R3fv2Lp167RlAAAAABvYagOMz1TVqUky/Dw0bL8jyenzjts+bAMAAABYtdUGGFcn2Tks70xy1bztzxu+jeTcJF9w/wsAAABgWse8iWdV/X4mN+w8papuT/LSJHuSXFFVlyS5NcnFw+HvSvL0JAeSfDXJ89ehZgAAAGCTWc63kDxriV3nLXJsJ3nBtEUBAAAAzDf1TTwBAAAA1psAAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoHfNbSAAAlmNu976pzj+454I1qgQA2IiMwAAAAABGT4ABAAAAjJ4AAwAAABg998Bg5qadMw0AAMDGJ8AAAJIIlAGAcTOFBAAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKPna1QBgFFYi69xPbjngjWoBAAYIyMwAAAAgNETYAAAAACjZwoJALBhTDsNxRQUABgvIzAAAACA0RNgAAAAAKNnCglTW4u7xgMAAMDRCDAAAAbuoQEA4yXAAABYIwIQAFg/7oEBAAAAjJ4RGLiHBQAAAKMnwAAAIMna/KeGaTAArBcBxnHO6AkA2Dg2wj00NsJzAGCcBBgAABuE/9gQoABsZAIMAABGQwgDwFLWJcCoqvOTvCbJCUle39171uM6AAAwJu4jMj2jaIClrHmAUVUnJPmtJE9JcnuSD1XV1d1901pfCwAA1tIYRoDM+gP8rK+/EWhDpiUMXdx6jMB4TJID3X1LklTV25JcmGRDBhj+cQIAYExmHcJs9uuvhY3wHGYdpLExrUeAcVqS2+at357ksQsPqqpdSXYNq1+uqk+uQy3LcUqSz87o2qlXzurKa2qmbbhBaMPpacPpaL/pacPpacPpacPpacPpacPpHfdtOILPOcd9G05rDX4Hs2zDhy62cWY38ezuS5NcOqvrH1FV+7t7x6zrOJ5pw+lpw+lpw+lov+lpw+lpw+lpw+lpw+lpw+lpw+lpw+mNsQ2/ax0e844kp89b3z5sAwAAAFiV9QgwPpTkrKo6s6pOTPLMJFevw3UAAACATWLNp5B0971V9cIkf5TJ16i+obs/vtbXWUMzn8ayAWjD6WnD6WnD6Wi/6WnD6WnD6WnD6WnD6WnD6WnD6WnD6Y2uDau7Z10DAAAAwFGtxxQSAAAAgDUlwAAAAABGb9MGGFV1flV9sqoOVNXuWddzPKqqg1X10aq6sar2z7qe40FVvaGqDlXVx+ZtO7mqrqmqTw0/HzzLGsduiTZ8WVXdMfTFG6vq6bOsceyq6vSqel9V3VRVH6+qFw3b9cVlOkob6ovLVFX3r6oPVtWHhzZ8+bD9zKq6bnh9vny4ITiLOEobvqmq/mpePzxnxqWOWlWdUFU3VNU7h3V9cIUWaUN9cIUWe1/tdXn5lmg/r8krUFUnVdWVVfWJqrq5qh43xj64KQOMqjohyW8leVqSs5M8q6rOnm1Vx60f6+5zxvb9wCP2piTnL9i2O8m13X1WkmuHdZb2pnxnGybJq4a+eE53v+s+rul4c2+SX+jus5Ocm+QFw7+B+uLyLdWGib64XF9L8uTufmSSc5KcX1XnJnllJm34sCR3J7lkdiWO3lJtmCT/dl4/vHFWBR4nXpTk5nnr+uDKLWzDRB9cjYXvq70ur8xin0u8Ji/fa5K8u7sfkeSRmfydHl0f3JQBRpLHJDnQ3bd099eTvC3JhTOuiU2gu/8kyecXbL4wyd5heW+Si+7Lmo43S7QhK9Ddd3b3XwzLX8rkBeq06IvLdpQ2ZJl64svD6v2GP53kyUmuHLbrh0dxlDZkmapqe5ILkrx+WK/ogyuysA1ZU16XuU9U1YOSPDHJZUnS3V/v7nsywj64WQOM05LcNm/99njjuRqd5D1VdX1V7Zp1Mcexbd1957B8V5JtsyzmOPbCqvrIMMVk5sPbjhdVNZfkUUmui764KgvaMNEXl20Ydn5jkkNJrknyl0nu6e57h0O8Ph/Dwjbs7iP98FeHfviqqvru2VU4eq9O8otJvjmsPyT64Eq9Ot/ehkfogyuz2Ptqr8vLt9TnEq/Jy3NmksNJ3jhMB3t9VT0gI+yDmzXAYG08obsfnclUnBdU1RNnXdDxriffa+x/z1budUl+KJMh1Hcm+fWZVnOcqKrvS/KHSX6+u784f5++uDyLtKG+uALd/Y3uPifJ9kxGRz5ithUdfxa2YVX9cJKXZNKWP5Lk5CQvnl2F41VVP57kUHdfP+tajldHaUN9cOWO+r7a6/IxLdZ+XpOXb0uSRyd5XXc/KslXsmC6yFj64GYNMO5Icvq89e3DNlagu+8Yfh5K8o5M3nyycp+pqlOTZPh5aMb1HHe6+zPDm/hvJvmd6IvHVFX3y+SD91u6++3DZn1xBRZrQ31xdYZhqu9L8rgkJ1XVlmGX1+dlmteG5w9TnLq7v5bkjdEPl/L4JD9RVQczmU785EzmgOuDy/cdbVhVv6cPrtwS76u9Li/TYu3nNXlFbk9y+7xRfFdmEmiMrg9u1gDjQ0nOGu4yfWKSZya5esY1HVeq6gFV9cAjy0memuRjRz+LJVydZOewvDPJVTOs5bh05B/WwU9GXzyqYY73ZUlu7u7fmLdLX1ympdpQX1y+qtpaVScNy9+T5CmZ3EvkfUmeMRymHx7FEm34iXlvNiuT+cr64SK6+yXdvb275zJ5L/je7n529MFlW6INn6MPrsxR3ld7XV6GpdrPa/LydfddSW6rqocPm85LclNG2Ae3HPuQjae7762qFyb5oyQnJHlDd398xmUdb7YlecfkdSlbkry1u98925LGr6p+P8mTkpxSVbcneWmSPUmuqKpLktya5OLZVTh+S7Thk2ryFW2d5GCSfzmr+o4Tj0/y3CQfHebOJ8kvRV9ciaXa8Fn64rKdmmTv8M1g35Xkiu5+Z1XdlORtVfWKJDdkuKEYi1qqDd9bVVuTVJIbk/zsDGs8Hr04+uC03qIPrsii76ur6kPxurwcS7Xf73pNXpGfy+Tv7olJbkny/AyvLWPqgzWZygIAAAAwXpt1CgkAAABwHBFgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPT+fyj5T2YyzNh9AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1080x576 with 2 Axes>" ] - }, + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax1, ax2) = plt.subplots(nrows=2)\n", + "ax1.hist(pat_sent[\"avg_sentence_length\"], bins=np.arange(1, 60))\n", + "ax1.xaxis.set_major_locator(plt.MultipleLocator(5))\n", + "ax1.set_title(\"Number of sentences in patronising paragraph\")\n", + "ax2.hist(non_pat_sent[\"avg_sentence_length\"], bins=np.arange(1, 60))\n", + "ax2.xaxis.set_major_locator(plt.MultipleLocator(5))\n", + "# ax2.set_title(\"Number of sentences in non-patronising paragraph\")\n", + "fig.set_figwidth(15)\n", + "fig.set_figheight(8)\n", + "fig.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Synonym replacement" + ] + }, + { + "cell_type": "code", + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "source": [ + "!pip install nltk\n", + "import nltk\n", + "nltk.download('wordnet')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "from nltk.corpus import wordnet\n", + "\n", + "def get_synonyms(word):\n", + " synonyms = set()\n", + " for syn in wordnet.synsets(word): \n", + " for l in syn.lemmas(): \n", + " synonym = l.name().replace(\"_\", \" \").replace(\"-\", \" \").lower()\n", + " synonym = \"\".join([char for char in synonym if char in ' qwertyuiopasdfghjklzxcvbnm'])\n", + " synonyms.add(synonym) \n", + " \n", + " if word in synonyms:\n", + " synonyms.remove(word)\n", + " \n", + " return list(synonyms)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "\n", + "def synonym_replacement(text):\n", + " sentences = text.split(\".\")\n", + " new_sentences = []\n", + " for sent in sentences:\n", + " words = sent.split(' ')\n", + " synonyms = list(map(lambda w: get_synonyms(w), words))\n", + " non_empty_synonyms_indices = [i for i, arr in enumerate(synonyms) if len(arr) != 0]\n", + " indices = random.sample(non_empty_synonyms_indices, random.randint(0, len(non_empty_synonyms_indices)))\n", + " for i in indices:\n", + " words[i] = random.choice(synonyms[i])\n", + " new_sentences.append(' '.join(words))\n", + " return '.'.join(new_sentences)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "trdf1_synonym = trdf1.copy()\n", + "for _ in range(9):\n", + " pat_sent_synonym = trdf1.loc[trdf1['label'] == 1].copy()\n", + " pat_sent_synonym['text'] = pat_sent_synonym['text'].apply(lambda x: synonym_replacement(x))\n", + " trdf1_synonym = pd.concat([trdf1_synonym, pat_sent_synonym], ignore_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " <th>num_sentences_in_paragraph</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>The scheme saw an estimated 150,000 children f...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>Durban 's homeless communities reconciliation ...</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>The next immediate problem that cropped up was...</td>\n", - " <td>1</td>\n", - " <td>3</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>Far more important than the implications for t...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>To strengthen child-sensitive social protectio...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " par_id text label \\\n", - "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", - "1 4136 Durban 's homeless communities reconciliation ... 1 \n", - "2 10352 The next immediate problem that cropped up was... 1 \n", - "3 8279 Far more important than the implications for t... 1 \n", - "4 1164 To strengthen child-sensitive social protectio... 1 \n", - "\n", - " num_sentences_in_paragraph \n", - "0 2 \n", - "1 1 \n", - "2 3 \n", - "3 2 \n", - "4 2 " - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "paragraphs = trdf1[\"text\"]\n", - "\n", - "trdf1[\"num_sentences_in_paragraph\"] = paragraphs.apply(lambda x: len(x.split(\".\")))\n", - "\n", - "trdf1.head()" + "data": { + "text/plain": [ + "1 7940\n", + "0 7581\n", + "Name: label, dtype: int64" ] - }, + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1_synonym['label'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Translation" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 64, + "outputs": [ { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "trdf1[\"readability_score\"] = trdf1[\"text\"].apply(lambda x: calculate_readability(x))" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "es\n", + "it\n", + "ta\n", + "eo\n", + "ga\n", + "sv\n", + "eo\n", + "I will keep my anger as long as I can, but I will pour out my wrath on you like a thousand waves! Stay out, you bastard! Leave me alone! Start a car? This car is a finished car! Abduction of the gods! God now! I am free, and my anger knows no bounds!\n" + ] + } + ], + "source": [ + "# import googletrans\n", + "import random\n", + "# import translate\n", + "import deep_translator\n", + "\n", + "def translate(source_text):\n", + " language_opts = ['fr', 'es', 'da', 'eo', 'ht', 'ga', 'it', 'no', 'ru', 'sv', 'tr', 'ts', 'ta', 'sq', 'be', 'bg', 'nl'] # change to restrict language choices\n", + " # print(language_opts)\n", + " from_lang = 'en'\n", + " to_lang = random.choice(list(language_opts))\n", + " # to_lang='ta'\n", + " print(to_lang)\n", + " translator_to = deep_translator.GoogleTranslator(source=from_lang, target=to_lang)\n", + " translator_from = deep_translator.GoogleTranslator(source=to_lang, target=from_lang)\n", + " translated_sent = translator_to.translate(source_text)\n", + " retranslated_sent = translator_from.translate(translated_sent)\n", + " return retranslated_sent\n", + "\n", + "sent = \"This is a simple, yet powerful command line translator with google translate behind it. You can also use it as a Python module in your code. \"\n", + "\n", + "for _ in range(7):\n", + " sent = translate(sent)\n", + "print(sent)" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O1KGYmpnxDjt" + }, + "source": [ + "# Rebuild test set (Task 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "T6FLgB6KxGI2" + }, + "outputs": [], + "source": [ + "rows = [] # will contain par_id, label and text\n", + "for idx in range(len(teids)): \n", + " parid = teids.par_id[idx]\n", + " #print(parid)\n", + " # select row from original dataset\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " label = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].label.values[0]\n", + " rows.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "YbB9GdzJxRAH", + "outputId": "c78e311e-9502-4644-b6f7-0c64f64aa66f" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "def avg_sentence_length(para):\n", - " sentences = para.split(\".\")\n", - " s_len = [len(s.split(\" \")) for s in sentences]\n", - " return sum(s_len) / len(s_len)\n" + "data": { + "text/plain": [ + "2094" ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(rows)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "vhBhTRIyxSaQ" + }, + "outputs": [], + "source": [ + "tedf1 = pd.DataFrame(rows)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xK6FY70KZ6TY" + }, + "source": [ + "# RoBERTa Baseline for Task 1" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "trdf1[\"avg_sentence_length\"] = paragraphs.apply(lambda x : avg_sentence_length(x))" - ] + "id": "Z-pvjbu_8h1n", + "outputId": "0a9da7ae-181c-40a5-a438-220f5ab960b5" + }, + "outputs": [], + "source": [ + "# downsample negative instances\n", + "pcldf = trdf1[trdf1.label==1]\n", + "npos = len(pcldf)\n", + "\n", + "training_set1 = pd.concat([pcldf,trdf1[trdf1.label==0][:npos*2]])" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 }, + "id": "mpSqMp3d8iYu", + "outputId": "037d4f45-eab5-4f04-e9a5-1aa64c46323d" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 8375.000000\n", - "mean 0.544217\n", - "std 2.946594\n", - "min 0.000000\n", - "25% 0.000000\n", - "50% 0.000000\n", - "75% 0.000000\n", - "max 67.778221\n", - "Name: readability_score, dtype: float64" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " <th>readability_score</th>\n", + " <th>avg_sentence_length</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>18.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>0.0</td>\n", + " <td>6.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>24.666667</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>23.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>25.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2377</th>\n", + " <td>1775</td>\n", + " <td>Last but not the least element of culpability ...</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>12.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2378</th>\n", + " <td>1776</td>\n", + " <td>Then , taking the art of counter-intuitive non...</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>23.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2379</th>\n", + " <td>1777</td>\n", + " <td>Kagunga village was reported to lack necessary...</td>\n", + " <td>0</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>13.333333</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2380</th>\n", + " <td>1778</td>\n", + " <td>\"After her parents high-profile divorce after ...</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>38.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2381</th>\n", + " <td>1779</td>\n", + " <td>\"Last night One News reported on leaked Minist...</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>20.500000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2382 rows × 6 columns</p>\n", + "</div>" ], - "source": [ - "trdf1[\"readability_score\"].describe()" + "text/plain": [ + " par_id text label \\\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", + "1 4136 Durban 's homeless communities reconciliation ... 1 \n", + "2 10352 The next immediate problem that cropped up was... 1 \n", + "3 8279 Far more important than the implications for t... 1 \n", + "4 1164 To strengthen child-sensitive social protectio... 1 \n", + "... ... ... ... \n", + "2377 1775 Last but not the least element of culpability ... 0 \n", + "2378 1776 Then , taking the art of counter-intuitive non... 0 \n", + "2379 1777 Kagunga village was reported to lack necessary... 0 \n", + "2380 1778 \"After her parents high-profile divorce after ... 0 \n", + "2381 1779 \"Last night One News reported on leaked Minist... 0 \n", + "\n", + " num_sentences_in_paragraph readability_score avg_sentence_length \n", + "0 2 0.0 18.500000 \n", + "1 1 0.0 6.000000 \n", + "2 3 0.0 24.666667 \n", + "3 2 0.0 23.000000 \n", + "4 2 0.0 25.000000 \n", + "... ... ... ... \n", + "2377 2 0.0 12.500000 \n", + "2378 2 0.0 23.500000 \n", + "2379 3 0.0 13.333333 \n", + "2380 2 0.0 38.000000 \n", + "2381 2 0.0 20.500000 \n", + "\n", + "[2382 rows x 6 columns]" ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "training_set1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "## Normal training\n", + "task1_model_args = ClassificationArgs(num_train_epochs=1, \n", + " no_save=True, \n", + " no_cache=True, \n", + " overwrite_output_dir=True)\n", + "task1_model = ClassificationModel(\"roberta\", \n", + " 'roberta-base', \n", + " args = task1_model_args, \n", + " num_labels=2, \n", + " use_cuda=cuda_available)\n", + "# train model\n", + "task1_model.train_model(training_set1[['text', 'label']])\n", + "# run predictions\n", + "preds_task1, _ = task1_model.predict(tedf1.text.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "h5oxHt2R6t2I", + "outputId": "27505e5d-896b-4d63-dc53-905cc34d7fd2" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " <th>num_sentences_in_paragraph</th>\n", - " <th>readability_score</th>\n", - " <th>avg_sentence_length</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>The scheme saw an estimated 150,000 children f...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>18.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>Durban 's homeless communities reconciliation ...</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>0.0</td>\n", - " <td>6.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>The next immediate problem that cropped up was...</td>\n", - " <td>1</td>\n", - " <td>3</td>\n", - " <td>0.0</td>\n", - " <td>24.666667</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>Far more important than the implications for t...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>23.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>To strengthen child-sensitive social protectio...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>25.000000</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " par_id text label \\\n", - "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", - "1 4136 Durban 's homeless communities reconciliation ... 1 \n", - "2 10352 The next immediate problem that cropped up was... 1 \n", - "3 8279 Far more important than the implications for t... 1 \n", - "4 1164 To strengthen child-sensitive social protectio... 1 \n", - "\n", - " num_sentences_in_paragraph readability_score avg_sentence_length \n", - "0 2 0.0 18.500000 \n", - "1 1 0.0 6.000000 \n", - "2 3 0.0 24.666667 \n", - "3 2 0.0 23.000000 \n", - "4 2 0.0 25.000000 " - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pat_sent = trdf1.loc[trdf1['label'] == 1]\n", - "non_pat_sent = trdf1.loc[trdf1['label'] == 0]\n", - "\n", - "pat_sent.head()" + "data": { + "text/plain": [ + "Counter({0: 1651, 1: 443})" ] - }, + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Counter(preds_task1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "labels2file([[k] for k in preds_task1], 'task1.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train with synonym replacement" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:matplotlib.font_manager:generated new fontManager\n" - ] - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " <th>readability_score</th>\n", + " <th>avg_sentence_length</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>18.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>0.0</td>\n", + " <td>6.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>24.666667</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>23.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>25.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15516</th>\n", + " <td>873</td>\n", + " <td>cite the fact that these kids world health org...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>31.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15517</th>\n", + " <td>10070</td>\n", + " <td>Fern ? ndez was a well-known philanthropist wo...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>19.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15518</th>\n", + " <td>6484</td>\n", + " <td>touch on a lot away their predicament , comman...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>27.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15519</th>\n", + " <td>6249</td>\n", + " <td>She iterate her ministry 's commitment to put ...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>0.0</td>\n", + " <td>18.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15520</th>\n", + " <td>5149</td>\n", + " <td>preach the sermon , the Dean of the St. Peter ...</td>\n", + " <td>1</td>\n", + " <td>4</td>\n", + " <td>0.0</td>\n", + " <td>15.750000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>15521 rows × 6 columns</p>\n", + "</div>" ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np" + "text/plain": [ + " par_id text label \\\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", + "1 4136 Durban 's homeless communities reconciliation ... 1 \n", + "2 10352 The next immediate problem that cropped up was... 1 \n", + "3 8279 Far more important than the implications for t... 1 \n", + "4 1164 To strengthen child-sensitive social protectio... 1 \n", + "... ... ... ... \n", + "15516 873 cite the fact that these kids world health org... 1 \n", + "15517 10070 Fern ? ndez was a well-known philanthropist wo... 1 \n", + "15518 6484 touch on a lot away their predicament , comman... 1 \n", + "15519 6249 She iterate her ministry 's commitment to put ... 1 \n", + "15520 5149 preach the sermon , the Dean of the St. Peter ... 1 \n", + "\n", + " num_sentences_in_paragraph readability_score avg_sentence_length \n", + "0 2 0.0 18.500000 \n", + "1 1 0.0 6.000000 \n", + "2 3 0.0 24.666667 \n", + "3 2 0.0 23.000000 \n", + "4 2 0.0 25.000000 \n", + "... ... ... ... \n", + "15516 2 0.0 31.500000 \n", + "15517 2 0.0 19.500000 \n", + "15518 2 0.0 27.500000 \n", + "15519 2 0.0 18.500000 \n", + "15520 4 0.0 15.750000 \n", + "\n", + "[15521 rows x 6 columns]" ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "training_set1_synonyms = trdf1_synonym\n", + "training_set1_synonyms" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 538, + "referenced_widgets": [ + "de026e2d1ec848fbb35faf1746e7579d", + "7a0d26d292e54498a15bc2e54e6c3aee", + "13bc966911b1433ab6f8245f88b86e2d", + "ec69c0f693b74ac8b737816b1efaa8bf", + "cf4fb870564043cfbc171ae05143ec5f", + "abc4d60485bf40d7abf3cbcf212e39a2", + "85ea942b0e194d2a9160f82494fff8e0", + "6b2a3cde2cdb4bc6a9d0623363c66266", + "a287d92682d644daa34030f58227540f", + "2eea385dfcf745e6b92c37eb6cd901f4", + "59c41a4934cf4ef2b467ae5d97b615f0", + "a90282c995cc4c6db59eaa51e3414ad1", + "d76e461fca524e04810c38b44ad51185", + "b4d34c0c2e364f88b70036cbff6f780a", + "4d22ac94c09d4802b4664e456278308a", + "594d094f060e4481977901e11c2ddaf2", + "b276fc7fd7954ec09fabbcad64b93508", + "29ad13a85dc44e4e919bed1daddf0935", + "c0b81615b8fc4b8d8a48232d029e717d", + "c1dc117db5c444bd918b9ab70b587f48", + "fc14f76deb2549b3a5c6bce9ea3dd7e3", + "a8757d3393f04a55a5bea7f923944281", + "df46941823a540f787e2e9dad52243d3", + "904714fa04be424da224c801f06d52f6", + "790e423a21b840978da497d9d35634a6", + "6cc05e8394ac491999930b9493be855e", + "8cefe2ef3c984e3a8ad1bb8ecb7f0dbb", + "4ec670884e2247ec872defaa5bf7dcc5", + "3d7e4c3c0af84bc4940d2e25ad8a5162", + "4f8aa1c4c8914693a24523c1064ecf97", + "ab2d97c595ff4e55969bc2f1415f747d", + "60b8f43949894143a83263e96d0ac3fa", + "703f69d98e9947f3aeaba07b51d64f3c", + "59458022ec4547beba130ce755946427", + "26178b1ed5164ca7bcea84b65fc95522", + "ac45cf1a895f4ba39c5be0ad136c4591", + "117489e4902040ae97cb222f8c4dda12", + "ba09b68a05644dd1b7d12a19396fb3b8", + "37531d1ef87f45c99df60fb6a8a66d78", + "1c61f90f85a54cbb9d2ccdbf614eb8d5", + "c11ef82d87114a59868d9d7810b936db", + "a8de20f8116142f6bf25aef25f37ad85", + "32fe020b5dc54143af2830ec578eecdf", + "2fcffe85dbcc4c91b840c61799b82772", + "2c3f59321aac4ea78e4c70618f907e08", + "ff3206118d3043b3a9b757ec3ca01d9f", + "d1343667008643c8a893bfae962503c1", + "384f2a4804ed458498b35f04d32e41b5", + "f7e1e00cad5449dfb55c6a920a292540", + "ec68ce238bb04063a74afd67a4f1e877", + "05e6b65f527c48e5ab8aaa8a220287c0", + "ee3cdac0740d43188518e097ae5863a5", + "6f8e6355fcb74fc98cc641bc36bd1707", + "19628b1c68004e9a98ecb5a934d57d2d", + "cafdb944408b42eaacec5b2e8566962b", + "b8654137c93f4a70b0fb8f7e692f7673", + "b088cb07387d4a46b3c7d4d7cc9a5aba", + "e567e754183b42d69d3d200a4517b132", + "e4c905c262994b7d9197f77b2da2c178", + "f0b59d4d691c44a4a7dbb40991518d36", + "fe372945c13845e5bd01ca4e153ed61c", + "c3a17fa9e8da4d9fb571e307f75ac144", + "23ee94259c41435ea19264f4a2937585", + "c3cafc815e4444a8998e608cd9c9300d", + "49fd3eaa74fa493fbe7324607888c542", + "6870cb8717ba407c81d0b7c79ad27d26", + "d32db030dff24fe3bd1983a44c703311", + "ee1cc81a307a4ea6ac00b65a4d314877", + "d16d01773a334ccb8a9231d3cae6e0f4", + "c43f7ff02eb74e0d900029f97652a973", + "d6a37bb80db94947810fa1d69b8b416b", + "4f8b629635194d759b9c91f37a445632", + "d48d137548464c3387dd51494cb969bf", + "89f9d8cab0c44b58afee34914198a9e6", + "3119accf975446eda52b0125571322a4", + "bac5decd48b74036a270f70a05c3f80e", + "2c646f33655d4646b70afef87232d5a1", + "82f733de38ef4c5f8734cbdf47ec1a01", + "818e5dbea2094a97a18974aebe4ddb86", + "c2dae6a605f842d3aaad1f86b2e332b6", + "197dca1cad8b425bb4622c9d5da461dc", + "1cf670526680446db48fbf64b1cae0a6", + "ece446ccb0d3496a81dc0250fff9039d", + "d7d3e0bd4a9c43dd9946a8a63b12d1d7", + "f879197b8c2443278e280f82f20cc609", + "c983b2e75ec44867a14f6d3abdfff2ec", + "d1df90f8eead4f5e8718fd42ec0d5e40", + "b3f807cfae5a44fcbf1069817e6fb79d", + "a308011d2efd403fb6b8d250d8f98fa9", + "770ad4abfc4f4eeebefade5afcad22a3", + "226d2e2955444f9ead05b5991d7939e5", + "9f03facdd7704ab9be2bd65f1060f215", + "fc122d487cbd4ab69e78f1b9425774ba", + "21c2295bc2a54d979f2a5404f6a7ecb1", + "b4bcc997cfa4444287370bbb4819cb43", + "4fbbc5b908c14198b8c86ca2208bd890", + "5bc982f17aec46b3b7f8308f567f6296", + "f1fe964e4d2b4ebb8f76b3d8debdaab6", + "7e3df3b58c7e4117b0a8b8fc45dffa01", + "6851a6f291a04bd59da6cf04d6f762aa", + "3cd79b7a96784504a28dce435f9de5b5", + "d79bd01e1fe44c12ac530376324d9e0e", + "4a03ac52afa84bfd82ced188892b1958", + "8351a84b9c914d80a54ac57a2fb18304", + "419ce58d2ed14589a3d2e1cd7b477e0f", + "568d424c94094d669282ed72b4cf0be4", + "7fe11f4ffd3747079b8de4453b29dbac", + "22a8be9fae3245cca79dc7904ed4f49d", + "ed1ad3ad89334675babf56f9737a17fb", + "dba102bf2b3249c8907d4fe1d5cf0e82" + ] }, + "id": "PoW_s23AZ_DG", + "outputId": "cae26801-a680-4d5b-9d76-d56872b5e611" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABEaUlEQVR4nO3deZhlVX3v//dHmkkgAtIShtY2iAMmEbWDGEkkogjoDehVg9cBFYMmmGiiSVBzIw7cYKKS+IshQUFwljhEoiaCxiEmCjYKSANqq41000AzgxgU+P7+2KvDoqyqruqqc7qA9+t5zlP7rD181x5qn+9Ze+19UlVIkiRJGtxnU1dAkiRJWkhMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEv3cklOTfKWTRQ7Sd6b5Lok52yKOix0SR6Y5OYkm23qusy3JP+a5IgZTHdzkl8aR53uKZIsTVJJFm3qukh3R/7jSAtMklXAfYEHV9WPW9lLgedX1f6bsGqjsB/wFGD39es6DkkK2LOqVo4r5saqqh8B2447bpKlwA+BzavqtlHEqKqDZzjd2Ndf0r2bLcjSwrQZ8MpNXYnZ2ohWzgcBq8aZHGv+2Dp5p/neFm5badMyQZYWpr8GXpNk+4kjJrt0muRLrZWZJC9K8p9JTkhyfZIfJPn1Vn5Zkqsmuay9U5KzktyU5MtJHtQt++Ft3LVJvpPkOd24U5OcmOSzSX4M/NYk9d01yRlt/pVJfreVHwm8B3h8u4T+xknmfUirzw1Jrk7y0VnU611JPtPW6ewke7RxX2mTnd/i/k4rf3qS89o2+68kv9otb1WS1yS5oNXlo0m26sYf2ua9Mcn3kxzUyu+X5OQka5OsSfKW9V8iplu36fZ329dvbvv4piRnJtlpinn3T7I6yetajFVJnteNf1qSb7V6X5bk2G729dvp+radHj/h2LoGOLat4/uSrEtyaZI/T3KftvwXJflqkrdl6EbzwyQHd/H743a6fV1JHrKhfdvGH9iOhxuS/H1b5kun2D7HJvlY2583Jflmkkd1449p+/OmJBcleUY3brJtsUeSf09yTVuHD6b7H07ymLa9b0ryTy3uWybsqz9LcgXw3iQ7JPl027bXteHdJ2y/v0xyTtuHn0qy44TVfF6SH7X6vH6y7SBpElXly5evBfQCVgFPBj4BvKWVvRT4UhteChSwqJvnS8BL2/CLgNuAFzO0RL8F+BHwLmBL4EDgJmDbNv2p7f1vtvF/C3y1jdsGuKwtaxHwaOBqYK9u3huAJzB84d5qkvX5CvD3wFbA3sA64EldXb86zbb4MPD69csG9ptFva4B9mnjPwh8pFtuAQ/p3j8auAp4XNtmR7T9sGW3T84BdgV2BC4GXt7G7dO2wVNaPXcDHt7GfRL4x1bfB7RlvGy6dZtkG9xlf7d9/X3gocDW7f3xU8y7fzsW3tH27ROBHwMP68b/SqvDrwJXAodNc5y9qC3vD9p23Rp4H/ApYLs2z3eBI7vpfwb8btuuvwdcDmSS43bK7dHvr+n2LbATcCPwzDbulS3+S6fYPse28c8CNgdew53dSgCe3fb5fYDfadtul2m2xUMYjoMtgcUMx/7ftOm3AC5tddq81fGn3Pk/vn5fvbXNvzVwf+B/M3S52g74J+CfJ/zfrwF+meEY+zjwgQn7791tWY8CbgUesanPcb583R1etiBLC9dfAH+QZPFGzPvDqnpvVd0OfBRYArypqm6tqjMZPpgf0k3/mar6SlXdypCkPD7JEuDpDF0g3ltVt1XVtxg+hJ/dzfupqvrPqrqjqv67r0RbxhOAP6uq/66q8xhajV84w/X4GUM3jF3b/F9t5TOp1yer6pwa+s9+kCE5n8pRwD9W1dlVdXtVncaQTOzbTfPOqrq8qq4F/qVb3pHAKVV1VtsGa6rqkiQ7A4cAr6qqH1fVVcAJwOEbWLeZeG9VfbeqfgKcvoF1A/i/bd9/GfgM8ByAqvpSVX271fsChiT1iRtY1uVV9f+17frTtj6vraqbqmoV8HbgBd30l1bVu9uxeBqwC7DzJMudzfaYat8eAqyoqk+0ce8ErtjA+pxbVR+rqp8xfJHYirbfq+qf2j6/o6o+CnyPITH/uW1RVT+pqpXtOLi1qta15a3fnvsyJNLvrKqfVdUnGL4w9e4A3tDm/0lVXVNVH6+qW6rqJuA4fn7/vL+qLqyhm9L/BZ6Tu3Z1emNb1vnA+QyJsqQNMEGWFqiquhD4NHDMRsx+ZTf8k7a8iWX9jU+XdXFvBq5laDl7EPC4DN0Ork9yPfA84Bcnm3cSuwLXtg/39S5laGWdiT8FApyTZEWSl7TymdSrT4xuYfob3R4EvHrC8pa0+m9oeUsYWnQnW+bmwNpumf/I0JI83brNxGzW7bq6ax/vS2nrleRxSb7YLuHfALycoRV2Ov3+3olhHS+dsPx+//5PXavqljY4WX1nsz2mWv9dueuxXMDqaZbDhOnvaNOv3z4vzJ3dbq5naKndabJ52/Q7J/lIhu40NwIf6KbfFVjT6jTp/MC6/ktmkvsm+cfWdeVGhhbp7SckwP0yLmXYH30dZ3OsSGq8CUBa2N4AfJOhVW699cnOfRkuJ8NdE8ONsWT9QJJtGboRXM7w4fvlqnrKNPPWNOMuB3ZMsl2XJD+Q4bLwBlXVFQyX50myH/D5DH2IZ1Kv2bgMOK6qjtvIefeYovxWYKea5CkQU61bzf+TNXZIsk2XJD8QuLANfwj4O+DgqvrvJH/DncnVVPu1L7+aO1t+L+qWP6P9e5eFzs/2WAv0fXTTv59Cf+zfp01/eYZ++O8GDgC+VlW3JzmPIYn/n2pPWNb/a2W/UlXXJjmMYfuur9tuSdIlyRO/XE1c3quBhwGPq6orkuwNfGtCHZZ0ww9k2B9XTyiXNEu2IEsLWEsOPgr8YVe2jiEBeX6SzVpL22QJ2mwckmS/JFsAbwa+XlWXMbRgPzTJC5Js3l6/luQRM6z/ZcB/AX+ZZKsMN74dydCytkFJnt3dlHQdQwJxx1zrxdDC3j9X993Ay1uLapJsk+EGtu1msKyTgRcnOSDJfZLsluThVbUWOBN4e5JfaOP2SPLEDazbKLwxyRZJfoOhe8o/tfLtGFr4/zvJPsD/6eZZ1+oz5fOHW7eJ04HjkmzXkso/Zob7tzdP2+MzwK8kOSzDTY1Hs+Evj49N8sw2/asYvtR8naFPbzFsB5K8mKEFeTrbATcDNyTZDfiTbtzXgNuBVyRZlORQ7tpdY6rl/YThRskdGb4wT/T8JHsluS/wJuBjbb9ImgMTZGnhexPDh3Xvdxk+fK8BHsmQhM7Fhxg+fK8FHgs8H6C1+h7I0M/0cobLtetvIpqp5zLcMHQ5w01rb6iqz89w3l8Dzk5yM3AG8Mqq+sE81OtY4LR26fw5VbWcYZv+HUNytpLhJqwNqqpzGG4WPIHhZr0vM7SowtDXeguG1tXrgI8x9MGdct1mWP/ZuKLFvpyhv+7Lq+qSNu73gTcluYmhz/vp3XrdwtDn9T/bdtqXyf0Bw1WNHwBfZTiWTtmIes55e1TV1Qz90P+K4X9jL2A5Q9I7lU8x3IB3HUPf6We2PsIXMVy5+RrDF6pfAf5zA1V4I/AYhuPgMww32q6v208Zbsw7Erie4X/s0xuo298w3GB3NUPS/m+TTPN+hhsXr2DoP/2Hk0wjaZZSNd3VUUnS3VWS/RmearChbgb3SK3LxGrgeVX1xUnGH8vwdIznj7tuLf7ZwD9U1Xs3cv4vMezf98xrxSTZgixJuudI8tQk2yfZEngdQ3/dr2/iagGQ5IlJfrF1sTiC4dF6k7UKS9rEvElPknRP8niGbh7ru7Yc1h6HtxA8jKEbyzYMXVKe1fqqS1pg7GIhSZIkdexiIUmSJHUWdBeLnXbaqZYuXbqpqyFJkqS7qXPPPffqqprVr9Iu6AR56dKlLF++fFNXQ5IkSXdTSS7d8FR3ZRcLSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdRb0T03fky095jOzmn7V8U8bUU0kSZLUswVZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJnY1OkJNsleScJOcnWZHkja38wUnOTrIyyUeTbNHKt2zvV7bxS+dpHSRJkqR5M5cW5FuBJ1XVo4C9gYOS7Au8FTihqh4CXAcc2aY/EriulZ/QppMkSZIWlI1OkGtwc3u7eXsV8CTgY638NOCwNnxoe08bf0CSbGx8SZIkaRTm1Ac5yWZJzgOuAs4Cvg9cX1W3tUlWA7u14d2AywDa+BuA+88lviRJkjTf5pQgV9XtVbU3sDuwD/DwuVYoyVFJlidZvm7durkuTpIkSZqVeXmKRVVdD3wReDywfZJFbdTuwJo2vAZYAtDG3w+4ZpJlnVRVy6pq2eLFi+ejepIkSdKMzeUpFouTbN+GtwaeAlzMkCg/q012BPCpNnxGe08b/+9VVRsbX5IkSRqFRRueZEq7AKcl2Ywh0T69qj6d5CLgI0neAnwLOLlNfzLw/iQrgWuBw+cQW5IkSRqJjU6Qq+oC4NGTlP+AoT/yxPL/Bp69sfEkSZKkcfCX9CRJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOhudICdZkuSLSS5KsiLJK1v5sUnWJDmvvQ7p5nltkpVJvpPkqfOxApIkSdJ8WjSHeW8DXl1V30yyHXBukrPauBOq6m39xEn2Ag4HHgnsCnw+yUOr6vY51EGSJEmaVxvdglxVa6vqm234JuBiYLdpZjkU+EhV3VpVPwRWAvtsbHxJkiRpFOalD3KSpcCjgbNb0SuSXJDklCQ7tLLdgMu62VYzSUKd5Kgky5MsX7du3XxUT5IkSZqxOSfISbYFPg68qqpuBE4E9gD2BtYCb5/N8qrqpKpaVlXLFi9ePNfqSZIkSbMypwQ5yeYMyfEHq+oTAFV1ZVXdXlV3AO/mzm4Ua4Al3ey7tzJJkiRpwZjLUywCnAxcXFXv6Mp36SZ7BnBhGz4DODzJlkkeDOwJnLOx8SVJkqRRmMtTLJ4AvAD4dpLzWtnrgOcm2RsoYBXwMoCqWpHkdOAihidgHO0TLCRJkrTQbHSCXFVfBTLJqM9OM89xwHEbG1OSJEkaNX9JT5IkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEmdjU6QkyxJ8sUkFyVZkeSVrXzHJGcl+V77u0MrT5J3JlmZ5IIkj5mvlZAkSZLmy1xakG8DXl1VewH7Akcn2Qs4BvhCVe0JfKG9BzgY2LO9jgJOnENsSZIkaSQ2OkGuqrVV9c02fBNwMbAbcChwWpvsNOCwNnwo8L4afB3YPskuGxtfkiRJGoV56YOcZCnwaOBsYOeqWttGXQHs3IZ3Ay7rZlvdyiYu66gky5MsX7du3XxUT5IkSZqxOSfISbYFPg68qqpu7MdVVQE1m+VV1UlVtayqli1evHiu1ZMkSZJmZU4JcpLNGZLjD1bVJ1rxleu7TrS/V7XyNcCSbvbdW5kkSZK0YMzlKRYBTgYurqp3dKPOAI5ow0cAn+rKX9ieZrEvcEPXFUOSJElaEBbNYd4nAC8Avp3kvFb2OuB44PQkRwKXAs9p4z4LHAKsBG4BXjyH2JIkSdJIbHSCXFVfBTLF6AMmmb6Aozc2niRJkjQOc2lB1gK29JjPzHqeVcc/bQQ1kSRJunvxp6YlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1JlTgpzklCRXJbmwKzs2yZok57XXId241yZZmeQ7SZ46l9iSJEnSKMy1BflU4KBJyk+oqr3b67MASfYCDgce2eb5+ySbzTG+JEmSNK/mlCBX1VeAa2c4+aHAR6rq1qr6IbAS2Gcu8SVJkqT5Nqo+yK9IckHrgrFDK9sNuKybZnUru4skRyVZnmT5unXrRlQ9SZIkaXKjSJBPBPYA9gbWAm+fzcxVdVJVLauqZYsXLx5B9SRJkqSpzXuCXFVXVtXtVXUH8G7u7EaxBljSTbp7K5MkSZIWjHlPkJPs0r19BrD+CRdnAIcn2TLJg4E9gXPmO74kSZI0F4vmMnOSDwP7AzslWQ28Adg/yd5AAauAlwFU1YokpwMXAbcBR1fV7XOJL0mSJM23OSXIVfXcSYpPnmb644Dj5hJTkiRJGiV/SU+SJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJnTklyElOSXJVkgu7sh2TnJXke+3vDq08Sd6ZZGWSC5I8Zq6VlyRJkubbXFuQTwUOmlB2DPCFqtoT+EJ7D3AwsGd7HQWcOMfYkiRJ0rxbNJeZq+orSZZOKD4U2L8NnwZ8CfizVv6+qirg60m2T7JLVa2dSx1097H0mM/MavpVxz9tRDWRJEma2ij6IO/cJb1XADu34d2Ay7rpVreyu0hyVJLlSZavW7duBNWTJEmSpjbSm/Raa3HNcp6TqmpZVS1bvHjxiGomSZIkTW4UCfKVSXYBaH+vauVrgCXddLu3MkmSJGnBGEWCfAZwRBs+AvhUV/7C9jSLfYEb7H8sSZKkhWZON+kl+TDDDXk7JVkNvAE4Hjg9yZHApcBz2uSfBQ4BVgK3AC+eS2xJkiRpFOb6FIvnTjHqgEmmLeDoucSTJEmSRs1f0pMkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6iwa1YKTrAJuAm4HbquqZUl2BD4KLAVWAc+pqutGVQdJkiRptkaWIDe/VVVXd++PAb5QVccnOaa9/7MR10H3IkuP+cyspl91/NNGVBNJknR3Ne4uFocCp7Xh04DDxhxfkiRJmtYoE+QCzkxybpKjWtnOVbW2DV8B7DxxpiRHJVmeZPm6detGWD1JkiTp542yi8V+VbUmyQOAs5Jc0o+sqkpSE2eqqpOAkwCWLVv2c+MlSZKkURpZglxVa9rfq5J8EtgHuDLJLlW1NskuwFWjij8Xs+3HCvZllSRJuqcYSReLJNsk2W79MHAgcCFwBnBEm+wI4FOjiC9JkiRtrFG1IO8MfDLJ+hgfqqp/S/IN4PQkRwKXAs8ZUXxJkiRpo4wkQa6qHwCPmqT8GuCAUcSUJEmS5oO/pCdJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjqj/KEQ6V7PZ2pLknT3YwuyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLU8Zf0pLu52f5an7/UJ0nS9GxBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHV8zJukeeej5yRJd2e2IEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpM7Yb9JLchDwt8BmwHuq6vhx10HS3Zs3AUqSRmmsLchJNgPeBRwM7AU8N8le46yDJEmSNJ1xtyDvA6ysqh8AJPkIcChw0ZjrIUnzatSt2vfGVvPZrjPcM9Zburu4J5+XUlXjC5Y8Czioql7a3r8AeFxVvaKb5ijgqPb2l4ELx1bBO+0EXG1c4xrXuMY1rnGNa9y7fdyHVdV2s5lhwf1QSFWdBJwEkGR5VS0bdx2Ma1zjGte4xjWucY17z4k723nG/RSLNcCS7v3urUySJElaEMadIH8D2DPJg5NsARwOnDHmOkiSJElTGmsXi6q6LckrgM8xPObtlKpaMc0sJ42nZsY1rnGNa1zjGte4xjXuYKw36UmSJEkLnb+kJ0mSJHVMkCVJkqTOgk2QkxyU5DtJViY5ZkwxT0lyVZKxPns5yZIkX0xyUZIVSV45prhbJTknyfkt7hvHEbeLv1mSbyX59Bhjrkry7STnbcxjX+YQd/skH0tySZKLkzx+DDEf1tZz/evGJK8addwW+4/aMXVhkg8n2WpMcV/ZYq4Y5bpOdq5IsmOSs5J8r/3dYUxxn93W944kI3l80hRx/7odzxck+WSS7ccU980t5nlJzkyy6zjiduNenaSS7DSOuEmOTbKm+z8+ZBxxW/kftH28IslfjSNuko9267oqyXljirt3kq+v/2xIss+Y4j4qydfa59K/JPmFEcSdNMcY9TlrmrgjPWdNE3d256yqWnAvhhv4vg/8ErAFcD6w1xji/ibwGODCMa/vLsBj2vB2wHfHtL4Btm3DmwNnA/uOcb3/GPgQ8OkxxlwF7DTO/dvinga8tA1vAWw/5vibAVcADxpDrN2AHwJbt/enAy8aQ9z1Pyx0X4YbkD8PPGREsX7uXAH8FXBMGz4GeOuY4j4CeBjwJWDZGNf3QGBRG37rGNf3F7rhPwT+YRxxW/kShpvMLx3FeWSK9T0WeM0o9usG4v5W+x/asr1/wLi2czf+7cBfjGl9zwQObsOHAF8aU9xvAE9swy8B3jyCuJPmGKM+Z00Td6TnrGnizuqctVBbkP/nJ6mr6qfA+p+kHqmq+gpw7ajjTBJ3bVV9sw3fBFzMkGSMOm5V1c3t7ebtNZa7NpPsDjwNeM844m1KSe7HcGI8GaCqflpV14+5GgcA36+qS8cUbxGwdZJFDAnr5WOI+Qjg7Kq6papuA74MPHMUgaY4VxzK8EWI9vewccStqour6jvzHWsGcc9s2xng6wzPtR9H3Bu7t9swgnPWNJ8FJwB/OoqYG4g7UlPE/T3g+Kq6tU1z1ZjiApAkwHOAD48pbgHrW2/vxwjOWVPEfSjwlTZ8FvC/RxB3qhxjpOesqeKO+pw1TdxZnbMWaoK8G3BZ9341Y0gYF4IkS4FHM7TmjiPeZu0S1lXAWVU1lrjA3zB80NwxpnjrFXBmknMz/Kz5ODwYWAe8N0OXkvck2WZMsdc7nBF80EymqtYAbwN+BKwFbqiqM8cQ+kLgN5LcP8l9GVqBlmxgnvm0c1WtbcNXADuPMfam9hLgX8cVLMlxSS4Dngf8xZhiHgqsqarzxxFvgle0y8KnjKLrzhQeyvD/dHaSLyf5tTHFXe83gCur6ntjivcq4K/bcfU24LVjiruCOxsAn82Iz1kTcoyxnbPGndvMIO4Gz1kLNUG+V0qyLfBx4FUTWklGpqpur6q9Gb5J7ZPkl0cdM8nTgauq6txRx5rEflX1GOBg4OgkvzmGmIsYLqudWFWPBn7McDlrLDL8KM9vA/80png7MJzwHwzsCmyT5PmjjltVFzNcNjsT+DfgPOD2Ucedoi7FmK7GbGpJXg/cBnxwXDGr6vVVtaTFfMWo47UvXK9jTMn4BCcCewB7M3zhfPuY4i4CdgT2Bf4EOL216o7LcxnTl/rm94A/asfVH9Gu+I3BS4DfT3IuQ3eAn44q0HQ5xijPWZsit5ku7kzPWQs1Qb7X/SR1ks0ZduQHq+oT447fLvl/EThoDOGeAPx2klUM3WeelOQDY4i7vnVz/eXCTzJ05xm11cDqrnX+YwwJ87gcDHyzqq4cU7wnAz+sqnVV9TPgE8CvjyNwVZ1cVY+tqt8ErmPoezYuVybZBaD9nfdL0gtNkhcBTwee1z5gx+2DjOCS9CT2YPjCd347b+0OfDPJL446cFVd2Roy7gDezXjOWTCctz7RuuKdw3C1b95vTJxM65r1TOCj44jXHMFwroKhMWEs27mqLqmqA6vqsQxfCL4/ijhT5BgjP2dtqtxmqrizOWct1AT5XvWT1O1b+cnAxVX1jjHGXbz+Ls4kWwNPAS4Zddyqem1V7V5VSxn27b9X1chbGJNsk2S79cMMHfZH/sSSqroCuCzJw1rRAcBFo47bGXdLzI+AfZPctx3bBzD0ARu5JA9ofx/I8AH7oXHEbc5g+JCl/f3UGGOPXZKDGLpJ/XZV3TLGuHt2bw9lPOesb1fVA6pqaTtvrWa4CeiKUcden8A0z2AM56zmnxlu1CPJQxluLr56TLGfDFxSVavHFA+GPsdPbMNPAsbStaM7Z90H+HPgH0YQY6ocY6TnrE2Y20wad9bnrOnu4NuUL4b+g99l+Db1+jHF/DDDJayfMZwAjxxT3P0YLm1cwHBZ+DzgkDHE/VXgWy3uhYzgbuEZ1GF/xvQUC4anopzfXivGdVy12HsDy9u2/mdghzHF3Qa4BrjfmPfrGxkSlwuB99PuhB9D3P9g+PJxPnDACOP83LkCuD/wBYYP1s8DO44p7jPa8K3AlcDnxhR3JcO9IuvPWaN4msRkcT/ejqsLgH9huPlm5HEnjF/FaJ5iMdn6vh/4dlvfM4BdxhR3C+ADbVt/E3jSuLYzcCrw8vmOt4H13Q84t507zgYeO6a4r2TIdb4LHE/7heN5jjtpjjHqc9Y0cUd6zpom7qzOWf7UtCRJktRZqF0sJEmSpE3CBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4Is3YMkOTXJWzZR7CR5b5LrkpyzKeqw0CV5YJKbk2y2qetyd5ZkRZL9NzCN23ojJNk/yepNXQ9pUzNBlkYoyaokVyXZpit7aZIvbcJqjcp+wFOA3atqn3EFTVJJHjKueHNRVT+qqm2r6vZNXZdRGUeCVVWPrKovbWCae/y2ljQ6JsjS6G0GvHJTV2K2NqLl7UHAqqr68Sjqo3uOJIs2dR0WivneFm5baX6YIEuj99fAa5JsP3FEkqWtBXRRV/alJC9twy9K8p9JTkhyfZIfJPn1Vn5Za50+YsJid0pyVpKbknw5yYO6ZT+8jbs2yXeSPKcbd2qSE5N8NsmPgd+apL67Jjmjzb8yye+28iOB9wCPb5e13zjJvA9p9bkhydVJPjqLer0ryWfaOp2dZI827ittsvNb3N9p5U9Pcl7bZv+V5Fe75a1K8pokF7S6fDTJVt34Q9u8Nyb5fpKDWvn9kpycZG2SNUnesv5LxHTrNt3+bvv6zW0f35TkzCQ7TTHv/klWJ3l12+9rk7y4G3+/JO9Lsi7JpUn+PMl92rgXJflqkrdl6ALzwyQHTxanm/4/k/xdW6dLkhzQjX9xkotbnX+Q5GWtfBvgX4Fd2/64uR0zxyb5WJIPJLkReNFUx1JbzrFJTm/rc1OGLhXLJuzDJ7fhfZIsb/vryiTv2JhtneSFbbtdk+T/9jEm2T6nJvmHTP1/9rcZ/j9vTHJukt+YsG4Tt8U+Sb6W4Xhd27b7Ft08B2b4v7ghyd+3eJOdI64Bjk2yR5J/b+tydZIPpjv/tHV7bZKL2vHw3nT/A22aSY8z6V6jqnz58jWiF7AKeDLwCeAtreylwJfa8FKggEXdPF8CXtqGXwTcBryYoSX6LcCPgHcBWwIHAjcB27bpT23vf7ON/1vgq23cNsBlbVmLgEcDVwN7dfPeADyB4cvzVpOsz1eAvwe2AvYG1gFP6ur61Wm2xYeB169fNrDfLOp1DbBPG/9B4CPdcgt4SPf+0cBVwOPaNjui7Yctu31yDrArsCNwMfDyNm6ftg2e0uq5G/DwNu6TwD+2+j6gLeNl063bJNvgLvu77evvAw8Ftm7vj59i3v3bsfAmYHPgEOAWYIc2/n3Ap4DtWpzvAkd2++ZnwO+2bfJ7wOVApoj1ohbrj1qs32nbZcc2/mnAHkCAJ7Z6PKar5+oJyzu2xT+sbaOtmf5YOhb477aOmwF/CXx94v9VG/4a8II2vC2w72y3NbAXcDNDN6EtgLe1+j55iu1zKlP8n7Xxzwfuz3C8vhq4gvb/NMW2eCywb5t+KcMx+ao2/U7AjcAz2/hXtvknniP+oI3fGngIwzG8JbC4beu/mbD9LgSWMPwP/Cd3np/2Z5rjzJeve8trk1fAl6978os7E+RfZkgwFjP7BPl73bhfadPv3JVdA+zdhk/lrsnjtsDt7YPwd4D/mFC/fwTe0M37vmnWZUlb1nZd2V8Cp3Z1nS5Bfh9wEkMf5b58JvV6TzfuEOCS7v3EBPlE4M0Tlvcd4IndPnl+N+6vgH/o4p4wSd13Bm4Ftu7Kngt8cbp1m2Q5d9nfbV//eTf+94F/m2Le/YGfTDhWrmJIrDYDfkr7UtHGvaw7zl4ErOzG3bfV4xeniPUiJiTQDF8IXjDF9P8MvLKr52QJ8ldmcSwdC3y+G7cX8JOJ/1dt+CvAG4GdNnZbA38BfHjC9vkp0yfIk/6fTTH9dcCjJtsWU0z/KuCTbfiFwNe6cWH4QtmfI360geUdBnxrwvZ7+YT/qe9v6DibLoYvX/e0l10spDGoqguBTwPHbMTsV3bDP2nLm1i2bff+si7uzcC1DK2lDwIe1y7jXp/keuB5wC9ONu8kdgWuraqburJLGVpZZ+JPGT7cz2mXzF/SymdSryu64Vu46/pO9CDg1ROWt6TVf0PLW8LQyjjZMjcH1nbL/EeGluTp1m0mZrNu11TVbZNMv1Or36XduIn75n/iVNUtbXDbJL/RdYdY0U2/pqpqwvJ2BUhycJKvt+4R1zMkWJN2Den0x9ZMjqWJ22WrTN6/9kiGVuFLknwjydOnqcNU23pX7vp/cwvDF8/pTPV/RoYuPBe3LhHXA/fjrtvnLv9nSR6a5NNJrmjdLv5fN/3EuhUw8SbIicvbOclHMnQFuhH4AD+/f/p5/mffNlMdZ9K9hp35pfF5A/BN4O1d2fob2u7LcBkV7poYbowl6weSbMtwCfVyhg/EL1fVU6aZt6YZdzmwY5LtusTmgcCamVSqqq5guMRPkv2Az2foQzyTes3GZcBxVXXcRs67xxTltzK0Ut42ceRU61ZVKzeiDhvjaobL7g8CLmplM9o3VfUfTJ787JYkXZL8QOCMJFsCH2do2fxUVf0syT8zfEGAqY+hvnxOx9KE+n8PeG6G/tbPBD6W5P6zXMxa4GHr3yTZmqGLxHQm/T9r/Y3/FDgAWFFVdyS5jju3D/z8NjoR+Bbw3Kq6KcmrgGd1ddu9i5X+/RTL+3+t7Feq6tokhwF/N1X9Gbb95VOvqnTvYwuyNCYtWfoo8Idd2TqGpOD5STZrLY+TJWizcUiS/dpNPm9m6Lt5GUML9kOTvCDJ5u31a0keMcP6Xwb8F/CXSbbKcOPbkQytUxuU5NlJ1n+wX8fwAX7HXOvF0ML+S937dwMvT/K4DLZJ8rQk281gWScDL05yQJL7JNktycOrai1wJvD2JL/Qxu2R5IkbWLexqOFRZqcDxyXZLsMNY3/MDPfNFB4A/GHbH88GHgF8lqGP7pYMfYZvy3Cz34HdfFcC909yv2nqO6djqZfk+UkWV9UdwPWteLbb/mPA/8pwA+wWDN0gMv0sU/6fbcfQh3cdsCjJXwC/sIFlbcfwBfnmJA9n6CO+3meAX0lyWGtBP5oNf4nejqFP9Q1JdgP+ZJJpjk6ye5IdGfrPT3pjqXRvZYIsjdebGG7y6v0uwwfYNcAjGRKHufgQQ2v1tQw3/zwfoLXUHQgcztBadAXwVoZkZ6aey9C383KGm9beUFWfn+G8vwacneRm4AyGPqs/mId6HQuc1ro+PKeqljNs079jSFZXMvTT3KCqOofhZsETGPqMf5mhVRaGFtMtGFpor2NIqnaZbt1mWP/58gcMVyR+AHyV4Tg4ZQ7LOxvYk6F1+jjgWVV1Tdtff8iQkF8H/B+GdQagqi5huGnxB22f7PpzSx7M5VjqHQSsaNv+b4HDq+ons1lAVa1g2H4fYWixvZmh3+2t08w26f8Z8Dng3xhukryU4WbD6bouAbyGYTvexPAF73+S1aq6Gng2Q1/5axj6Yy/fQN3eCDyG4Rj+DMNNwpPV/0yG4+X7DDcAS2py1y5mkqR7uyQvYrgJbL9NXZdNoXWZuB7Ys6p+OMn4UxluRPzzMVeN1pVkNfC8qvriRi5jFcP+3ZgvJNK9gi3IkqR7vST/K8l9MzzL+W3Atxme9rDJJXlqku1b/+/XMXT/+PomrpZ0j2aCLEkSHMrQ3eNyhq4lh9fCucT6eIZuEFcD/ws4bLbdSCTNjl0sJEmSpI4tyJIkSVJnQT8HeaeddqqlS5du6mpIkiTpburcc8+9uqoWz2aeBZ0gL126lOXLl2/qakiSJOluKsmlG57qruxiIUmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdRb0L+ndky095jOzmn7V8U8bUU0kSZLUswVZkiRJ6mwwQU6yVZJzkpyfZEWSN7byU5P8MMl57bV3K0+SdyZZmeSCJI/plnVEku+11xEjWytJkiRpI82ki8WtwJOq6uYkmwNfTfKvbdyfVNXHJkx/MLBnez0OOBF4XJIdgTcAy4ACzk1yRlVdNx8rIkmSJM2HDbYg1+Dm9nbz9qppZjkUeF+b7+vA9kl2AZ4KnFVV17ak+CzgoLlVX5IkSZpfM+qDnGSzJOcBVzEkuWe3Uce1bhQnJNmyle0GXNbNvrqVTVUuSZIkLRgzSpCr6vaq2hvYHdgnyS8DrwUeDvwasCPwZ/NRoSRHJVmeZPm6devmY5GSJEnSjM3qKRZVdT3wReCgqlrbulHcCrwX2KdNtgZY0s22eyubqnxijJOqallVLVu8ePFsqidJkiTN2UyeYrE4yfZteGvgKcAlrV8xSQIcBlzYZjkDeGF7msW+wA1VtRb4HHBgkh2S7AAc2MokSZKkBWMmT7HYBTgtyWYMCfXpVfXpJP+eZDEQ4Dzg5W36zwKHACuBW4AXA1TVtUneDHyjTfemqrp23tZEkiRJmgcbTJCr6gLg0ZOUP2mK6Qs4eopxpwCnzLKOkiRJ0tj4S3qSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktTZYIKcZKsk5yQ5P8mKJG9s5Q9OcnaSlUk+mmSLVr5le7+yjV/aLeu1rfw7SZ46srWSJEmSNtJMWpBvBZ5UVY8C9gYOSrIv8FbghKp6CHAdcGSb/kjgulZ+QpuOJHsBhwOPBA4C/j7JZvO4LpIkSdKcbTBBrsHN7e3m7VXAk4CPtfLTgMPa8KHtPW38AUnSyj9SVbdW1Q+BlcA+87ESkiRJ0nyZUR/kJJslOQ+4CjgL+D5wfVXd1iZZDezWhncDLgNo428A7t+XTzJPH+uoJMuTLF+3bt2sV0iSJEmaixklyFV1e1XtDezO0Or78FFVqKpOqqplVbVs8eLFowojSZIkTWpWT7GoquuBLwKPB7ZPsqiN2h1Y04bXAEsA2vj7Adf05ZPMI0mSJC0IM3mKxeIk27fhrYGnABczJMrPapMdAXyqDZ/R3tPG/3tVVSs/vD3l4sHAnsA587QekiRJ0rxYtOFJ2AU4rT1x4j7A6VX16SQXAR9J8hbgW8DJbfqTgfcnWQlcy/DkCqpqRZLTgYuA24Cjq+r2+V0dSZIkaW42mCBX1QXAoycp/wGTPIWiqv4bePYUyzoOOG721ZQkSZLGw1/SkyRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzgYT5CRLknwxyUVJViR5ZSs/NsmaJOe11yHdPK9NsjLJd5I8tSs/qJWtTHLMaFZJkiRJ2niLZjDNbcCrq+qbSbYDzk1yVht3QlW9rZ84yV7A4cAjgV2Bzyd5aBv9LuApwGrgG0nOqKqL5mNFJEmSpPmwwQS5qtYCa9vwTUkuBnabZpZDgY9U1a3AD5OsBPZp41ZW1Q8AknykTWuCLEmSpAVjVn2QkywFHg2c3YpekeSCJKck2aGV7QZc1s22upVNVT4xxlFJlidZvm7dutlUT5IkSZqzGSfISbYFPg68qqpuBE4E9gD2Zmhhfvt8VKiqTqqqZVW1bPHixfOxSEmSJGnGZtIHmSSbMyTHH6yqTwBU1ZXd+HcDn25v1wBLutl3b2VMUy5JkiQtCDN5ikWAk4GLq+odXfku3WTPAC5sw2cAhyfZMsmDgT2Bc4BvAHsmeXCSLRhu5DtjflZDkiRJmh8zaUF+AvAC4NtJzmtlrwOem2RvoIBVwMsAqmpFktMZbr67DTi6qm4HSPIK4HPAZsApVbVi3tZEkiRJmgczeYrFV4FMMuqz08xzHHDcJOWfnW4+SZIkaVPzl/QkSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKmzwQQ5yZIkX0xyUZIVSV7ZyndMclaS77W/O7TyJHlnkpVJLkjymG5ZR7Tpv5fkiNGtliRJkrRxZtKCfBvw6qraC9gXODrJXsAxwBeqak/gC+09wMHAnu11FHAiDAk18AbgccA+wBvWJ9WSJEnSQrHBBLmq1lbVN9vwTcDFwG7AocBpbbLTgMPa8KHA+2rwdWD7JLsATwXOqqprq+o64CzgoPlcGUmSJGmuZtUHOclS4NHA2cDOVbW2jboC2LkN7wZc1s22upVNVT4xxlFJlidZvm7dutlUT5IkSZqzGSfISbYFPg68qqpu7MdVVQE1HxWqqpOqallVLVu8ePF8LFKSJEmasRklyEk2Z0iOP1hVn2jFV7auE7S/V7XyNcCSbvbdW9lU5ZIkSdKCMZOnWAQ4Gbi4qt7RjToDWP8kiiOAT3XlL2xPs9gXuKF1xfgccGCSHdrNeQe2MkmSJGnBWDSDaZ4AvAD4dpLzWtnrgOOB05McCVwKPKeN+yxwCLASuAV4MUBVXZvkzcA32nRvqqpr52MlJEmSpPmywQS5qr4KZIrRB0wyfQFHT7GsU4BTZlNBSZIkaZz8JT1JkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzqJNXQGNxtJjPjPreVYd/7QR1ESSJOnuxRZkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdTaYICc5JclVSS7syo5NsibJee11SDfutUlWJvlOkqd25Qe1spVJjpn/VZEkSZLmbiYtyKcCB01SfkJV7d1enwVIshdwOPDINs/fJ9ksyWbAu4CDgb2A57ZpJUmSpAVl0YYmqKqvJFk6w+UdCnykqm4FfphkJbBPG7eyqn4AkOQjbdqLZl9lSZIkaXTm0gf5FUkuaF0wdmhluwGXddOsbmVTlUuSJEkLysYmyCcCewB7A2uBt89XhZIclWR5kuXr1q2br8VKkiRJM7JRCXJVXVlVt1fVHcC7ubMbxRpgSTfp7q1sqvLJln1SVS2rqmWLFy/emOpJkiRJG22jEuQku3RvnwGsf8LFGcDhSbZM8mBgT+Ac4BvAnkkenGQLhhv5ztj4akuSJEmjscGb9JJ8GNgf2CnJauANwP5J9gYKWAW8DKCqViQ5neHmu9uAo6vq9racVwCfAzYDTqmqFfO9MpIkSdJczeQpFs+dpPjkaaY/DjhukvLPAp+dVe0kSZKkMfOX9CRJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqbPBBDnJKUmuSnJhV7ZjkrOSfK/93aGVJ8k7k6xMckGSx3TzHNGm/16SI0azOpIkSdLczKQF+VTgoAllxwBfqKo9gS+09wAHA3u211HAiTAk1MAbgMcB+wBvWJ9US5IkSQvJBhPkqvoKcO2E4kOB09rwacBhXfn7avB1YPskuwBPBc6qqmur6jrgLH4+6ZYkSZI2uY3tg7xzVa1tw1cAO7fh3YDLuulWt7Kpyn9OkqOSLE+yfN26dRtZPUmSJGnjzPkmvaoqoOahLuuXd1JVLauqZYsXL56vxUqSJEkzsrEJ8pWt6wTt71WtfA2wpJtu91Y2VbkkSZK0oGxsgnwGsP5JFEcAn+rKX9ieZrEvcEPrivE54MAkO7Sb8w5sZZIkSdKCsmhDEyT5MLA/sFOS1QxPozgeOD3JkcClwHPa5J8FDgFWArcALwaoqmuTvBn4RpvuTVU18cY/SZIkaZPbYIJcVc+dYtQBk0xbwNFTLOcU4JRZ1U6SJEkaM39JT5IkSepssAVZmi9Lj/nMrKZfdfzTRlQTSZKkqdmCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVJnTglyklVJvp3kvCTLW9mOSc5K8r32d4dWniTvTLIyyQVJHjMfKyBJkiTNp/loQf6tqtq7qpa198cAX6iqPYEvtPcABwN7ttdRwInzEFuSJEmaV6PoYnEocFobPg04rCt/Xw2+DmyfZJcRxJckSZI22lwT5ALOTHJukqNa2c5VtbYNXwHs3IZ3Ay7r5l3dyu4iyVFJlidZvm7dujlWT5IkSZqdRXOcf7+qWpPkAcBZSS7pR1ZVJanZLLCqTgJOAli2bNms5pUkSZLmak4tyFW1pv29CvgksA9w5fquE+3vVW3yNcCSbvbdW5kkSZK0YGx0gpxkmyTbrR8GDgQuBM4AjmiTHQF8qg2fAbywPc1iX+CGriuGJEmStCDMpYvFzsAnk6xfzoeq6t+SfAM4PcmRwKXAc9r0nwUOAVYCtwAvnkNsaVJLj/nMrKZfdfzTRlQTSZJ0d7XRCXJV/QB41CTl1wAHTFJewNEbG0+SJEkaB39JT5IkSerM9SkW90izvUwPXqqXJEm6p7AFWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6PgdZGiGfqS1J0t2PLciSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjr+UIh0NzfbHyPxh0gkSZqeLciSJElSxwRZkiRJ6tjFQtK8s9uHJOnuzBZkSZIkqTP2FuQkBwF/C2wGvKeqjh93HSTdvdlCLUkapbG2ICfZDHgXcDCwF/DcJHuNsw6SJEnSdMbdgrwPsLKqfgCQ5CPAocBFY66HJM2rUbdqj6PVfKG1zM+2PuDVAknzI1U1vmDJs4CDquql7f0LgMdV1Su6aY4Cjmpvfxm4cGwVvNNOwNXGNa5xjWtc4xrXuMa928d9WFVtN5sZFtxTLKrqJOAkgCTLq2rZuOtgXOMa17jGNa5xjWvce07c2c4z7qdYrAGWdO93b2WSJEnSgjDuBPkbwJ5JHpxkC+Bw4Iwx10GSJEma0li7WFTVbUleAXyO4TFvp1TVimlmOWk8NTOucY1rXOMa17jGNa5xB2O9SU+SJEla6PwlPUmSJKljgixJkiR1FmyCnOSgJN9JsjLJMWOKeUqSq5KM9dnLSZYk+WKSi5KsSPLKMcXdKsk5Sc5vcd84jrhd/M2SfCvJp8cYc1WSbyc5b2Me+zKHuNsn+ViSS5JcnOTxY4j5sLae6183JnnVqOO22H/UjqkLk3w4yVZjivvKFnPFKNd1snNFkh2TnJXke+3vDmOK++y2vnckGcnjk6aI+9fteL4gySeTbD+muG9uMc9LcmaSXccRtxv36iSVZKdxxE1ybJI13f/xIeOI28r/oO3jFUn+ahxxk3y0W9dVSc4bU9y9k3x9/WdDkn3GFPdRSb7WPpf+JckvjCDupDnGqM9Z08Qd6TlrmrizO2dV1YJ7MdzA933gl4AtgPOBvcYQ9zeBxwAXjnl9dwEe04a3A747pvUNsG0b3hw4G9h3jOv9x8CHgE+PMeYqYKdx7t8W9zTgpW14C2D7McffDLgCeNAYYu0G/BDYur0/HXjRGOKu/2Gh+zLcgPx54CEjivVz5wrgr4Bj2vAxwFvHFPcRwMOALwHLxri+BwKL2vBbx7i+v9AN/yHwD+OI28qXMNxkfukoziNTrO+xwGtGsV83EPe32v/Qlu39A8a1nbvxbwf+YkzreyZwcBs+BPjSmOJ+A3hiG34J8OYRxJ00xxj1OWuauCM9Z00Td1bnrIXagvw/P0ldVT8F1v8k9UhV1VeAa0cdZ5K4a6vqm234JuBihiRj1HGrqm5ubzdvr7HctZlkd+BpwHvGEW9TSnI/hhPjyQBV9dOqun7M1TgA+H5VXTqmeIuArZMsYkhYLx9DzEcAZ1fVLVV1G/Bl4JmjCDTFueJQhi9CtL+HjSNuVV1cVd+Z71gziHtm284AX2d4rv044t7Yvd2GEZyzpvksOAH401HE3EDckZoi7u8Bx1fVrW2aq8YUF4AkAZ4DfHhMcQtY33p7P0Zwzpoi7kOBr7Ths4D/PYK4U+UYIz1nTRV31OesaeLO6py1UBPk3YDLuverGUPCuBAkWQo8mqE1dxzxNmuXsK4CzqqqscQF/obhg+aOMcVbr4Azk5yb4WfNx+HBwDrgvRm6lLwnyTZjir3e4Yzgg2YyVbUGeBvwI2AtcENVnTmG0BcCv5Hk/knuy9AKtGQD88ynnatqbRu+Ath5jLE3tZcA/zquYEmOS3IZ8DzgL8YU81BgTVWdP454E7yiXRY+ZRRdd6bwUIb/p7OTfDnJr40p7nq/AVxZVd8bU7xXAX/djqu3Aa8dU9wV3NkA+GxGfM6akGOM7Zw17txmBnE3eM5aqAnyvVKSbYGPA6+a0EoyMlV1e1XtzfBNap8kvzzqmEmeDlxVVeeOOtYk9quqxwAHA0cn+c0xxFzEcFntxKp6NPBjhstZY5HhR3l+G/inMcXbgeGE/2BgV2CbJM8fddyqupjhstmZwL8B5wG3jzruFHUpxnQ1ZlNL8nrgNuCD44pZVa+vqiUt5itGHa994XodY0rGJzgR2APYm+EL59vHFHcRsCOwL/AnwOmtVXdcnsuYvtQ3vwf8UTuu/oh2xW8MXgL8fpJzGboD/HRUgabLMUZ5ztoUuc10cWd6zlqoCfK97iepk2zOsCM/WFWfGHf8dsn/i8BBYwj3BOC3k6xi6D7zpCQfGEPc9a2b6y8XfpKhO8+orQZWd63zH2NImMflYOCbVXXlmOI9GfhhVa2rqp8BnwB+fRyBq+rkqnpsVf0mcB1D37NxuTLJLgDt77xfkl5okrwIeDrwvPYBO24fZASXpCexB8MXvvPbeWt34JtJfnHUgavqytaQcQfwbsZzzoLhvPWJ1hXvHIarffN+Y+JkWtesZwIfHUe85giGcxUMjQlj2c5VdUlVHVhVj2X4QvD9UcSZIscY+TlrU+U2U8WdzTlroSbI96qfpG7fyk8GLq6qd4wx7uL1d3Em2Rp4CnDJqONW1WuraveqWsqwb/+9qkbewphkmyTbrR9m6LA/8ieWVNUVwGVJHtaKDgAuGnXczrhbYn4E7Jvkvu3YPoChD9jIJXlA+/tAhg/YD40jbnMGw4cs7e+nxhh77JIcxNBN6rer6pYxxt2ze3so4zlnfbuqHlBVS9t5azXDTUBXjDr2+gSmeQZjOGc1/8xwox5JHspwc/HVY4r9ZOCSqlo9pngw9Dl+Yht+EjCWrh3dOes+wJ8D/zCCGFPlGCM9Z23C3GbSuLM+Z013B9+mfDH0H/wuw7ep148p5ocZLmH9jOEEeOSY4u7HcGnjAobLwucBh4wh7q8C32pxL2QEdwvPoA77M6anWDA8FeX89loxruOqxd4bWN629T8DO4wp7jbANcD9xrxf38iQuFwIvJ92J/wY4v4Hw5eP84EDRhjn584VwP2BLzB8sH4e2HFMcZ/Rhm8FrgQ+N6a4KxnuFVl/zhrF0yQmi/vxdlxdAPwLw803I487YfwqRvMUi8nW9/3At9v6ngHsMqa4WwAfaNv6m8CTxrWdgVOBl893vA2s737Aue3ccTbw2DHFfSVDrvNd4HjaLxzPc9xJc4xRn7OmiTvSc9Y0cWd1zvKnpiVJkqTOQu1iIUmSJG0SJsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzv8PWwU0YKKaJjQAAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 720x576 with 2 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, (ax1, ax2) = plt.subplots(nrows=2)\n", - "ax1.hist(pat_sent[\"num_sentences_in_paragraph\"], bins=np.linspace(1, 21))\n", - "ax1.xaxis.set_major_locator(plt.MultipleLocator(1))\n", - "ax1.set_title(\"Number of sentences in patronising paragraph\")\n", - "ax2.hist(non_pat_sent[\"num_sentences_in_paragraph\"], bins=np.linspace(1, 21))\n", - "ax2.xaxis.set_major_locator(plt.MultipleLocator(1))\n", - "ax2.set_title(\"Number of sentences in non-patronising paragraph\")\n", - "fig.set_figwidth(10)\n", - "fig.set_figheight(8)\n", - "fig.tight_layout()\n", - "plt.show()\n", - "# ax.xaxis.set_major_locator()\n", - "# pat_sent.hist(grid=False,column=\"num_sentences_in_paragraph\", bins=21, figsize=(10, 8), xticks=pat_sent[\"num_sentences_in_paragraph\"], ax=ax)" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to acquire lock 139946483054384 on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n", + "DEBUG:filelock:Lock 139946483054384 acquired on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n" + ] }, { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " <th>num_sentences_in_paragraph</th>\n", - " <th>readability_score</th>\n", - " <th>avg_sentence_length</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>7590</th>\n", - " <td>7525</td>\n", - " <td>The Trawler : targets anyone with a Muslim con...</td>\n", - " <td>0</td>\n", - " <td>1</td>\n", - " <td>50.294912</td>\n", - " <td>133.0</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " par_id text label \\\n", - "7590 7525 The Trawler : targets anyone with a Muslim con... 0 \n", - "\n", - " num_sentences_in_paragraph readability_score avg_sentence_length \n", - "7590 1 50.294912 133.0 " - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "trdf1[trdf1[\"avg_sentence_length\"] == 133]" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8be5a63b87d546439dc5b2c102a53333", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/481 [00:00<?, ?B/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAI4CAYAAACcFxlBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3y0lEQVR4nO3df5Sdd30f+PcnFg4JoRhjVXEsm3GCF+pNi6EKmEIJwQfW4JzY6SEuhB8KdatmF1JymjaIdFsgIY3obsKPJmXjYEAkEOw4sPYiluAaSE7SYJBj88uGRXHk2sZGAmx+JlDDZ/+4j8IwzEgzc2d8H828XufozPPzPp/7na90733r+31udXcAAAAAxuy7Zl0AAAAAwLEIMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAbRlW9qapeMaNrV1W9sarurqoPzqKGsauqM6rqy1V1wqxrWWtV9f9W1c5lHPflqvrB+6KmjaKq5qqqq2rLrGsBYLa8EACwbqrqYJLvTXJmd39l2PbPkzynu580w9LWwxOSPCXJ9iPP9b5QVZ3krO4+cF9dc7W6+78n+b77+rpVNZfkr5Lcr7vvXY9rdPfTlnncff78AWCjMAIDgPV2QpIXzbqIlVrFKIGHJjl4X4YXrB3/u/8ta90W2haAtSLAAGC9/R9J/k1VnbRwx2JDw6vq/cMojVTVz1TVn1XVq6rqnqq6par+0bD9tqo6tMiw/VOq6pqq+lJV/XFVPXTeYz9i2Pf5qvpkVV08b9+bqup1VfWuqvpKkh9bpN4fqKqrh/MPVNW/GLZfkuT1SR43TBF4+SLnPmyo5wtV9dmqunwFdf1WVe0bntN1VfVDw74/GQ778HDdfzps//GqunFos/9WVf9g3uMdrKp/U1UfGWq5vKruP2//hcO5X6yqv6yq84ftD6qqy6rqzqq6o6pecSTkOdpzO9rve/hd/8rwO/5SVb2nqk5Z4twnVdXtVfVLwzUOVtWz5+2/oKpuGOq+rapeNu/0I+10z9BOj1vQtz6X5GXDc3xzVR2uqlur6n+vqu8aHv9nqupPq+r/rMk0ob+qqqfNu/78fnu033VX1cOO9bsd9j916A9fqKr/MjzmP1+ifV5WVVcOv88vVdVfVNUj5+3fPfw+v1RVN1XVT87bt1hb/FBVvbeqPjc8h7fUvL/DVfXoob2/VFV/MFz3FQt+Vy+uqruSvLGqHlxV7xza9u5hefuC9vu1qvrg8Du8qqpOXvA0n11V/32o598t1g4AbGwCDADW2/4k70/yb1Z5/mOTfCTJQ5K8NcnbkvxIkocleU6S36yq+cPyn53kV5KckuTGJG9Jkqp6QJJrhsf4u0memeS/VNXZ88796SS/muSBSf50kVreluT2JD+Q5BlJ/mNVPbm7L0vys0n+vLu/r7tfusi5v5LkPUkenGR7kv+8grqemeTlw7kHhhrT3U8c9j9yuO7lVfWoJG9I8i+HNvvtJFdX1XfPe7yLk5yf5Mwk/yDJzwy1PCbJm5P82yQnJXlikoPDOW9Kcm8m7f6oJE9NcuTD9KLPbZl+Osnzh+d+Yo7eT74/k9/raUl2Jrm0qh4+7PtKkucNdV+Q5H+tqouGfUfa6aShnf58WH9skluSbMukTf9zkgcl+cEkPzo83vPnXf+xST451PCfklxWVbVInStpj0V/t0OQc2WSl2Tye/xkkn90lMdJkguT/EGSkzPpT/93Vd1v2PeXSf7x8PxenuT3qurUBc9tfltUkl/LpK//vSSnJ3nZUNuJSd6RSZ84OcnvJ/nJfLvvH/Y9NMmuTN5zvnFYPyPJXyf5zQXnPC/JP0tyaiZ97bUL9j8hycOTnJfkP1TV3ztGewCwwQgwALgv/IckP1dVW1dx7l919xu7+xtJLs/kg9Qvd/fXuvs9Sb6eyYfqI/Z1959099eS/LtMRkWcnuTHM5ni8cbuvre7b0jyh0l+at65V3X3n3X3N7v7b+YXMTzG45O8uLv/prtvzGTUxfOW+Tz+RyYf3n5gOP9IQLKcut7R3R8c7t/wliTnHOU6u5L8dndf193f6O69Sb6W5Nx5x7y2uz/d3Z9P8v/Me7xLkryhu68Z2uCO7v5EVW1L8vQkP9/dX+nuQ0lelcmH76M9t+V4Y3f/f93910muOMZzS5J/P/zu/zjJvkzCmHT3+7v7o0PdH8nkQ/WPHuOxPt3d/3lo168Pz+cl3f2l7j6Y5NeTPHfe8bd29+8MfXFvJh+0ty3yuCtpj6V+t09P8vHufvuw77VJ7jrG87m+u6/s7v+R5DeS3D/D7727/2D4nX+zuy9P8qkkj1msLbr7r7v7wNAPvtbdh4fHO9Ke52ZyH7XXdvf/6O63J1l449pvJnnpcP5fd/fnuvsPu/ur3f2lTEKShb+f3+3ujw3TsP59kovr26dyvXx4rA8n+XCSRwaATUWAAcC66+6PJXlnkt2rOP0z85b/eni8hdvmj8C4bd51v5zk85n8L/JDkzy2JtMq7qmqezIZrfH9i527iB9I8vnhw9cRt2YyGmA5fjGT/9X+YFV9vKr+2bB9OXXN/+D61Rz9RpgPTfILCx7v9KH+Yz3e6Zn8T/1ij3m/JHfOe8zfzmTUxNGe23Ks5LndveAeI7dmeF5V9diqet8wReELmYyIWXQ6yjzzf9+nZPIcb13w+PN/v39ba3d/dVhcrN6VtMdSz/8H8u19uTMZ/XM084//Zr41WihV9bz61rSie5L8cL69fb6t71fVtqp6W02mC30xye/NO/4Hktwx1LTo+UkOzw8Bq+p7q+q3azI154uZTOs5aUFAMf8xbs3k9zG/xpX0FQA2IDdVAuC+8tIkf5HJ/2ofceTD6Pcm+eKwPP+D+2qcfmRhmFpycpJPZ/Lh6I+7+ylHObePsu/TSU6uqgfOCzHOSHLHcorq7ruSHLlnxhOS/Nea3MNiOXWtxG1JfrW7f3WV5/7QEtu/luSUxb7FY6nntg7fjPLgqnrAvBDjjCQfG5bfmsmUhKd1999U1avzrQ+/S/1e52//bL41cuKmeY+/rN/vtz3o2rTHnZlMP8nwODV/fQnz+/53Dcd/uib3gfmdTKZe/Hl3f6OqbswkZPnbshc81n8ctv397v78MB3nyJSPO5OcVlU1L8RYGH4tfLxfyGT6x2O7+66qOifJDQtqOH3e8hmZ/D4+u2A7AJuYERgA3CeGD2+XJ/lX87YdzuQD4nOq6oThf6oX+wC9Ek+vqicM8/R/JckHuvu2TEaA/E9V9dyqut/w50eWO49+eIz/luTXqur+Nbkx5iWZ/M/0MVXVT827aeHdmXzA++a0dWUyQuUH563/TpKfHUYkVFU9oCY3uHzgMh7rsiTPr6rzquq7quq0qnpEd9+ZyT0dfr2q/s6w74eq6keP8dzWw8ur6sSq+seZTL/5g2H7AzMZIfM3w708fnreOYeHen4wSximhVyR5Fer6oHDh/5/nWX+fudbo/bYl+TvV9VFNbnp6Qty7HDvH1bVPxmO//lMQqcPJHnAUMPhob7nZzIC42gemOTLSb5QVadlcl+UI/48yTeSvLCqtlTVhfn26ShLPd5fZ3Ij1ZMzCTQXek5VnV1V35vkl5NcOfxeACCJAAOA+9YvZ/Jhar5/kcmHo88l+Z8zCQmm8dZMPhx9Psk/zORGnxlGTTw1k/scfDqT4eivTPLdiz/Mop6VZG44/x2ZzPH/r8s890eSXFdVX05ydZIXdfcta1DXy5LsHaYGXNzd+zNp09/M5MPzgQw36TyW7v5gJjetfFWSLyT540xGJCSTe32cmMnohLszucHkkZtALvrclln/Stw1XPvTmdwv4me7+xPDvv8tyS9X1ZcyuefKFfOe11czuefCnw3tdG4W93OZjAq6JZObuL41kxuirtTU7dHdn83kPij/KZO/G2dnckPcrx3ltKuS/NNM2ui5Sf7JcI+KmzIZ+fTnmQRefz/Jnx2jhJcneXQm/WBfkrfPq+3rSf5JJgHePZn8HXvnMWp7dZLvyWRExQeSvHuRY343kxuD3pXJ/Tv+1SLHALCJ1bdPXwQAGJ+qelKS3+vuY02j2JCGKSG3J3l2d79vkf0vS/Kw7n7OfV3bcP3rkvxf3f3GVZ7//kx+v69f08IA2FCMwAAAGKGq+l+q6qSafAXuL2Vyv4gPzLisJElV/WhVff8whWRnJl/Hu9ioCgBYM27iCQAwTo/LZBrLkak7Fw1fNzsGD89kms4DMply84zhXikAsG5MIQEAAABGzxQSAAAAYPRGMYXklFNO6bm5uVmXAQAAAMzY9ddf/9nu3rpw+ygCjLm5uezfv3/WZQAAAAAzVlW3LrbdFBIAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOhtmXUBABvB3O59U51/cM8Fa1QJAABsTEZgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZnm5Ko6Kcnrk/xwkk7yz5J8MsnlSeaSHExycXffPc11ANbb3O59sy4BAAA4imlHYLwmybu7+xFJHpnk5iS7k1zb3WcluXZYBwAAAFi1VQcYVfWgJE9MclmSdPfXu/ueJBcm2TsctjfJRdOVCAAAAGx204zAODPJ4SRvrKobqur1VfWAJNu6+87hmLuSbFvs5KraVVX7q2r/4cOHpygDAAAA2OimCTC2JHl0ktd196OSfCULpot0d2dyb4zv0N2XdveO7t6xdevWKcoAAAAANrppAozbk9ze3dcN61dmEmh8pqpOTZLh56HpSgQAAAA2u1UHGN19V5Lbqurhw6bzktyU5OokO4dtO5NcNVWFAAAAwKY31deoJvm5JG+pqhOT3JLk+ZmEIldU1SVJbk1y8ZTXAAAAADa5qQKM7r4xyY5Fdp03zeMCAAAAzDfNPTAAAAAA7hMCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjt2XWBQAwe3O79039GAf3XLAGlQAAwOKMwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZnm5Ko6mORLSb6R5N7u3lFVJye5PMlckoNJLu7uu6crEwAAANjM1mIExo919zndvWNY353k2u4+K8m1wzoAAADAqq3HFJILk+wdlvcmuWgdrgEAAABsItMGGJ3kPVV1fVXtGrZt6+47h+W7kmyb8hoAAADAJjfVPTCSPKG776iqv5vkmqr6xPyd3d1V1YudOAQeu5LkjDPOmLIMYJbmdu+b6vyDey5Yo0oAAICNaqoRGN19x/DzUJJ3JHlMks9U1alJMvw8tMS5l3b3ju7esXXr1mnKAAAAADa4VQcYVfWAqnrgkeUkT03ysSRXJ9k5HLYzyVXTFgkAAABsbtNMIdmW5B1VdeRx3trd766qDyW5oqouSXJrkounLxMAAADYzFYdYHT3LUkeucj2zyU5b5qiAAAAAOZbj69RBQAAAFhTAgwAAABg9Kb9GlWAUZj2q1wBAIBxMwIDAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDR2zLrAgCY3tzufbMuAQAA1pURGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb+oAo6pOqKobquqdw/qZVXVdVR2oqsur6sTpywQAAAA2s7UYgfGiJDfPW39lkld198OS3J3kkjW4BgAAALCJTRVgVNX2JBckef2wXkmenOTK4ZC9SS6a5hoAAAAAW6Y8/9VJfjHJA4f1hyS5p7vvHdZvT3LaYidW1a4ku5LkjDPOmLIM2Nzmdu+bdQkwdT88uOeCNaoEAICNaNUjMKrqx5Mc6u7rV3N+d1/a3Tu6e8fWrVtXWwYAAACwCUwzAuPxSX6iqp6e5P5J/k6S1yQ5qaq2DKMwtie5Y/oyAQAAgM1s1SMwuvsl3b29u+eSPDPJe7v72Unel+QZw2E7k1w1dZUAAADApjbtPTAW8+Ikb6uqVyS5Icll63ANgA3FfUwAAODo1iTA6O73J3n/sHxLksesxeMCAAAAJFN+jSoAAADAfWE9ppAArIjpEwAAwLEYgQEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDR2zLrAgBgLczt3jfV+Qf3XLBGlQAAsB6MwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9VQcYVXX/qvpgVX24qj5eVS8ftp9ZVddV1YGquryqTly7cgEAAIDNaJoRGF9L8uTufmSSc5KcX1XnJnllkld198OS3J3kkqmrBAAAADa1VQcYPfHlYfV+w59O8uQkVw7b9ya5aJoCAQAAAKa6B0ZVnVBVNyY5lOSaJH+Z5J7uvnc45PYkpy1x7q6q2l9V+w8fPjxNGQAAAMAGN1WA0d3f6O5zkmxP8pgkj1jBuZd2947u3rF169ZpygAAAAA2uDX5FpLuvifJ+5I8LslJVbVl2LU9yR1rcQ0AAABg85rmW0i2VtVJw/L3JHlKkpszCTKeMRy2M8lVU9YIAAAAbHJbjn3Ikk5NsreqTsgkCLmiu99ZVTcleVtVvSLJDUkuW4M6Adjg5nbvm3UJAACM2KoDjO7+SJJHLbL9lkzuhwEAAACwJtbkHhgAAAAA60mAAQAAAIzeNPfAANaIuf8AAABHZwQGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0tsy6ADjeze3eN+sSAAAANjwjMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6W1Z7YlWdnuTNSbYl6SSXdvdrqurkJJcnmUtyMMnF3X339KXC+pjbvW/WJQAAAHAM04zAuDfJL3T32UnOTfKCqjo7ye4k13b3WUmuHdYBAAAAVm3VAUZ339ndfzEsfynJzUlOS3Jhkr3DYXuTXDRljQAAAMAmtyb3wKiquSSPSnJdkm3dfeew665MppgAAAAArNqq74FxRFV9X5I/TPLz3f3Fqvrbfd3dVdVLnLcrya4kOeOMM6YtAwBmai3up3NwzwVrUAkAwMY01QiMqrpfJuHFW7r77cPmz1TVqcP+U5McWuzc7r60u3d0946tW7dOUwYAAACwwa06wKjJUIvLktzc3b8xb9fVSXYOyzuTXLX68gAAAACmm0Ly+CTPTfLRqrpx2PZLSfYkuaKqLklya5KLp6oQAAAA2PRWHWB0958mqSV2n7faxwUAAABYaE2+hQQAAABgPQkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYvVV/jSoAbCRzu/fNugQAAI7CCAwAAABg9AQYAAAAwOiZQgIAIzHtNJaDey5Yo0oAAMbHCAwAAABg9AQYAAAAwOgJMAAAAIDRcw8MANgg3EMDANjIjMAAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNGbKsCoqjdU1aGq+ti8bSdX1TVV9anh54OnLxMAAADYzKYdgfGmJOcv2LY7ybXdfVaSa4d1AAAAgFWbKsDo7j9J8vkFmy9MsndY3pvkommuAQAAALAe98DY1t13Dst3Jdm22EFVtauq9lfV/sOHD69DGQAAAMBGsa438ezuTtJL7Lu0u3d0946tW7euZxkAAADAcW49AozPVNWpSTL8PLQO1wAAAAA2kfUIMK5OsnNY3pnkqnW4BgAAALCJbJnm5Kr6/SRPSnJKVd2e5KVJ9iS5oqouSXJrkounLRIAGL+53fumOv/gngvWqBIAYCOaKsDo7mctseu8aR4XAAAAYL51vYknAAAAwFqYagQGALBxTDsFBABgPRmBAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHpbZl0Ax7+53fumOv/gngtmen0AxmEt/j2f9WvKtNef1vFePwAcjREYAAAAwOgJMAAAAIDRM4UEANgwjvdphcd7/QCwnozAAAAAAEZPgAEAAACMngADAAAAGL3q7lnXkB07dvT+/ftnXQarZL4uAHCEr2IFYFpVdX1371i43QgMAAAAYPQEGAAAAMDoCTAAAACA0dsy6wIAANg4Zn1vrFnfg2Mtnv+snwPAWBmBAQAAAIyeAAMAAAAYPVNImPlQTwCAsRjD+6Ix1DBLptBsDNP24+O9H2z2579e1mUERlWdX1WfrKoDVbV7Pa4BAAAAbB5rHmBU1QlJfivJ05KcneRZVXX2Wl8HAAAA2DzWYwTGY5Ic6O5buvvrSd6W5MJ1uA4AAACwSVR3r+0DVj0jyfnd/c+H9ecmeWx3v3DBcbuS7BpWH57kk2tayPKdkuSzM7r2RqENp6cNp6cNp6P9pqcNp6cNp6cNp6cNp6cNp6cNp6cNpzfLNnxod29duHFmN/Hs7kuTXDqr6x9RVfu7e8es6zieacPpacPpacPpaL/pacPpacPpacPpacPpacPpacPpacPpjbEN12MKyR1JTp+3vn3YBgAAALAq6xFgfCjJWVV1ZlWdmOSZSa5eh+sAAAAAm8SaTyHp7nur6oVJ/ijJCUne0N0fX+vrrKGZT2PZALTh9LTh9LThdLTf9LTh9LTh9LTh9LTh9LTh9LTh9LTh9EbXhmt+E08AAACAtbYeU0gAAAAA1pQAAwAAABi9TRtgVNX5VfXJqjpQVbtnXc/xqKoOVtVHq+rGqto/63qOB1X1hqo6VFUfm7ft5Kq6pqo+Nfx88CxrHLsl2vBlVXXH0BdvrKqnz7LGsauq06vqfVV1U1V9vKpeNGzXF5fpKG2oLy5TVd2/qj5YVR8e2vDlw/Yzq+q64fX58uGG4CziKG34pqr6q3n98JwZlzpqVXVCVd1QVe8c1vXBFVqkDfXBFVrsfbXX5eVbov28Jq9AVZ1UVVdW1Seq6uaqetwY++CmDDCq6oQkv5XkaUnOTvKsqjp7tlUdt36su88Z2/cDj9ibkpy/YNvuJNd291lJrh3WWdqb8p1tmCSvGvriOd39rvu4puPNvUl+obvPTnJukhcM/wbqi8u3VBsm+uJyfS3Jk7v7kUnOSXJ+VZ2b5JWZtOHDktyd5JLZlTh6S7Vhkvzbef3wxlkVeJx4UZKb563rgyu3sA0TfXA1Fr6v9rq8Mot9LvGavHyvSfLu7n5Ekkdm8nd6dH1wUwYYSR6T5EB339LdX0/ytiQXzrgmNoHu/pMkn1+w+cIke4flvUkuui9rOt4s0YasQHff2d1/MSx/KZMXqNOiLy7bUdqQZeqJLw+r9xv+dJInJ7ly2K4fHsVR2pBlqqrtSS5I8vphvaIPrsjCNmRNeV3mPlFVD0ryxCSXJUl3f72778kI++BmDTBOS3LbvPXb443nanSS91TV9VW1a9bFHMe2dfedw/JdSbbNspjj2Aur6iPDFJOZD287XlTVXJJHJbku+uKqLGjDRF9ctmHY+Y1JDiW5JslfJrmnu+8dDvH6fAwL27C7j/TDXx364auq6rtnV+HovTrJLyb55rD+kOiDK/XqfHsbHqEPrsxi76u9Li/fUp9LvCYvz5lJDid54zAd7PVV9YCMsA9u1gCDtfGE7n50JlNxXlBVT5x1Qce7nnyvsf89W7nXJfmhTIZQ35nk12dazXGiqr4vyR8m+fnu/uL8ffri8izShvriCnT3N7r7nCTbMxkd+YjZVnT8WdiGVfXDSV6SSVv+SJKTk7x4dhWOV1X9eJJD3X39rGs5Xh2lDfXBlTvq+2qvy8e0WPt5TV6+LUkeneR13f2oJF/JgukiY+mDmzXAuCPJ6fPWtw/bWIHuvmP4eSjJOzJ588nKfaaqTk2S4eehGddz3Onuzwxv4r+Z5HeiLx5TVd0vkw/eb+nutw+b9cUVWKwN9cXVGYapvi/J45KcVFVbhl1en5dpXhueP0xx6u7+WpI3Rj9cyuOT/ERVHcxkOvGTM5kDrg8u33e0YVX9nj64cku8r/a6vEyLtZ/X5BW5Pcnt80bxXZlJoDG6PrhZA4wPJTlruMv0iUmemeTqGdd0XKmqB1TVA48sJ3lqko8d/SyWcHWSncPyziRXzbCW49KRf1gHPxl98aiGOd6XJbm5u39j3i59cZmWakN9cfmqamtVnTQsf0+Sp2RyL5H3JXnGcJh+eBRLtOEn5r3ZrEzmK+uHi+jul3T39u6ey+S94Hu7+9nRB5dtiTZ8jj64Mkd5X+11eRmWaj+vycvX3Xclua2qHj5sOi/JTRlhH9xy7EM2nu6+t6pemOSPkpyQ5A3d/fEZl3W82ZbkHZPXpWxJ8tbufvdsSxq/qvr9JE9KckpV3Z7kpUn2JLmiqi5JcmuSi2dX4fgt0YZPqslXtHWSg0n+5azqO048Pslzk3x0mDufJL8UfXEllmrDZ+mLy3Zqkr3DN4N9V5IruvudVXVTkrdV1SuS3JDhhmIsaqk2fG9VbU1SSW5M8rMzrPF49OLog9N6iz64Iou+r66qD8Xr8nIs1X6/6zV5RX4uk7+7Jya5JcnzM7y2jKkP1mQqCwAAAMB4bdYpJAAAAMBxRIABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9LbMuIElOOeWUnpubm3UZAAAAwIxdf/31n+3urQu3jyLAmJuby/79+2ddBgAAADBjVXXrYtuXNYWkqk6qqiur6hNVdXNVPa6qTq6qa6rqU8PPBw/HVlW9tqoOVNVHqurRa/lEAAAAgM1nuffAeE2Sd3f3I5I8MsnNSXYnuba7z0py7bCeJE9LctbwZ1eS161pxQAAAMCmc8wAo6oelOSJSS5Lku7+enffk+TCJHuHw/YmuWhYvjDJm3viA0lOqqpT17huAAAAYBNZzgiMM5McTvLGqrqhql5fVQ9Isq277xyOuSvJtmH5tCS3zTv/9mHbt6mqXVW1v6r2Hz58ePXPAAAAANjwlhNgbEny6CSv6+5HJflKvjVdJEnS3Z2kV3Lh7r60u3d0946tW7/j5qIAAAAAf2s5AcbtSW7v7uuG9SszCTQ+c2RqyPDz0LD/jiSnzzt/+7ANAAAAYFWOGWB0911Jbquqhw+bzktyU5Krk+wctu1MctWwfHWS5w3fRnJuki/Mm2oCAAAAsGJblnnczyV5S1WdmOSWJM/PJPy4oqouSXJrkouHY9+V5OlJDiT56nAsAAAAwKotK8Do7huT7Fhk13mLHNtJXjBdWQAAAADfspx7YAAAAADM1HKnkACM2tzufVOdf3DPBWtUCQAAsB6MwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZl1AQBjMLd731TnH9xzwRpVAgAALMYIDAAAAGD0BBgAAADA6JlCArAGTEEBAID1ZQQGAAAAMHpGYAAzN+3oBQAAYOMzAgMAAAAYvWUFGFV1sKo+WlU3VtX+YdvJVXVNVX1q+PngYXtV1Wur6kBVfaSqHr2eTwAAAADY+FYyAuPHuvuc7t4xrO9Ocm13n5Xk2mE9SZ6W5Kzhz64kr1urYgEAAIDNaZp7YFyY5EnD8t4k70/y4mH7m7u7k3ygqk6qqlO7+85pCgXGyz0sAACA9bbcERid5D1VdX1V7Rq2bZsXStyVZNuwfFqS2+ade/uw7dtU1a6q2l9V+w8fPryK0gEAAIDNYrkjMJ7Q3XdU1d9Nck1VfWL+zu7uquqVXLi7L01yaZLs2LFjRecCAAAAm8uyRmB09x3Dz0NJ3pHkMUk+U1WnJsnw89Bw+B1JTp93+vZhGwAAAMCqHDPAqKoHVNUDjywneWqSjyW5OsnO4bCdSa4alq9O8rzh20jOTfIF978AAAAAprGcKSTbkryjqo4c/9bufndVfSjJFVV1SZJbk1w8HP+uJE9PciDJV5M8f82rBgAAADaVYwYY3X1Lkkcusv1zSc5bZHsnecGaVAcAAACQ5X8LCQAAAMDMCDAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb8usCwAgmdu9b6bXP7jngpleHwAAjsUIDAAAAGD0BBgAAADA6AkwAAAAgNFzDwxg5vdfAAAAOBYjMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6yw4wquqEqrqhqt45rJ9ZVddV1YGquryqThy2f/ewfmDYP7dOtQMAAACbxEpGYLwoyc3z1l+Z5FXd/bAkdye5ZNh+SZK7h+2vGo4DAAAAWLVlBRhVtT3JBUleP6xXkicnuXI4ZG+Si4blC4f1DPvPG44HAAAAWJXljsB4dZJfTPLNYf0hSe7p7nuH9duTnDYsn5bktiQZ9n9hOB4AAABgVY4ZYFTVjyc51N3Xr+WFq2pXVe2vqv2HDx9ey4cGAAAANpjljMB4fJKfqKqDSd6WydSR1yQ5qaq2DMdsT3LHsHxHktOTZNj/oCSfW/ig3X1pd+/o7h1bt26d6kkAAAAAG9sxA4zufkl3b+/uuSTPTPLe7n52kvclecZw2M4kVw3LVw/rGfa/t7t7TasGAAAANpWVfAvJQi9O8q+r6kAm97i4bNh+WZKHDNv/dZLd05UIAAAAbHZbjn3It3T3+5O8f1i+JcljFjnmb5L81BrUBizT3O59sy4BAABgXU0zAgMAAADgPiHAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6K/oWEgA2prX4JpuDey5Yg0oAAGBxRmAAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9LbMugAANoa53fumOv/gngvWqBIAADYiIzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABG75gBRlXdv6o+WFUfrqqPV9XLh+1nVtV1VXWgqi6vqhOH7d89rB8Y9s+t83MAAAAANrjljMD4WpInd/cjk5yT5PyqOjfJK5O8qrsfluTuJJcMx1+S5O5h+6uG4wAAAABWbcuxDujuTvLlYfV+w59O8uQkPz1s35vkZUlel+TCYTlJrkzym1VVw+MAi5jbvW/WJQAAAIzasu6BUVUnVNWNSQ4luSbJXya5p7vvHQ65Pclpw/JpSW5LkmH/F5I8ZJHH3FVV+6tq/+HDh6d6EgAAAMDGtqwAo7u/0d3nJNme5DFJHjHthbv70u7e0d07tm7dOu3DAQAAABvYir6FpLvvSfK+JI9LclJVHZmCsj3JHcPyHUlOT5Jh/4OSfG4tigUAAAA2p+V8C8nWqjppWP6eJE9JcnMmQcYzhsN2JrlqWL56WM+w/73ufwEAAABM45g38UxyapK9VXVCJoHHFd39zqq6KcnbquoVSW5Ictlw/GVJfreqDiT5fJJnrkPdAAAAwCaynG8h+UiSRy2y/ZZM7oexcPvfJPmpNakOAAAAICu8BwYAAADALCxnCgkArLu53fumOv/gngvWqBIAAMbICAwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGL0tsy4Ajndzu/fNugQAAIANzwgMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPS2zLoAAFgLc7v3TXX+wT0XrFElAACsByMwAAAAgNETYAAAAACjJ8AAAAAARu+Y98CoqtOTvDnJtiSd5NLufk1VnZzk8iRzSQ4mubi7766qSvKaJE9P8tUkP9Pdf7E+5QPA2nAPDQCAcVvOCIx7k/xCd5+d5NwkL6iqs5PsTnJtd5+V5NphPUmeluSs4c+uJK9b86oBAACATeWYAUZ333lkBEV3fynJzUlOS3Jhkr3DYXuTXDQsX5jkzT3xgSQnVdWpa104AAAAsHms6B4YVTWX5FFJrkuyrbvvHHbdlckUk2QSbtw277Tbh20LH2tXVe2vqv2HDx9ead0AAADAJrLsAKOqvi/JHyb5+e7+4vx93d2Z3B9j2br70u7e0d07tm7dupJTAQAAgE1mWQFGVd0vk/DiLd399mHzZ45MDRl+Hhq235Hk9Hmnbx+2AQAAAKzKMQOM4VtFLktyc3f/xrxdVyfZOSzvTHLVvO3Pq4lzk3xh3lQTAAAAgBU75teoJnl8kucm+WhV3Ths+6Uke5JcUVWXJLk1ycXDvndl8hWqBzL5GtXnr2XBAAAAwOZzzACju/80SS2x+7xFju8kL5iyLgAAAIC/taJvIQEAAACYBQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHpbZl0AzNrc7n2zLgEAAIBjMAIDAAAAGD0jMABgDazFaK6Dey5Yg0oAADYmIzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN6WWRcAAEzM7d431fkH91ywRpUAAIyPAIPj3rRv+AEAABg/U0gAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN4xA4yqekNVHaqqj83bdnJVXVNVnxp+PnjYXlX12qo6UFUfqapHr2fxAAAAwOawnBEYb0py/oJtu5Nc291nJbl2WE+SpyU5a/izK8nr1qZMAAAAYDM75teodvefVNXcgs0XJnnSsLw3yfuTvHjY/ubu7iQfqKqTqurU7r5zzSoGABY17ddKH9xzwRpVAgCw9lZ7D4xt80KJu5JsG5ZPS3LbvONuH7Z9h6raVVX7q2r/4cOHV1kGAAAAsBlMfRPPYbRFr+K8S7t7R3fv2Lp167RlAAAAABvYagOMz1TVqUky/Dw0bL8jyenzjts+bAMAAABYtdUGGFcn2Tks70xy1bztzxu+jeTcJF9w/wsAAABgWse8iWdV/X4mN+w8papuT/LSJHuSXFFVlyS5NcnFw+HvSvL0JAeSfDXJ89ehZgAAAGCTWc63kDxriV3nLXJsJ3nBtEUBAAAAzDf1TTwBAAAA1psAAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoHfNbSAAAlmNu976pzj+454I1qgQA2IiMwAAAAABGT4ABAAAAjJ4AAwAAABg998Bg5qadMw0AAMDGJ8AAAJIIlAGAcTOFBAAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKPna1QBgFFYi69xPbjngjWoBAAYIyMwAAAAgNETYAAAAACjZwoJALBhTDsNxRQUABgvIzAAAACA0RNgAAAAAKNnCglTW4u7xgMAAMDRCDAAAAbuoQEA4yXAAABYIwIQAFg/7oEBAAAAjJ4RGLiHBQAAAKMnwAAAIMna/KeGaTAArBcBxnHO6AkA2Dg2wj00NsJzAGCcBBgAABuE/9gQoABsZAIMAABGQwgDwFLWJcCoqvOTvCbJCUle39171uM6AAAwJu4jMj2jaIClrHmAUVUnJPmtJE9JcnuSD1XV1d1901pfCwAA1tIYRoDM+gP8rK+/EWhDpiUMXdx6jMB4TJID3X1LklTV25JcmGRDBhj+cQIAYExmHcJs9uuvhY3wHGYdpLExrUeAcVqS2+at357ksQsPqqpdSXYNq1+uqk+uQy3LcUqSz87o2qlXzurKa2qmbbhBaMPpacPpaL/pacPpacPpacPpacPpacPpHfdtOILPOcd9G05rDX4Hs2zDhy62cWY38ezuS5NcOqvrH1FV+7t7x6zrOJ5pw+lpw+lpw+lov+lpw+lpw+lpw+lpw+lpw+lpw+lpw+mNsQ2/ax0e844kp89b3z5sAwAAAFiV9QgwPpTkrKo6s6pOTPLMJFevw3UAAACATWLNp5B0971V9cIkf5TJ16i+obs/vtbXWUMzn8ayAWjD6WnD6WnD6Wi/6WnD6WnD6WnD6WnD6WnD6WnD6WnD6Y2uDau7Z10DAAAAwFGtxxQSAAAAgDUlwAAAAABGb9MGGFV1flV9sqoOVNXuWddzPKqqg1X10aq6sar2z7qe40FVvaGqDlXVx+ZtO7mqrqmqTw0/HzzLGsduiTZ8WVXdMfTFG6vq6bOsceyq6vSqel9V3VRVH6+qFw3b9cVlOkob6ovLVFX3r6oPVtWHhzZ8+bD9zKq6bnh9vny4ITiLOEobvqmq/mpePzxnxqWOWlWdUFU3VNU7h3V9cIUWaUN9cIUWe1/tdXn5lmg/r8krUFUnVdWVVfWJqrq5qh43xj64KQOMqjohyW8leVqSs5M8q6rOnm1Vx60f6+5zxvb9wCP2piTnL9i2O8m13X1WkmuHdZb2pnxnGybJq4a+eE53v+s+rul4c2+SX+jus5Ocm+QFw7+B+uLyLdWGib64XF9L8uTufmSSc5KcX1XnJnllJm34sCR3J7lkdiWO3lJtmCT/dl4/vHFWBR4nXpTk5nnr+uDKLWzDRB9cjYXvq70ur8xin0u8Ji/fa5K8u7sfkeSRmfydHl0f3JQBRpLHJDnQ3bd099eTvC3JhTOuiU2gu/8kyecXbL4wyd5heW+Si+7Lmo43S7QhK9Ddd3b3XwzLX8rkBeq06IvLdpQ2ZJl64svD6v2GP53kyUmuHLbrh0dxlDZkmapqe5ILkrx+WK/ogyuysA1ZU16XuU9U1YOSPDHJZUnS3V/v7nsywj64WQOM05LcNm/99njjuRqd5D1VdX1V7Zp1Mcexbd1957B8V5JtsyzmOPbCqvrIMMVk5sPbjhdVNZfkUUmui764KgvaMNEXl20Ydn5jkkNJrknyl0nu6e57h0O8Ph/Dwjbs7iP98FeHfviqqvru2VU4eq9O8otJvjmsPyT64Eq9Ot/ehkfogyuz2Ptqr8vLt9TnEq/Jy3NmksNJ3jhMB3t9VT0gI+yDmzXAYG08obsfnclUnBdU1RNnXdDxriffa+x/z1budUl+KJMh1Hcm+fWZVnOcqKrvS/KHSX6+u784f5++uDyLtKG+uALd/Y3uPifJ9kxGRz5ithUdfxa2YVX9cJKXZNKWP5Lk5CQvnl2F41VVP57kUHdfP+tajldHaUN9cOWO+r7a6/IxLdZ+XpOXb0uSRyd5XXc/KslXsmC6yFj64GYNMO5Icvq89e3DNlagu+8Yfh5K8o5M3nyycp+pqlOTZPh5aMb1HHe6+zPDm/hvJvmd6IvHVFX3y+SD91u6++3DZn1xBRZrQ31xdYZhqu9L8rgkJ1XVlmGX1+dlmteG5w9TnLq7v5bkjdEPl/L4JD9RVQczmU785EzmgOuDy/cdbVhVv6cPrtwS76u9Li/TYu3nNXlFbk9y+7xRfFdmEmiMrg9u1gDjQ0nOGu4yfWKSZya5esY1HVeq6gFV9cAjy0memuRjRz+LJVydZOewvDPJVTOs5bh05B/WwU9GXzyqYY73ZUlu7u7fmLdLX1ympdpQX1y+qtpaVScNy9+T5CmZ3EvkfUmeMRymHx7FEm34iXlvNiuT+cr64SK6+yXdvb275zJ5L/je7n529MFlW6INn6MPrsxR3ld7XV6GpdrPa/LydfddSW6rqocPm85LclNG2Ae3HPuQjae7762qFyb5oyQnJHlDd398xmUdb7YlecfkdSlbkry1u98925LGr6p+P8mTkpxSVbcneWmSPUmuqKpLktya5OLZVTh+S7Thk2ryFW2d5GCSfzmr+o4Tj0/y3CQfHebOJ8kvRV9ciaXa8Fn64rKdmmTv8M1g35Xkiu5+Z1XdlORtVfWKJDdkuKEYi1qqDd9bVVuTVJIbk/zsDGs8Hr04+uC03qIPrsii76ur6kPxurwcS7Xf73pNXpGfy+Tv7olJbkny/AyvLWPqgzWZygIAAAAwXpt1CgkAAABwHBFgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPT+fyj5T2YyzNh9AAAAAElFTkSuQmCC", - "text/plain": [ - "<Figure size 1080x576 with 2 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, (ax1, ax2) = plt.subplots(nrows=2)\n", - "ax1.hist(pat_sent[\"avg_sentence_length\"], bins=np.arange(1, 60))\n", - "ax1.xaxis.set_major_locator(plt.MultipleLocator(5))\n", - "ax1.set_title(\"Number of sentences in patronising paragraph\")\n", - "ax2.hist(non_pat_sent[\"avg_sentence_length\"], bins=np.arange(1, 60))\n", - "ax2.xaxis.set_major_locator(plt.MultipleLocator(5))\n", - "# ax2.set_title(\"Number of sentences in non-patronising paragraph\")\n", - "fig.set_figwidth(15)\n", - "fig.set_figheight(8)\n", - "fig.tight_layout()\n", - "plt.show()" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 139946483054384 on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n", + "DEBUG:filelock:Lock 139946483054384 released on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n", + "DEBUG:filelock:Attempting to acquire lock 139946480692576 on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n", + "DEBUG:filelock:Lock 139946480692576 acquired on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Synonym replacement" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7de8d7262f2e4875a78e204e47c5c477", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/478M [00:00<?, ?B/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", - "Requirement already satisfied: nltk in /opt/conda/lib/python3.8/site-packages (3.6.4)\n", - "Requirement already satisfied: tqdm in /opt/conda/lib/python3.8/site-packages (from nltk) (4.62.3)\n", - "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from nltk) (2021.10.8)\n", - "Requirement already satisfied: click in /opt/conda/lib/python3.8/site-packages (from nltk) (8.0.1)\n", - "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from nltk) (1.1.0)\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[nltk_data] Downloading package wordnet to /root/nltk_data...\n", - "[nltk_data] Unzipping corpora/wordnet.zip.\n" - ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "!pip install nltk\n", - "import nltk\n", - "nltk.download('wordnet')" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 139946480692576 on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n", + "DEBUG:filelock:Lock 139946480692576 released on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n", + "Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'lm_head.dense.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.bias', 'roberta.pooler.dense.weight', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias']\n", + "- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "DEBUG:filelock:Attempting to acquire lock 139948825858928 on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n", + "DEBUG:filelock:Lock 139948825858928 acquired on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n" + ] }, { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "from nltk.corpus import wordnet\n", - "\n", - "def get_synonyms(word):\n", - " synonyms = set()\n", - " for syn in wordnet.synsets(word): \n", - " for l in syn.lemmas(): \n", - " synonym = l.name().replace(\"_\", \" \").replace(\"-\", \" \").lower()\n", - " synonym = \"\".join([char for char in synonym if char in ' qwertyuiopasdfghjklzxcvbnm'])\n", - " synonyms.add(synonym) \n", - " \n", - " if word in synonyms:\n", - " synonyms.remove(word)\n", - " \n", - " return list(synonyms)" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8b6b8c768b80452f9702586768393fde", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/878k [00:00<?, ?B/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "import random\n", - "\n", - "def synonym_replacement(text):\n", - " sentences = text.split(\".\")\n", - " new_sentences = []\n", - " for sent in sentences:\n", - " words = sent.split(' ')\n", - " synonyms = list(map(lambda w: get_synonyms(w), words))\n", - " non_empty_synonyms_indices = [i for i, arr in enumerate(synonyms) if len(arr) != 0]\n", - " indices = random.sample(non_empty_synonyms_indices, random.randint(0, len(non_empty_synonyms_indices)))\n", - " for i in indices:\n", - " words[i] = random.choice(synonyms[i])\n", - " new_sentences.append(' '.join(words))\n", - " return '.'.join(new_sentences)" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 139948825858928 on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n", + "DEBUG:filelock:Lock 139948825858928 released on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n", + "DEBUG:filelock:Attempting to acquire lock 139948825440848 on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n", + "DEBUG:filelock:Lock 139948825440848 acquired on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n" + ] }, { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "trdf1_synonym = trdf1.copy()\n", - "for _ in range(9):\n", - " pat_sent_synonym = trdf1.loc[trdf1['label'] == 1].copy()\n", - " pat_sent_synonym['text'] = pat_sent_synonym['text'].apply(lambda x: synonym_replacement(x))\n", - " trdf1_synonym = pd.concat([trdf1_synonym, pat_sent_synonym], ignore_index=True)" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3809e72b9da5471d9b009e1c957e5d6e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/446k [00:00<?, ?B/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1 7940\n", - "0 7581\n", - "Name: label, dtype: int64" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "trdf1_synonym['label'].value_counts()" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 139948825440848 on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n", + "DEBUG:filelock:Lock 139948825440848 released on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n", + "DEBUG:filelock:Attempting to acquire lock 139946483054384 on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n", + "DEBUG:filelock:Lock 139946483054384 acquired on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "O1KGYmpnxDjt" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "70ac437a0b2e457ba4cf52a91af4b433", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "# Rebuild test set (Task 1)" + "text/plain": [ + "Downloading: 0%| | 0.00/1.29M [00:00<?, ?B/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "id": "T6FLgB6KxGI2" - }, - "outputs": [], - "source": [ - "rows = [] # will contain par_id, label and text\n", - "for idx in range(len(teids)): \n", - " parid = teids.par_id[idx]\n", - " #print(parid)\n", - " # select row from original dataset\n", - " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", - " label = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].label.values[0]\n", - " rows.append({\n", - " 'par_id':parid,\n", - " 'text':text,\n", - " 'label':label\n", - " })\n", - " " - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 139946483054384 on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n", + "DEBUG:filelock:Lock 139946483054384 released on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n", + "/opt/conda/lib/python3.8/site-packages/simpletransformers/classification/classification_model.py:585: UserWarning: Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\n", + " warnings.warn(\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] }, { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "YbB9GdzJxRAH", - "outputId": "c78e311e-9502-4644-b6f7-0c64f64aa66f" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "33ee72e416fc40338680953e5ae30ed2", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "data": { - "text/plain": [ - "2094" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(rows)" + "text/plain": [ + " 0%| | 0/15521 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "id": "vhBhTRIyxSaQ" - }, - "outputs": [], - "source": [ - "tedf1 = pd.DataFrame(rows)" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", + " warnings.warn(\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "xK6FY70KZ6TY" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dcc3d18209bb46c889cf017a9bcb732d", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "# RoBERTa Baseline for Task 1" + "text/plain": [ + "Epoch: 0%| | 0/1 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Z-pvjbu_8h1n", - "outputId": "0a9da7ae-181c-40a5-a438-220f5ab960b5" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c6ec7ac84154b36b662a0d69f7e5726", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "# downsample negative instances\n", - "pcldf = trdf1[trdf1.label==1]\n", - "npos = len(pcldf)\n", - "\n", - "training_set1 = pd.concat([pcldf,trdf1[trdf1.label==0][:npos*2]])" + "text/plain": [ + "Running Epoch 0 of 1: 0%| | 0/1941 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 422 - }, - "id": "mpSqMp3d8iYu", - "outputId": "037d4f45-eab5-4f04-e9a5-1aa64c46323d" - }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " <th>num_sentences_in_paragraph</th>\n", - " <th>readability_score</th>\n", - " <th>avg_sentence_length</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>The scheme saw an estimated 150,000 children f...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>18.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>Durban 's homeless communities reconciliation ...</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>0.0</td>\n", - " <td>6.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>The next immediate problem that cropped up was...</td>\n", - " <td>1</td>\n", - " <td>3</td>\n", - " <td>0.0</td>\n", - " <td>24.666667</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>Far more important than the implications for t...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>23.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>To strengthen child-sensitive social protectio...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>25.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2377</th>\n", - " <td>1775</td>\n", - " <td>Last but not the least element of culpability ...</td>\n", - " <td>0</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>12.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2378</th>\n", - " <td>1776</td>\n", - " <td>Then , taking the art of counter-intuitive non...</td>\n", - " <td>0</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>23.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2379</th>\n", - " <td>1777</td>\n", - " <td>Kagunga village was reported to lack necessary...</td>\n", - " <td>0</td>\n", - " <td>3</td>\n", - " <td>0.0</td>\n", - " <td>13.333333</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2380</th>\n", - " <td>1778</td>\n", - " <td>\"After her parents high-profile divorce after ...</td>\n", - " <td>0</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>38.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2381</th>\n", - " <td>1779</td>\n", - " <td>\"Last night One News reported on leaked Minist...</td>\n", - " <td>0</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>20.500000</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>2382 rows × 6 columns</p>\n", - "</div>" - ], - "text/plain": [ - " par_id text label \\\n", - "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", - "1 4136 Durban 's homeless communities reconciliation ... 1 \n", - "2 10352 The next immediate problem that cropped up was... 1 \n", - "3 8279 Far more important than the implications for t... 1 \n", - "4 1164 To strengthen child-sensitive social protectio... 1 \n", - "... ... ... ... \n", - "2377 1775 Last but not the least element of culpability ... 0 \n", - "2378 1776 Then , taking the art of counter-intuitive non... 0 \n", - "2379 1777 Kagunga village was reported to lack necessary... 0 \n", - "2380 1778 \"After her parents high-profile divorce after ... 0 \n", - "2381 1779 \"Last night One News reported on leaked Minist... 0 \n", - "\n", - " num_sentences_in_paragraph readability_score avg_sentence_length \n", - "0 2 0.0 18.500000 \n", - "1 1 0.0 6.000000 \n", - "2 3 0.0 24.666667 \n", - "3 2 0.0 23.000000 \n", - "4 2 0.0 25.000000 \n", - "... ... ... ... \n", - "2377 2 0.0 12.500000 \n", - "2378 2 0.0 23.500000 \n", - "2379 3 0.0 13.333333 \n", - "2380 2 0.0 38.000000 \n", - "2381 2 0.0 20.500000 \n", - "\n", - "[2382 rows x 6 columns]" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "training_set1" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:simpletransformers.classification.classification_model: Training of roberta model complete. Saved to outputs/.\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "## Normal training\n", - "task1_model_args = ClassificationArgs(num_train_epochs=1, \n", - " no_save=True, \n", - " no_cache=True, \n", - " overwrite_output_dir=True)\n", - "task1_model = ClassificationModel(\"roberta\", \n", - " 'roberta-base', \n", - " args = task1_model_args, \n", - " num_labels=2, \n", - " use_cuda=cuda_available)\n", - "# train model\n", - "task1_model.train_model(training_set1[['text', 'label']])\n", - "# run predictions\n", - "preds_task1, _ = task1_model.predict(tedf1.text.tolist())" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c45aceb741f34cd7b6c41375d72ac0ce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/2094 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "h5oxHt2R6t2I", - "outputId": "27505e5d-896b-4d63-dc53-905cc34d7fd2" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a924855255f4f429268ead11535b7f7", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "data": { - "text/plain": [ - "Counter({0: 1651, 1: 443})" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Counter(preds_task1)" + "text/plain": [ + " 0%| | 0/262 [00:00<?, ?it/s]" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "task1_model_args = ClassificationArgs(num_train_epochs=1, \n", + " no_save=True, \n", + " no_cache=True, \n", + " overwrite_output_dir=True)\n", + "task1_model = ClassificationModel(\"roberta\", \n", + " 'roberta-base', \n", + " args = task1_model_args, \n", + " num_labels=2, \n", + " use_cuda=cuda_available)\n", + "# train model\n", + "task1_model.train_model(training_set1_synonyms[['text', 'label']])\n", + "# run predictions\n", + "preds_task1, _ = task1_model.predict(tedf1.text.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "labels2file([[k] for k in preds_task1], 'task1.txt')" + "data": { + "text/plain": [ + "Counter({0: 1996, 1: 98})" ] - }, + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Counter(preds_task1)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Train with synonym replacement" + "data": { + "text/plain": [ + "0.9135625596943648" ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_labels = tedf1.label.to_list()\n", + "correct = 0\n", + "for i in range(len(preds_task1)):\n", + " correct += preds_task1[i] == test_labels[i]\n", + "correct / len(preds_task1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "k7Cc_u5Oli7j" + }, + "source": [ + "# Rebuild training set (Task 2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D2WLYT7wli7k" + }, + "outputs": [], + "source": [ + "rows2 = [] # will contain par_id, label and text\n", + "for idx in range(len(trids)): \n", + " parid = trids.par_id[idx]\n", + " label = trids.label[idx]\n", + " # select row from original dataset to retrieve the `text` value\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " rows2.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LFqMMb5Jli7l" + }, + "outputs": [], + "source": [ + "trdf2 = pd.DataFrame(rows2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 }, + "id": "HayrC9q7mQPl", + "outputId": "db5f1bdf-c09a-4a57-f81e-612100e32b44" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " <th>num_sentences_in_paragraph</th>\n", - " <th>readability_score</th>\n", - " <th>avg_sentence_length</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>The scheme saw an estimated 150,000 children f...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>18.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>Durban 's homeless communities reconciliation ...</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>0.0</td>\n", - " <td>6.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>The next immediate problem that cropped up was...</td>\n", - " <td>1</td>\n", - " <td>3</td>\n", - " <td>0.0</td>\n", - " <td>24.666667</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>Far more important than the implications for t...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>23.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>To strengthen child-sensitive social protectio...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>25.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15516</th>\n", - " <td>873</td>\n", - " <td>cite the fact that these kids world health org...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>31.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15517</th>\n", - " <td>10070</td>\n", - " <td>Fern ? ndez was a well-known philanthropist wo...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>19.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15518</th>\n", - " <td>6484</td>\n", - " <td>touch on a lot away their predicament , comman...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>27.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15519</th>\n", - " <td>6249</td>\n", - " <td>She iterate her ministry 's commitment to put ...</td>\n", - " <td>1</td>\n", - " <td>2</td>\n", - " <td>0.0</td>\n", - " <td>18.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15520</th>\n", - " <td>5149</td>\n", - " <td>preach the sermon , the Dean of the St. Peter ...</td>\n", - " <td>1</td>\n", - " <td>4</td>\n", - " <td>0.0</td>\n", - " <td>15.750000</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>15521 rows × 6 columns</p>\n", - "</div>" - ], - "text/plain": [ - " par_id text label \\\n", - "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", - "1 4136 Durban 's homeless communities reconciliation ... 1 \n", - "2 10352 The next immediate problem that cropped up was... 1 \n", - "3 8279 Far more important than the implications for t... 1 \n", - "4 1164 To strengthen child-sensitive social protectio... 1 \n", - "... ... ... ... \n", - "15516 873 cite the fact that these kids world health org... 1 \n", - "15517 10070 Fern ? ndez was a well-known philanthropist wo... 1 \n", - "15518 6484 touch on a lot away their predicament , comman... 1 \n", - "15519 6249 She iterate her ministry 's commitment to put ... 1 \n", - "15520 5149 preach the sermon , the Dean of the St. Peter ... 1 \n", - "\n", - " num_sentences_in_paragraph readability_score avg_sentence_length \n", - "0 2 0.0 18.500000 \n", - "1 1 0.0 6.000000 \n", - "2 3 0.0 24.666667 \n", - "3 2 0.0 23.000000 \n", - "4 2 0.0 25.000000 \n", - "... ... ... ... \n", - "15516 2 0.0 31.500000 \n", - "15517 2 0.0 19.500000 \n", - "15518 2 0.0 27.500000 \n", - "15519 2 0.0 18.500000 \n", - "15520 4 0.0 15.750000 \n", - "\n", - "[15521 rows x 6 columns]" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>the scheme saw an estimated 150,000 children f...</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>durban 's homeless communities reconciliation ...</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>the next immediate problem that cropped up was...</td>\n", + " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>far more important than the implications for t...</td>\n", + " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>to strengthen child-sensitive social protectio...</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8370</th>\n", + " <td>8380</td>\n", + " <td>rescue teams search for survivors on the rubbl...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8371</th>\n", + " <td>8381</td>\n", + " <td>the launch of ' happy birthday ' took place la...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8372</th>\n", + " <td>8382</td>\n", + " <td>the unrest has left at least 20,000 people dea...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8373</th>\n", + " <td>8383</td>\n", + " <td>you have to see it from my perspective . i may...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8374</th>\n", + " <td>8384</td>\n", + " <td>yet there was one occasion when we went to the...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>8375 rows × 3 columns</p>\n", + "</div>" ], - "source": [ - "training_set1_synonyms = trdf1_synonym\n", - "training_set1_synonyms" + "text/plain": [ + " par_id ... label\n", + "0 4341 ... [1, 0, 0, 1, 0, 0, 0]\n", + "1 4136 ... [0, 1, 0, 0, 0, 0, 0]\n", + "2 10352 ... [1, 0, 0, 0, 0, 1, 0]\n", + "3 8279 ... [0, 0, 0, 1, 0, 0, 0]\n", + "4 1164 ... [1, 0, 0, 1, 1, 1, 0]\n", + "... ... ... ...\n", + "8370 8380 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8371 8381 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8372 8382 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8373 8383 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8374 8384 ... [0, 0, 0, 0, 0, 0, 0]\n", + "\n", + "[8375 rows x 3 columns]" ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MxHLB_g0pfEb" + }, + "outputs": [], + "source": [ + "trdf2.label = trdf2.label.apply(literal_eval)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Gukbmv0bli7l" + }, + "source": [ + "# Rebuild test set (Task 2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gjH-AJK1li7m" + }, + "outputs": [], + "source": [ + "rows2 = [] # will contain par_id, label and text\n", + "for idx in range(len(teids)): \n", + " parid = teids.par_id[idx]\n", + " label = teids.label[idx]\n", + " #print(parid)\n", + " # select row from original dataset to access the `text` value\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " rows2.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SRP-tn5wli7n" + }, + "outputs": [], + "source": [ + "tedf2 = pd.DataFrame(rows2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 }, + "id": "8U2lrfJiolku", + "outputId": "6bf1181c-3e95-4913-cceb-9cc9e08b6c29" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 538, - "referenced_widgets": [ - "de026e2d1ec848fbb35faf1746e7579d", - "7a0d26d292e54498a15bc2e54e6c3aee", - "13bc966911b1433ab6f8245f88b86e2d", - "ec69c0f693b74ac8b737816b1efaa8bf", - "cf4fb870564043cfbc171ae05143ec5f", - "abc4d60485bf40d7abf3cbcf212e39a2", - "85ea942b0e194d2a9160f82494fff8e0", - "6b2a3cde2cdb4bc6a9d0623363c66266", - "a287d92682d644daa34030f58227540f", - "2eea385dfcf745e6b92c37eb6cd901f4", - "59c41a4934cf4ef2b467ae5d97b615f0", - "a90282c995cc4c6db59eaa51e3414ad1", - "d76e461fca524e04810c38b44ad51185", - "b4d34c0c2e364f88b70036cbff6f780a", - "4d22ac94c09d4802b4664e456278308a", - "594d094f060e4481977901e11c2ddaf2", - "b276fc7fd7954ec09fabbcad64b93508", - "29ad13a85dc44e4e919bed1daddf0935", - "c0b81615b8fc4b8d8a48232d029e717d", - "c1dc117db5c444bd918b9ab70b587f48", - "fc14f76deb2549b3a5c6bce9ea3dd7e3", - "a8757d3393f04a55a5bea7f923944281", - "df46941823a540f787e2e9dad52243d3", - "904714fa04be424da224c801f06d52f6", - "790e423a21b840978da497d9d35634a6", - "6cc05e8394ac491999930b9493be855e", - "8cefe2ef3c984e3a8ad1bb8ecb7f0dbb", - "4ec670884e2247ec872defaa5bf7dcc5", - "3d7e4c3c0af84bc4940d2e25ad8a5162", - "4f8aa1c4c8914693a24523c1064ecf97", - "ab2d97c595ff4e55969bc2f1415f747d", - "60b8f43949894143a83263e96d0ac3fa", - "703f69d98e9947f3aeaba07b51d64f3c", - "59458022ec4547beba130ce755946427", - "26178b1ed5164ca7bcea84b65fc95522", - "ac45cf1a895f4ba39c5be0ad136c4591", - "117489e4902040ae97cb222f8c4dda12", - "ba09b68a05644dd1b7d12a19396fb3b8", - "37531d1ef87f45c99df60fb6a8a66d78", - "1c61f90f85a54cbb9d2ccdbf614eb8d5", - "c11ef82d87114a59868d9d7810b936db", - "a8de20f8116142f6bf25aef25f37ad85", - "32fe020b5dc54143af2830ec578eecdf", - "2fcffe85dbcc4c91b840c61799b82772", - "2c3f59321aac4ea78e4c70618f907e08", - "ff3206118d3043b3a9b757ec3ca01d9f", - "d1343667008643c8a893bfae962503c1", - "384f2a4804ed458498b35f04d32e41b5", - "f7e1e00cad5449dfb55c6a920a292540", - "ec68ce238bb04063a74afd67a4f1e877", - "05e6b65f527c48e5ab8aaa8a220287c0", - "ee3cdac0740d43188518e097ae5863a5", - "6f8e6355fcb74fc98cc641bc36bd1707", - "19628b1c68004e9a98ecb5a934d57d2d", - "cafdb944408b42eaacec5b2e8566962b", - "b8654137c93f4a70b0fb8f7e692f7673", - "b088cb07387d4a46b3c7d4d7cc9a5aba", - "e567e754183b42d69d3d200a4517b132", - "e4c905c262994b7d9197f77b2da2c178", - "f0b59d4d691c44a4a7dbb40991518d36", - "fe372945c13845e5bd01ca4e153ed61c", - "c3a17fa9e8da4d9fb571e307f75ac144", - "23ee94259c41435ea19264f4a2937585", - "c3cafc815e4444a8998e608cd9c9300d", - "49fd3eaa74fa493fbe7324607888c542", - "6870cb8717ba407c81d0b7c79ad27d26", - "d32db030dff24fe3bd1983a44c703311", - "ee1cc81a307a4ea6ac00b65a4d314877", - "d16d01773a334ccb8a9231d3cae6e0f4", - "c43f7ff02eb74e0d900029f97652a973", - "d6a37bb80db94947810fa1d69b8b416b", - "4f8b629635194d759b9c91f37a445632", - "d48d137548464c3387dd51494cb969bf", - "89f9d8cab0c44b58afee34914198a9e6", - "3119accf975446eda52b0125571322a4", - "bac5decd48b74036a270f70a05c3f80e", - "2c646f33655d4646b70afef87232d5a1", - "82f733de38ef4c5f8734cbdf47ec1a01", - "818e5dbea2094a97a18974aebe4ddb86", - "c2dae6a605f842d3aaad1f86b2e332b6", - "197dca1cad8b425bb4622c9d5da461dc", - "1cf670526680446db48fbf64b1cae0a6", - "ece446ccb0d3496a81dc0250fff9039d", - "d7d3e0bd4a9c43dd9946a8a63b12d1d7", - "f879197b8c2443278e280f82f20cc609", - "c983b2e75ec44867a14f6d3abdfff2ec", - "d1df90f8eead4f5e8718fd42ec0d5e40", - "b3f807cfae5a44fcbf1069817e6fb79d", - "a308011d2efd403fb6b8d250d8f98fa9", - "770ad4abfc4f4eeebefade5afcad22a3", - "226d2e2955444f9ead05b5991d7939e5", - "9f03facdd7704ab9be2bd65f1060f215", - "fc122d487cbd4ab69e78f1b9425774ba", - "21c2295bc2a54d979f2a5404f6a7ecb1", - "b4bcc997cfa4444287370bbb4819cb43", - "4fbbc5b908c14198b8c86ca2208bd890", - "5bc982f17aec46b3b7f8308f567f6296", - "f1fe964e4d2b4ebb8f76b3d8debdaab6", - "7e3df3b58c7e4117b0a8b8fc45dffa01", - "6851a6f291a04bd59da6cf04d6f762aa", - "3cd79b7a96784504a28dce435f9de5b5", - "d79bd01e1fe44c12ac530376324d9e0e", - "4a03ac52afa84bfd82ced188892b1958", - "8351a84b9c914d80a54ac57a2fb18304", - "419ce58d2ed14589a3d2e1cd7b477e0f", - "568d424c94094d669282ed72b4cf0be4", - "7fe11f4ffd3747079b8de4453b29dbac", - "22a8be9fae3245cca79dc7904ed4f49d", - "ed1ad3ad89334675babf56f9737a17fb", - "dba102bf2b3249c8907d4fe1d5cf0e82" - ] - }, - "id": "PoW_s23AZ_DG", - "outputId": "cae26801-a680-4d5b-9d76-d56872b5e611" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:filelock:Attempting to acquire lock 139946483054384 on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n", - "DEBUG:filelock:Lock 139946483054384 acquired on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8be5a63b87d546439dc5b2c102a53333", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/481 [00:00<?, ?B/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:filelock:Attempting to release lock 139946483054384 on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n", - "DEBUG:filelock:Lock 139946483054384 released on /root/.cache/huggingface/transformers/733bade19e5f0ce98e6531021dd5180994bb2f7b8bd7e80c7968805834ba351e.35205c6cfc956461d8515139f0f8dd5d207a2f336c0c3a83b4bc8dca3518e37b.lock\n", - "DEBUG:filelock:Attempting to acquire lock 139946480692576 on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n", - "DEBUG:filelock:Lock 139946480692576 acquired on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7de8d7262f2e4875a78e204e47c5c477", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/478M [00:00<?, ?B/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:filelock:Attempting to release lock 139946480692576 on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n", - "DEBUG:filelock:Lock 139946480692576 released on /root/.cache/huggingface/transformers/51ba668f7ff34e7cdfa9561e8361747738113878850a7d717dbc69de8683aaad.c7efaa30a0d80b2958b876969faa180e485944a849deee4ad482332de65365a7.lock\n", - "Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'lm_head.dense.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.bias', 'roberta.pooler.dense.weight', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias']\n", - "- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.weight']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "DEBUG:filelock:Attempting to acquire lock 139948825858928 on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n", - "DEBUG:filelock:Lock 139948825858928 acquired on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8b6b8c768b80452f9702586768393fde", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/878k [00:00<?, ?B/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:filelock:Attempting to release lock 139948825858928 on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n", - "DEBUG:filelock:Lock 139948825858928 released on /root/.cache/huggingface/transformers/d3ccdbfeb9aaa747ef20432d4976c32ee3fa69663b379deb253ccfce2bb1fdc5.d67d6b367eb24ab43b08ad55e014cf254076934f71d832bbab9ad35644a375ab.lock\n", - "DEBUG:filelock:Attempting to acquire lock 139948825440848 on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n", - "DEBUG:filelock:Lock 139948825440848 acquired on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3809e72b9da5471d9b009e1c957e5d6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/446k [00:00<?, ?B/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:filelock:Attempting to release lock 139948825440848 on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n", - "DEBUG:filelock:Lock 139948825440848 released on /root/.cache/huggingface/transformers/cafdecc90fcab17011e12ac813dd574b4b3fea39da6dd817813efa010262ff3f.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b.lock\n", - "DEBUG:filelock:Attempting to acquire lock 139946483054384 on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n", - "DEBUG:filelock:Lock 139946483054384 acquired on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "70ac437a0b2e457ba4cf52a91af4b433", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/1.29M [00:00<?, ?B/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:filelock:Attempting to release lock 139946483054384 on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n", - "DEBUG:filelock:Lock 139946483054384 released on /root/.cache/huggingface/transformers/d53fc0fa09b8342651efd4073d75e19617b3e51287c2a535becda5808a8db287.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730.lock\n", - "/opt/conda/lib/python3.8/site-packages/simpletransformers/classification/classification_model.py:585: UserWarning: Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\n", - " warnings.warn(\n", - "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "33ee72e416fc40338680953e5ae30ed2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/15521 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "dcc3d18209bb46c889cf017a9bcb732d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Epoch: 0%| | 0/1 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7c6ec7ac84154b36b662a0d69f7e5726", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Running Epoch 0 of 1: 0%| | 0/1941 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:simpletransformers.classification.classification_model: Training of roberta model complete. Saved to outputs/.\n", - "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c45aceb741f34cd7b6c41375d72ac0ce", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/2094 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1a924855255f4f429268ead11535b7f7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/262 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4046</td>\n", + " <td>we also know that they can benefit by receivin...</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1279</td>\n", + " <td>pope francis washed and kissed the feet of mus...</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>8330</td>\n", + " <td>many refugees do n't want to be resettled anyw...</td>\n", + " <td>[0, 0, 1, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>4063</td>\n", + " <td>\"budding chefs , like \"\" fred \"\" , \"\" winston ...</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4089</td>\n", + " <td>\"in a 90-degree view of his constituency , one...</td>\n", + " <td>[1, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2089</th>\n", + " <td>10462</td>\n", + " <td>the sad spectacle , which occurred on saturday...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2090</th>\n", + " <td>10463</td>\n", + " <td>\"\"\" the pakistani police came to our house and...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2091</th>\n", + " <td>10464</td>\n", + " <td>\"when marie o'donoghue went looking for a spec...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2092</th>\n", + " <td>10465</td>\n", + " <td>\"sri lankan norms and culture inhibit women fr...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2093</th>\n", + " <td>10466</td>\n", + " <td>he added that the afp will continue to bank on...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2094 rows × 3 columns</p>\n", + "</div>" ], - "source": [ - "task1_model_args = ClassificationArgs(num_train_epochs=1, \n", - " no_save=True, \n", - " no_cache=True, \n", - " overwrite_output_dir=True)\n", - "task1_model = ClassificationModel(\"roberta\", \n", - " 'roberta-base', \n", - " args = task1_model_args, \n", - " num_labels=2, \n", - " use_cuda=cuda_available)\n", - "# train model\n", - "task1_model.train_model(training_set1_synonyms[['text', 'label']])\n", - "# run predictions\n", - "preds_task1, _ = task1_model.predict(tedf1.text.tolist())" + "text/plain": [ + " par_id ... label\n", + "0 4046 ... [1, 0, 0, 1, 0, 0, 0]\n", + "1 1279 ... [0, 1, 0, 0, 0, 0, 0]\n", + "2 8330 ... [0, 0, 1, 0, 0, 0, 0]\n", + "3 4063 ... [1, 0, 0, 1, 1, 1, 0]\n", + "4 4089 ... [1, 0, 0, 0, 0, 0, 0]\n", + "... ... ... ...\n", + "2089 10462 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2090 10463 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2091 10464 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2092 10465 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2093 10466 ... [0, 0, 0, 0, 0, 0, 0]\n", + "\n", + "[2094 rows x 3 columns]" ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tedf2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "81aQFjWqpbe2" + }, + "outputs": [], + "source": [ + "tedf2.label = tedf2.label.apply(literal_eval)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YKFiVaslbAiC" + }, + "source": [ + "# RoBERTa baseline for Task 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hmr5ZZf5Ik5T" + }, + "outputs": [], + "source": [ + "all_negs = trdf2[trdf2.label.apply(lambda x:sum(x) == 0)]\n", + "all_pos = trdf2[trdf2.label.apply(lambda x:sum(x) > 0)]\n", + "\n", + "training_set2 = pd.concat([all_pos,all_negs[:round(len(all_pos)*0.5)]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 }, + "id": "zyBcJoHtJHE2", + "outputId": "983b27a6-3bec-47bc-e564-79face4b061c" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Counter({0: 1996, 1: 98})" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>the scheme saw an estimated 150,000 children f...</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>durban 's homeless communities reconciliation ...</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>the next immediate problem that cropped up was...</td>\n", + " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>far more important than the implications for t...</td>\n", + " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>to strengthen child-sensitive social protectio...</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1186</th>\n", + " <td>434</td>\n", + " <td>\"\"\" i was absolutely useless at school , hopel...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1187</th>\n", + " <td>435</td>\n", + " <td>i also noticed the change in socio-economic le...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1188</th>\n", + " <td>436</td>\n", + " <td>can donald trump win ? it 's possible , but ce...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1189</th>\n", + " <td>437</td>\n", + " <td>he added that any introduction of new law must...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1190</th>\n", + " <td>439</td>\n", + " <td>lusaka zambia ( xinhua ) -- zambia ? s immigra...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>1191 rows × 3 columns</p>\n", + "</div>" ], - "source": [ - "Counter(preds_task1)" + "text/plain": [ + " par_id ... label\n", + "0 4341 ... [1, 0, 0, 1, 0, 0, 0]\n", + "1 4136 ... [0, 1, 0, 0, 0, 0, 0]\n", + "2 10352 ... [1, 0, 0, 0, 0, 1, 0]\n", + "3 8279 ... [0, 0, 0, 1, 0, 0, 0]\n", + "4 1164 ... [1, 0, 0, 1, 1, 1, 0]\n", + "... ... ... ...\n", + "1186 434 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1187 435 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1188 436 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1189 437 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1190 439 ... [0, 0, 0, 0, 0, 0, 0]\n", + "\n", + "[1191 rows x 3 columns]" ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "training_set2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 379, + "referenced_widgets": [ + "22e0c7f26e6e462ba7f63d02ed4cc1f0", + "4c58352e4a8a4836ad9d90b68876cadc", + "0649eb3fbea04d98afd7241a9f175dd1", + "36909c71cfeb44c9aa48c96b0724d5a0", + "d447cc0c53974205ade693d0eff0bc7b", + "5cb366b5f6384c408e0b6c8c8e18ca67", + "22363e506fe341e3a59dfea0a972affb", + "1143e9991f3e443a89605fcc72fae27b", + "c88d5b03d6d9498ab972678dedb018bf", + "d79ae039a52a43c0a20ff96b2d32607b", + "05826d440af54576a054d0d8e0b212f6", + "f1e8ea21a9e6457e8dcd35b21be75b22", + "1400f1d23b19496ab51b253b5f87298b", + "5ef5f967ffff4b9689f6f72772e1d9fd", + "e59cd0b3c86e4be28ae6442694b22f9c", + "0ac5312eac44449c8b72030f0d064383", + "d12ad49c9fc54f86affd96e975b93186", + "e98cda63a023489cae4ada214ba5bb38", + "379253e799eb4c9b92342abeffd9b4a2", + "448426e53b934f8d8cfc96a94f95e4b1", + "89e65dddb1884e158cb3d1937843ccab", + "9e3eb217f2c349cf8a2b255ca5a34622", + "7473c3bed5854eacbc818363f4a1ab9a", + "04ae2805168b48da9953754e0989f073", + "7de6deb7064344faa9e4104be09bc1b6", + "dd69b800241e4bb3a856ecd46968b762", + "2ea5a9a7f9a44295ad5364f47926b9d2", + "5d195a90ff5143a998c4cb9ca851811b", + "c4425a4579084d37b000192df67e3ae1", + "e4508e3bbceb40538e0f01a40da539de", + "d7a3b9eef0e347278563217103b4253c", + "a23c1b483a9e4aca8dc12da65527b103", + "dc4ab3d0b89440a38725e54852db46df", + "31e1a0a3fe2f4228887c1abc7443e8ea", + "f107664ab872463fa5dbee7bcfe1a866", + "e778f7c68ce54014a5bfb3050e72292a", + "8ecaba0474a64ea3a4a400107f08b90e", + "3bedc272418949e8bb2897bcfae0a36b", + "5d63fdd645634af381db3abc93ce2b24", + "afd3d0f6506e464c98b9ad57a24c3e9d", + "08263433f8b6426693653ab9955e5410", + "bdda742fee1148d581d8a15e8a560869", + "c4dbb10f007f483a950a95555583dc2a", + "d66f8f8d82f9499488b6ffa16193b320", + "25fdc4ac2d714e5ba99b4f297726d36c", + "5e5ac5500b974cfcbf76d2e5d70adb3d", + "e4ccd1d746ab4f1f826477bb021c34a8", + "16d4a580157446daaa4f721d28d095fa", + "ec1e8ea22a8f4272b258fa19a2c3ec83", + "fba89fa62d6a413b90f3961755794a61", + "22f9701e81034b5ea8d1bdd38ab0d191", + "95392827ab8149388dd9af86d1fb03a1", + "92b7ffe0dd1b49d1acdb2b588f72569d", + "afd5528b85874795ac1d736dde15b810", + "99a8a52b7dfb4fa994a4b09feba8fe58" + ] }, + "id": "ECb7_mwzbFa6", + "outputId": "d433e1aa-c3c4-4a00-9b2a-c04ccdc20588" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9135625596943648" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_labels = tedf1.label.to_list()\n", - "correct = 0\n", - "for i in range(len(preds_task1)):\n", - " correct += preds_task1[i] == test_labels[i]\n", - "correct / len(preds_task1)" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForMultiLabelSequenceClassification: ['lm_head.layer_norm.weight', 'lm_head.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.dense.weight', 'lm_head.decoder.weight']\n", + "- This IS expected if you are initializing RobertaForMultiLabelSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing RobertaForMultiLabelSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "Some weights of RobertaForMultiLabelSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.bias', 'classifier.dense.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "/usr/local/lib/python3.7/dist-packages/simpletransformers/classification/classification_model.py:586: UserWarning: Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\n", + " \"Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\"\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "k7Cc_u5Oli7j" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "22e0c7f26e6e462ba7f63d02ed4cc1f0", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "# Rebuild training set (Task 2)" + "text/plain": [ + " 0%| | 0/1191 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "D2WLYT7wli7k" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1e8ea21a9e6457e8dcd35b21be75b22", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "rows2 = [] # will contain par_id, label and text\n", - "for idx in range(len(trids)): \n", - " parid = trids.par_id[idx]\n", - " label = trids.label[idx]\n", - " # select row from original dataset to retrieve the `text` value\n", - " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", - " rows2.append({\n", - " 'par_id':parid,\n", - " 'text':text,\n", - " 'label':label\n", - " })\n", - " " + "text/plain": [ + "Epoch: 0%| | 0/1 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LFqMMb5Jli7l" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7473c3bed5854eacbc818363f4a1ab9a", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "trdf2 = pd.DataFrame(rows2)" + "text/plain": [ + "Running Epoch 0 of 1: 0%| | 0/149 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 422 - }, - "id": "HayrC9q7mQPl", - "outputId": "db5f1bdf-c09a-4a57-f81e-612100e32b44" - }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>the scheme saw an estimated 150,000 children f...</td>\n", - " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>durban 's homeless communities reconciliation ...</td>\n", - " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>the next immediate problem that cropped up was...</td>\n", - " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>far more important than the implications for t...</td>\n", - " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>to strengthen child-sensitive social protectio...</td>\n", - " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>8370</th>\n", - " <td>8380</td>\n", - " <td>rescue teams search for survivors on the rubbl...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>8371</th>\n", - " <td>8381</td>\n", - " <td>the launch of ' happy birthday ' took place la...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>8372</th>\n", - " <td>8382</td>\n", - " <td>the unrest has left at least 20,000 people dea...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>8373</th>\n", - " <td>8383</td>\n", - " <td>you have to see it from my perspective . i may...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>8374</th>\n", - " <td>8384</td>\n", - " <td>yet there was one occasion when we went to the...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>8375 rows × 3 columns</p>\n", - "</div>" - ], - "text/plain": [ - " par_id ... label\n", - "0 4341 ... [1, 0, 0, 1, 0, 0, 0]\n", - "1 4136 ... [0, 1, 0, 0, 0, 0, 0]\n", - "2 10352 ... [1, 0, 0, 0, 0, 1, 0]\n", - "3 8279 ... [0, 0, 0, 1, 0, 0, 0]\n", - "4 1164 ... [1, 0, 0, 1, 1, 1, 0]\n", - "... ... ... ...\n", - "8370 8380 ... [0, 0, 0, 0, 0, 0, 0]\n", - "8371 8381 ... [0, 0, 0, 0, 0, 0, 0]\n", - "8372 8382 ... [0, 0, 0, 0, 0, 0, 0]\n", - "8373 8383 ... [0, 0, 0, 0, 0, 0, 0]\n", - "8374 8384 ... [0, 0, 0, 0, 0, 0, 0]\n", - "\n", - "[8375 rows x 3 columns]" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "trdf2" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:simpletransformers.classification.classification_model: Training of roberta model complete. Saved to outputs/.\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "MxHLB_g0pfEb" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31e1a0a3fe2f4228887c1abc7443e8ea", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "trdf2.label = trdf2.label.apply(literal_eval)" + "text/plain": [ + " 0%| | 0/2094 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "markdown", - "metadata": { - "id": "Gukbmv0bli7l" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "25fdc4ac2d714e5ba99b4f297726d36c", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "# Rebuild test set (Task 2)" + "text/plain": [ + " 0%| | 0/262 [00:00<?, ?it/s]" ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "task2_model_args = MultiLabelClassificationArgs(num_train_epochs=1,\n", + " no_save=True, \n", + " no_cache=True, \n", + " overwrite_output_dir=True\n", + " )\n", + "task2_model = MultiLabelClassificationModel(\"roberta\", \n", + " 'roberta-base', \n", + " num_labels=7,\n", + " args = task2_model_args, \n", + " use_cuda=cuda_available)\n", + "# train model\n", + "task2_model.train_model(training_set2[['text', 'label']])\n", + "# run predictions\n", + "preds_task2, _ = task2_model.predict(tedf2.text.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0211sxhsbbWZ" + }, + "outputs": [], + "source": [ + "labels2file(preds_task2, 'task2.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RT8hjnxbbfJq" + }, + "source": [ + "## Prepare submission" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "U7HICl8MJQf0", + "outputId": "794d8101-dd24-4dd5-b315-93c931a6b040" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "gjH-AJK1li7m" - }, - "outputs": [], - "source": [ - "rows2 = [] # will contain par_id, label and text\n", - "for idx in range(len(teids)): \n", - " parid = teids.par_id[idx]\n", - " label = teids.label[idx]\n", - " #print(parid)\n", - " # select row from original dataset to access the `text` value\n", - " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", - " rows2.append({\n", - " 'par_id':parid,\n", - " 'text':text,\n", - " 'label':label\n", - " })\n", - " " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "1\n", + "0\n", + "1\n", + "0\n", + "0\n", + "1\n", + "1\n", + "0\n", + "1\n" + ] + } + ], + "source": [ + "!cat task1.txt | head -n 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "qCjziGtxJRif", + "outputId": "aef99217-9b4d-46f7-f3b9-c9313bc165dc" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "SRP-tn5wli7n" - }, - "outputs": [], - "source": [ - "tedf2 = pd.DataFrame(rows2)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "1,0,0,0,0,0,0\n", + "1,0,0,0,0,0,0\n", + "0,0,0,0,0,0,0\n", + "1,0,0,0,0,1,0\n", + "0,0,0,0,0,0,0\n", + "0,0,0,0,0,0,0\n", + "1,0,0,0,0,0,0\n", + "1,0,0,0,0,0,0\n", + "0,0,0,0,0,0,0\n", + "0,0,1,0,0,1,0\n" + ] + } + ], + "source": [ + "!cat task2.txt | head -n 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "GZDLUcYZbhYg", + "outputId": "7586017d-83f2-4665-eb44-e2264201ac30" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 422 - }, - "id": "8U2lrfJiolku", - "outputId": "6bf1181c-3e95-4913-cceb-9cc9e08b6c29" - }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4046</td>\n", - " <td>we also know that they can benefit by receivin...</td>\n", - " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>1279</td>\n", - " <td>pope francis washed and kissed the feet of mus...</td>\n", - " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>8330</td>\n", - " <td>many refugees do n't want to be resettled anyw...</td>\n", - " <td>[0, 0, 1, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>4063</td>\n", - " <td>\"budding chefs , like \"\" fred \"\" , \"\" winston ...</td>\n", - " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>4089</td>\n", - " <td>\"in a 90-degree view of his constituency , one...</td>\n", - " <td>[1, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2089</th>\n", - " <td>10462</td>\n", - " <td>the sad spectacle , which occurred on saturday...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2090</th>\n", - " <td>10463</td>\n", - " <td>\"\"\" the pakistani police came to our house and...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2091</th>\n", - " <td>10464</td>\n", - " <td>\"when marie o'donoghue went looking for a spec...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2092</th>\n", - " <td>10465</td>\n", - " <td>\"sri lankan norms and culture inhibit women fr...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2093</th>\n", - " <td>10466</td>\n", - " <td>he added that the afp will continue to bank on...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>2094 rows × 3 columns</p>\n", - "</div>" - ], - "text/plain": [ - " par_id ... label\n", - "0 4046 ... [1, 0, 0, 1, 0, 0, 0]\n", - "1 1279 ... [0, 1, 0, 0, 0, 0, 0]\n", - "2 8330 ... [0, 0, 1, 0, 0, 0, 0]\n", - "3 4063 ... [1, 0, 0, 1, 1, 1, 0]\n", - "4 4089 ... [1, 0, 0, 0, 0, 0, 0]\n", - "... ... ... ...\n", - "2089 10462 ... [0, 0, 0, 0, 0, 0, 0]\n", - "2090 10463 ... [0, 0, 0, 0, 0, 0, 0]\n", - "2091 10464 ... [0, 0, 0, 0, 0, 0, 0]\n", - "2092 10465 ... [0, 0, 0, 0, 0, 0, 0]\n", - "2093 10466 ... [0, 0, 0, 0, 0, 0, 0]\n", - "\n", - "[2094 rows x 3 columns]" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } + "name": "stdout", + "output_type": "stream", + "text": [ + " adding: task1.txt (deflated 92%)\n", + " adding: task2.txt (deflated 97%)\n" + ] + } + ], + "source": [ + "!zip submission.zip task1.txt task2.txt" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Reconstruct and RoBERTa baseline train-dev dataset.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "04ae2805168b48da9953754e0989f073": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05826d440af54576a054d0d8e0b212f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05e6b65f527c48e5ab8aaa8a220287c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0649eb3fbea04d98afd7241a9f175dd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22363e506fe341e3a59dfea0a972affb", + "placeholder": "​", + "style": "IPY_MODEL_5cb366b5f6384c408e0b6c8c8e18ca67", + "value": " 0%" + } + }, + "08263433f8b6426693653ab9955e5410": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0ac5312eac44449c8b72030f0d064383": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e3eb217f2c349cf8a2b255ca5a34622", + "placeholder": "​", + "style": "IPY_MODEL_89e65dddb1884e158cb3d1937843ccab", + "value": " 1/1 [02:05<00:00, 125.32s/it]" + } + }, + "1143e9991f3e443a89605fcc72fae27b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "117489e4902040ae97cb222f8c4dda12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8de20f8116142f6bf25aef25f37ad85", + "max": 456318, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c11ef82d87114a59868d9d7810b936db", + "value": 456318 + } + }, + "13bc966911b1433ab6f8245f88b86e2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85ea942b0e194d2a9160f82494fff8e0", + "placeholder": "​", + "style": "IPY_MODEL_abc4d60485bf40d7abf3cbcf212e39a2", + "value": "Downloading: 100%" + } + }, + "1400f1d23b19496ab51b253b5f87298b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "16d4a580157446daaa4f721d28d095fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92b7ffe0dd1b49d1acdb2b588f72569d", + "max": 262, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_95392827ab8149388dd9af86d1fb03a1", + "value": 262 + } + }, + "19628b1c68004e9a98ecb5a934d57d2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "197dca1cad8b425bb4622c9d5da461dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c983b2e75ec44867a14f6d3abdfff2ec", + "max": 298, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f879197b8c2443278e280f82f20cc609", + "value": 298 + } + }, + "1c61f90f85a54cbb9d2ccdbf614eb8d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cf670526680446db48fbf64b1cae0a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3f807cfae5a44fcbf1069817e6fb79d", + "placeholder": "​", + "style": "IPY_MODEL_d1df90f8eead4f5e8718fd42ec0d5e40", + "value": " 298/298 [04:10<00:00, 1.27it/s]" + } + }, + "21c2295bc2a54d979f2a5404f6a7ecb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "22363e506fe341e3a59dfea0a972affb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "226d2e2955444f9ead05b5991d7939e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4bcc997cfa4444287370bbb4819cb43", + "placeholder": "​", + "style": "IPY_MODEL_21c2295bc2a54d979f2a5404f6a7ecb1", + "value": " 0%" + } + }, + "22a8be9fae3245cca79dc7904ed4f49d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "22e0c7f26e6e462ba7f63d02ed4cc1f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0649eb3fbea04d98afd7241a9f175dd1", + "IPY_MODEL_36909c71cfeb44c9aa48c96b0724d5a0", + "IPY_MODEL_d447cc0c53974205ade693d0eff0bc7b" ], - "source": [ - "tedf2" - ] + "layout": "IPY_MODEL_4c58352e4a8a4836ad9d90b68876cadc" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "81aQFjWqpbe2" - }, - "outputs": [], - "source": [ - "tedf2.label = tedf2.label.apply(literal_eval)" - ] + "22f9701e81034b5ea8d1bdd38ab0d191": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "cell_type": "markdown", - "metadata": { - "id": "YKFiVaslbAiC" - }, - "source": [ - "# RoBERTa baseline for Task 2" - ] + "23ee94259c41435ea19264f4a2937585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "hmr5ZZf5Ik5T" - }, - "outputs": [], - "source": [ - "all_negs = trdf2[trdf2.label.apply(lambda x:sum(x) == 0)]\n", - "all_pos = trdf2[trdf2.label.apply(lambda x:sum(x) > 0)]\n", - "\n", - "training_set2 = pd.concat([all_pos,all_negs[:round(len(all_pos)*0.5)]])" - ] + "25fdc4ac2d714e5ba99b4f297726d36c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e4ccd1d746ab4f1f826477bb021c34a8", + "IPY_MODEL_16d4a580157446daaa4f721d28d095fa", + "IPY_MODEL_ec1e8ea22a8f4272b258fa19a2c3ec83" + ], + "layout": "IPY_MODEL_5e5ac5500b974cfcbf76d2e5d70adb3d" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 422 - }, - "id": "zyBcJoHtJHE2", - "outputId": "983b27a6-3bec-47bc-e564-79face4b061c" - }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>par_id</th>\n", - " <th>text</th>\n", - " <th>label</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>4341</td>\n", - " <td>the scheme saw an estimated 150,000 children f...</td>\n", - " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>4136</td>\n", - " <td>durban 's homeless communities reconciliation ...</td>\n", - " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>10352</td>\n", - " <td>the next immediate problem that cropped up was...</td>\n", - " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>8279</td>\n", - " <td>far more important than the implications for t...</td>\n", - " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>1164</td>\n", - " <td>to strengthen child-sensitive social protectio...</td>\n", - " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1186</th>\n", - " <td>434</td>\n", - " <td>\"\"\" i was absolutely useless at school , hopel...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1187</th>\n", - " <td>435</td>\n", - " <td>i also noticed the change in socio-economic le...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1188</th>\n", - " <td>436</td>\n", - " <td>can donald trump win ? it 's possible , but ce...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1189</th>\n", - " <td>437</td>\n", - " <td>he added that any introduction of new law must...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1190</th>\n", - " <td>439</td>\n", - " <td>lusaka zambia ( xinhua ) -- zambia ? s immigra...</td>\n", - " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>1191 rows × 3 columns</p>\n", - "</div>" - ], - "text/plain": [ - " par_id ... label\n", - "0 4341 ... [1, 0, 0, 1, 0, 0, 0]\n", - "1 4136 ... [0, 1, 0, 0, 0, 0, 0]\n", - "2 10352 ... [1, 0, 0, 0, 0, 1, 0]\n", - "3 8279 ... [0, 0, 0, 1, 0, 0, 0]\n", - "4 1164 ... [1, 0, 0, 1, 1, 1, 0]\n", - "... ... ... ...\n", - "1186 434 ... [0, 0, 0, 0, 0, 0, 0]\n", - "1187 435 ... [0, 0, 0, 0, 0, 0, 0]\n", - "1188 436 ... [0, 0, 0, 0, 0, 0, 0]\n", - "1189 437 ... [0, 0, 0, 0, 0, 0, 0]\n", - "1190 439 ... [0, 0, 0, 0, 0, 0, 0]\n", - "\n", - "[1191 rows x 3 columns]" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } + "26178b1ed5164ca7bcea84b65fc95522": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29ad13a85dc44e4e919bed1daddf0935": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c3f59321aac4ea78e4c70618f907e08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d1343667008643c8a893bfae962503c1", + "IPY_MODEL_384f2a4804ed458498b35f04d32e41b5", + "IPY_MODEL_f7e1e00cad5449dfb55c6a920a292540" ], - "source": [ - "training_set2" - ] + "layout": "IPY_MODEL_ff3206118d3043b3a9b757ec3ca01d9f" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 379, - "referenced_widgets": [ - "22e0c7f26e6e462ba7f63d02ed4cc1f0", - "4c58352e4a8a4836ad9d90b68876cadc", - "0649eb3fbea04d98afd7241a9f175dd1", - "36909c71cfeb44c9aa48c96b0724d5a0", - "d447cc0c53974205ade693d0eff0bc7b", - "5cb366b5f6384c408e0b6c8c8e18ca67", - "22363e506fe341e3a59dfea0a972affb", - "1143e9991f3e443a89605fcc72fae27b", - "c88d5b03d6d9498ab972678dedb018bf", - "d79ae039a52a43c0a20ff96b2d32607b", - "05826d440af54576a054d0d8e0b212f6", - "f1e8ea21a9e6457e8dcd35b21be75b22", - "1400f1d23b19496ab51b253b5f87298b", - "5ef5f967ffff4b9689f6f72772e1d9fd", - "e59cd0b3c86e4be28ae6442694b22f9c", - "0ac5312eac44449c8b72030f0d064383", - "d12ad49c9fc54f86affd96e975b93186", - "e98cda63a023489cae4ada214ba5bb38", - "379253e799eb4c9b92342abeffd9b4a2", - "448426e53b934f8d8cfc96a94f95e4b1", - "89e65dddb1884e158cb3d1937843ccab", - "9e3eb217f2c349cf8a2b255ca5a34622", - "7473c3bed5854eacbc818363f4a1ab9a", - "04ae2805168b48da9953754e0989f073", - "7de6deb7064344faa9e4104be09bc1b6", - "dd69b800241e4bb3a856ecd46968b762", - "2ea5a9a7f9a44295ad5364f47926b9d2", - "5d195a90ff5143a998c4cb9ca851811b", - "c4425a4579084d37b000192df67e3ae1", - "e4508e3bbceb40538e0f01a40da539de", - "d7a3b9eef0e347278563217103b4253c", - "a23c1b483a9e4aca8dc12da65527b103", - "dc4ab3d0b89440a38725e54852db46df", - "31e1a0a3fe2f4228887c1abc7443e8ea", - "f107664ab872463fa5dbee7bcfe1a866", - "e778f7c68ce54014a5bfb3050e72292a", - "8ecaba0474a64ea3a4a400107f08b90e", - "3bedc272418949e8bb2897bcfae0a36b", - "5d63fdd645634af381db3abc93ce2b24", - "afd3d0f6506e464c98b9ad57a24c3e9d", - "08263433f8b6426693653ab9955e5410", - "bdda742fee1148d581d8a15e8a560869", - "c4dbb10f007f483a950a95555583dc2a", - "d66f8f8d82f9499488b6ffa16193b320", - "25fdc4ac2d714e5ba99b4f297726d36c", - "5e5ac5500b974cfcbf76d2e5d70adb3d", - "e4ccd1d746ab4f1f826477bb021c34a8", - "16d4a580157446daaa4f721d28d095fa", - "ec1e8ea22a8f4272b258fa19a2c3ec83", - "fba89fa62d6a413b90f3961755794a61", - "22f9701e81034b5ea8d1bdd38ab0d191", - "95392827ab8149388dd9af86d1fb03a1", - "92b7ffe0dd1b49d1acdb2b588f72569d", - "afd5528b85874795ac1d736dde15b810", - "99a8a52b7dfb4fa994a4b09feba8fe58" - ] - }, - "id": "ECb7_mwzbFa6", - "outputId": "d433e1aa-c3c4-4a00-9b2a-c04ccdc20588" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForMultiLabelSequenceClassification: ['lm_head.layer_norm.weight', 'lm_head.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.dense.weight', 'lm_head.decoder.weight']\n", - "- This IS expected if you are initializing RobertaForMultiLabelSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing RobertaForMultiLabelSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of RobertaForMultiLabelSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.bias', 'classifier.dense.weight']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "/usr/local/lib/python3.7/dist-packages/simpletransformers/classification/classification_model.py:586: UserWarning: Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\n", - " \"Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\"\n", - "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "22e0c7f26e6e462ba7f63d02ed4cc1f0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/1191 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f1e8ea21a9e6457e8dcd35b21be75b22", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Epoch: 0%| | 0/1 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7473c3bed5854eacbc818363f4a1ab9a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Running Epoch 0 of 1: 0%| | 0/149 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:simpletransformers.classification.classification_model: Training of roberta model complete. Saved to outputs/.\n", - "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "31e1a0a3fe2f4228887c1abc7443e8ea", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/2094 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "25fdc4ac2d714e5ba99b4f297726d36c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/262 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "2c646f33655d4646b70afef87232d5a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ea5a9a7f9a44295ad5364f47926b9d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc4ab3d0b89440a38725e54852db46df", + "placeholder": "​", + "style": "IPY_MODEL_a23c1b483a9e4aca8dc12da65527b103", + "value": " 149/149 [02:05<00:00, 1.24it/s]" + } + }, + "2eea385dfcf745e6b92c37eb6cd901f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2fcffe85dbcc4c91b840c61799b82772": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3119accf975446eda52b0125571322a4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31e1a0a3fe2f4228887c1abc7443e8ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e778f7c68ce54014a5bfb3050e72292a", + "IPY_MODEL_8ecaba0474a64ea3a4a400107f08b90e", + "IPY_MODEL_3bedc272418949e8bb2897bcfae0a36b" ], - "source": [ - "task2_model_args = MultiLabelClassificationArgs(num_train_epochs=1,\n", - " no_save=True, \n", - " no_cache=True, \n", - " overwrite_output_dir=True\n", - " )\n", - "task2_model = MultiLabelClassificationModel(\"roberta\", \n", - " 'roberta-base', \n", - " num_labels=7,\n", - " args = task2_model_args, \n", - " use_cuda=cuda_available)\n", - "# train model\n", - "task2_model.train_model(training_set2[['text', 'label']])\n", - "# run predictions\n", - "preds_task2, _ = task2_model.predict(tedf2.text.tolist())" - ] + "layout": "IPY_MODEL_f107664ab872463fa5dbee7bcfe1a866" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "0211sxhsbbWZ" - }, - "outputs": [], - "source": [ - "labels2file(preds_task2, 'task2.txt')" - ] + "32fe020b5dc54143af2830ec578eecdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "cell_type": "markdown", - "metadata": { - "id": "RT8hjnxbbfJq" - }, - "source": [ - "## Prepare submission" - ] + "36909c71cfeb44c9aa48c96b0724d5a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c88d5b03d6d9498ab972678dedb018bf", + "max": 1191, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1143e9991f3e443a89605fcc72fae27b", + "value": 3 + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "U7HICl8MJQf0", - "outputId": "794d8101-dd24-4dd5-b315-93c931a6b040" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "1\n", - "0\n", - "1\n", - "0\n", - "0\n", - "1\n", - "1\n", - "0\n", - "1\n" - ] - } + "37531d1ef87f45c99df60fb6a8a66d78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "379253e799eb4c9b92342abeffd9b4a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "384f2a4804ed458498b35f04d32e41b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f8e6355fcb74fc98cc641bc36bd1707", + "max": 1355863, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee3cdac0740d43188518e097ae5863a5", + "value": 1355863 + } + }, + "3bedc272418949e8bb2897bcfae0a36b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d66f8f8d82f9499488b6ffa16193b320", + "placeholder": "​", + "style": "IPY_MODEL_c4dbb10f007f483a950a95555583dc2a", + "value": " 5/2094 [00:02<17:16, 2.02it/s]" + } + }, + "3cd79b7a96784504a28dce435f9de5b5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d7e4c3c0af84bc4940d2e25ad8a5162": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "419ce58d2ed14589a3d2e1cd7b477e0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "448426e53b934f8d8cfc96a94f95e4b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "49fd3eaa74fa493fbe7324607888c542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a03ac52afa84bfd82ced188892b1958": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22a8be9fae3245cca79dc7904ed4f49d", + "max": 262, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7fe11f4ffd3747079b8de4453b29dbac", + "value": 262 + } + }, + "4c58352e4a8a4836ad9d90b68876cadc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d22ac94c09d4802b4664e456278308a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1dc117db5c444bd918b9ab70b587f48", + "max": 501200538, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0b81615b8fc4b8d8a48232d029e717d", + "value": 501200538 + } + }, + "4ec670884e2247ec872defaa5bf7dcc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4f8aa1c4c8914693a24523c1064ecf97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f8b629635194d759b9c91f37a445632": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fbbc5b908c14198b8c86ca2208bd890": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "568d424c94094d669282ed72b4cf0be4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59458022ec4547beba130ce755946427": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac45cf1a895f4ba39c5be0ad136c4591", + "IPY_MODEL_117489e4902040ae97cb222f8c4dda12", + "IPY_MODEL_ba09b68a05644dd1b7d12a19396fb3b8" ], - "source": [ - "!cat task1.txt | head -n 10" - ] + "layout": "IPY_MODEL_26178b1ed5164ca7bcea84b65fc95522" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qCjziGtxJRif", - "outputId": "aef99217-9b4d-46f7-f3b9-c9313bc165dc" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1,0,0,0,0,0,0\n", - "1,0,0,0,0,0,0\n", - "0,0,0,0,0,0,0\n", - "1,0,0,0,0,1,0\n", - "0,0,0,0,0,0,0\n", - "0,0,0,0,0,0,0\n", - "1,0,0,0,0,0,0\n", - "1,0,0,0,0,0,0\n", - "0,0,0,0,0,0,0\n", - "0,0,1,0,0,1,0\n" - ] - } + "594d094f060e4481977901e11c2ddaf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8757d3393f04a55a5bea7f923944281", + "placeholder": "​", + "style": "IPY_MODEL_fc14f76deb2549b3a5c6bce9ea3dd7e3", + "value": " 478M/478M [00:18<00:00, 27.3MB/s]" + } + }, + "59c41a4934cf4ef2b467ae5d97b615f0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5bc982f17aec46b3b7f8308f567f6296": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cb366b5f6384c408e0b6c8c8e18ca67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d195a90ff5143a998c4cb9ca851811b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d63fdd645634af381db3abc93ce2b24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5e5ac5500b974cfcbf76d2e5d70adb3d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ef5f967ffff4b9689f6f72772e1d9fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e98cda63a023489cae4ada214ba5bb38", + "placeholder": "​", + "style": "IPY_MODEL_d12ad49c9fc54f86affd96e975b93186", + "value": "Epoch 1 of 1: 100%" + } + }, + "60b8f43949894143a83263e96d0ac3fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6851a6f291a04bd59da6cf04d6f762aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d79bd01e1fe44c12ac530376324d9e0e", + "IPY_MODEL_4a03ac52afa84bfd82ced188892b1958", + "IPY_MODEL_8351a84b9c914d80a54ac57a2fb18304" ], - "source": [ - "!cat task2.txt | head -n 10" - ] + "layout": "IPY_MODEL_3cd79b7a96784504a28dce435f9de5b5" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "GZDLUcYZbhYg", - "outputId": "7586017d-83f2-4665-eb44-e2264201ac30" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " adding: task1.txt (deflated 92%)\n", - " adding: task2.txt (deflated 97%)\n" - ] - } + "6870cb8717ba407c81d0b7c79ad27d26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b2a3cde2cdb4bc6a9d0623363c66266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6cc05e8394ac491999930b9493be855e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab2d97c595ff4e55969bc2f1415f747d", + "max": 898823, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f8aa1c4c8914693a24523c1064ecf97", + "value": 898823 + } + }, + "6f8e6355fcb74fc98cc641bc36bd1707": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "703f69d98e9947f3aeaba07b51d64f3c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7473c3bed5854eacbc818363f4a1ab9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7de6deb7064344faa9e4104be09bc1b6", + "IPY_MODEL_dd69b800241e4bb3a856ecd46968b762", + "IPY_MODEL_2ea5a9a7f9a44295ad5364f47926b9d2" ], - "source": [ - "!zip submission.zip task1.txt task2.txt" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [], - "name": "Reconstruct and RoBERTa baseline train-dev dataset.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "04ae2805168b48da9953754e0989f073": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "05826d440af54576a054d0d8e0b212f6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "05e6b65f527c48e5ab8aaa8a220287c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0649eb3fbea04d98afd7241a9f175dd1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_22363e506fe341e3a59dfea0a972affb", - "placeholder": "​", - "style": "IPY_MODEL_5cb366b5f6384c408e0b6c8c8e18ca67", - "value": " 0%" - } - }, - "08263433f8b6426693653ab9955e5410": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0ac5312eac44449c8b72030f0d064383": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e3eb217f2c349cf8a2b255ca5a34622", - "placeholder": "​", - "style": "IPY_MODEL_89e65dddb1884e158cb3d1937843ccab", - "value": " 1/1 [02:05<00:00, 125.32s/it]" - } - }, - "1143e9991f3e443a89605fcc72fae27b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "117489e4902040ae97cb222f8c4dda12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a8de20f8116142f6bf25aef25f37ad85", - "max": 456318, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c11ef82d87114a59868d9d7810b936db", - "value": 456318 - } - }, - "13bc966911b1433ab6f8245f88b86e2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85ea942b0e194d2a9160f82494fff8e0", - "placeholder": "​", - "style": "IPY_MODEL_abc4d60485bf40d7abf3cbcf212e39a2", - "value": "Downloading: 100%" - } - }, - "1400f1d23b19496ab51b253b5f87298b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "16d4a580157446daaa4f721d28d095fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_92b7ffe0dd1b49d1acdb2b588f72569d", - "max": 262, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_95392827ab8149388dd9af86d1fb03a1", - "value": 262 - } - }, - "19628b1c68004e9a98ecb5a934d57d2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "197dca1cad8b425bb4622c9d5da461dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c983b2e75ec44867a14f6d3abdfff2ec", - "max": 298, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f879197b8c2443278e280f82f20cc609", - "value": 298 - } - }, - "1c61f90f85a54cbb9d2ccdbf614eb8d5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1cf670526680446db48fbf64b1cae0a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b3f807cfae5a44fcbf1069817e6fb79d", - "placeholder": "​", - "style": "IPY_MODEL_d1df90f8eead4f5e8718fd42ec0d5e40", - "value": " 298/298 [04:10<00:00, 1.27it/s]" - } - }, - "21c2295bc2a54d979f2a5404f6a7ecb1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "22363e506fe341e3a59dfea0a972affb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "226d2e2955444f9ead05b5991d7939e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b4bcc997cfa4444287370bbb4819cb43", - "placeholder": "​", - "style": "IPY_MODEL_21c2295bc2a54d979f2a5404f6a7ecb1", - "value": " 0%" - } - }, - "22a8be9fae3245cca79dc7904ed4f49d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22e0c7f26e6e462ba7f63d02ed4cc1f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0649eb3fbea04d98afd7241a9f175dd1", - "IPY_MODEL_36909c71cfeb44c9aa48c96b0724d5a0", - "IPY_MODEL_d447cc0c53974205ade693d0eff0bc7b" - ], - "layout": "IPY_MODEL_4c58352e4a8a4836ad9d90b68876cadc" - } - }, - "22f9701e81034b5ea8d1bdd38ab0d191": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "23ee94259c41435ea19264f4a2937585": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "25fdc4ac2d714e5ba99b4f297726d36c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e4ccd1d746ab4f1f826477bb021c34a8", - "IPY_MODEL_16d4a580157446daaa4f721d28d095fa", - "IPY_MODEL_ec1e8ea22a8f4272b258fa19a2c3ec83" - ], - "layout": "IPY_MODEL_5e5ac5500b974cfcbf76d2e5d70adb3d" - } - }, - "26178b1ed5164ca7bcea84b65fc95522": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "29ad13a85dc44e4e919bed1daddf0935": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2c3f59321aac4ea78e4c70618f907e08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d1343667008643c8a893bfae962503c1", - "IPY_MODEL_384f2a4804ed458498b35f04d32e41b5", - "IPY_MODEL_f7e1e00cad5449dfb55c6a920a292540" - ], - "layout": "IPY_MODEL_ff3206118d3043b3a9b757ec3ca01d9f" - } - }, - "2c646f33655d4646b70afef87232d5a1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2ea5a9a7f9a44295ad5364f47926b9d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dc4ab3d0b89440a38725e54852db46df", - "placeholder": "​", - "style": "IPY_MODEL_a23c1b483a9e4aca8dc12da65527b103", - "value": " 149/149 [02:05<00:00, 1.24it/s]" - } - }, - "2eea385dfcf745e6b92c37eb6cd901f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fcffe85dbcc4c91b840c61799b82772": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3119accf975446eda52b0125571322a4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "31e1a0a3fe2f4228887c1abc7443e8ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e778f7c68ce54014a5bfb3050e72292a", - "IPY_MODEL_8ecaba0474a64ea3a4a400107f08b90e", - "IPY_MODEL_3bedc272418949e8bb2897bcfae0a36b" - ], - "layout": "IPY_MODEL_f107664ab872463fa5dbee7bcfe1a866" - } - }, - "32fe020b5dc54143af2830ec578eecdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "36909c71cfeb44c9aa48c96b0724d5a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "danger", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c88d5b03d6d9498ab972678dedb018bf", - "max": 1191, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1143e9991f3e443a89605fcc72fae27b", - "value": 3 - } - }, - "37531d1ef87f45c99df60fb6a8a66d78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "379253e799eb4c9b92342abeffd9b4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "384f2a4804ed458498b35f04d32e41b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6f8e6355fcb74fc98cc641bc36bd1707", - "max": 1355863, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee3cdac0740d43188518e097ae5863a5", - "value": 1355863 - } - }, - "3bedc272418949e8bb2897bcfae0a36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d66f8f8d82f9499488b6ffa16193b320", - "placeholder": "​", - "style": "IPY_MODEL_c4dbb10f007f483a950a95555583dc2a", - "value": " 5/2094 [00:02<17:16, 2.02it/s]" - } - }, - "3cd79b7a96784504a28dce435f9de5b5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3d7e4c3c0af84bc4940d2e25ad8a5162": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "419ce58d2ed14589a3d2e1cd7b477e0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "448426e53b934f8d8cfc96a94f95e4b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "49fd3eaa74fa493fbe7324607888c542": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a03ac52afa84bfd82ced188892b1958": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_22a8be9fae3245cca79dc7904ed4f49d", - "max": 262, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7fe11f4ffd3747079b8de4453b29dbac", - "value": 262 - } - }, - "4c58352e4a8a4836ad9d90b68876cadc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4d22ac94c09d4802b4664e456278308a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c1dc117db5c444bd918b9ab70b587f48", - "max": 501200538, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0b81615b8fc4b8d8a48232d029e717d", - "value": 501200538 - } - }, - "4ec670884e2247ec872defaa5bf7dcc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4f8aa1c4c8914693a24523c1064ecf97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f8b629635194d759b9c91f37a445632": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4fbbc5b908c14198b8c86ca2208bd890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "568d424c94094d669282ed72b4cf0be4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "59458022ec4547beba130ce755946427": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac45cf1a895f4ba39c5be0ad136c4591", - "IPY_MODEL_117489e4902040ae97cb222f8c4dda12", - "IPY_MODEL_ba09b68a05644dd1b7d12a19396fb3b8" - ], - "layout": "IPY_MODEL_26178b1ed5164ca7bcea84b65fc95522" - } - }, - "594d094f060e4481977901e11c2ddaf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a8757d3393f04a55a5bea7f923944281", - "placeholder": "​", - "style": "IPY_MODEL_fc14f76deb2549b3a5c6bce9ea3dd7e3", - "value": " 478M/478M [00:18<00:00, 27.3MB/s]" - } - }, - "59c41a4934cf4ef2b467ae5d97b615f0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5bc982f17aec46b3b7f8308f567f6296": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5cb366b5f6384c408e0b6c8c8e18ca67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5d195a90ff5143a998c4cb9ca851811b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5d63fdd645634af381db3abc93ce2b24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5e5ac5500b974cfcbf76d2e5d70adb3d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5ef5f967ffff4b9689f6f72772e1d9fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e98cda63a023489cae4ada214ba5bb38", - "placeholder": "​", - "style": "IPY_MODEL_d12ad49c9fc54f86affd96e975b93186", - "value": "Epoch 1 of 1: 100%" - } - }, - "60b8f43949894143a83263e96d0ac3fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6851a6f291a04bd59da6cf04d6f762aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d79bd01e1fe44c12ac530376324d9e0e", - "IPY_MODEL_4a03ac52afa84bfd82ced188892b1958", - "IPY_MODEL_8351a84b9c914d80a54ac57a2fb18304" - ], - "layout": "IPY_MODEL_3cd79b7a96784504a28dce435f9de5b5" - } - }, - "6870cb8717ba407c81d0b7c79ad27d26": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6b2a3cde2cdb4bc6a9d0623363c66266": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6cc05e8394ac491999930b9493be855e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab2d97c595ff4e55969bc2f1415f747d", - "max": 898823, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f8aa1c4c8914693a24523c1064ecf97", - "value": 898823 - } - }, - "6f8e6355fcb74fc98cc641bc36bd1707": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "703f69d98e9947f3aeaba07b51d64f3c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7473c3bed5854eacbc818363f4a1ab9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7de6deb7064344faa9e4104be09bc1b6", - "IPY_MODEL_dd69b800241e4bb3a856ecd46968b762", - "IPY_MODEL_2ea5a9a7f9a44295ad5364f47926b9d2" - ], - "layout": "IPY_MODEL_04ae2805168b48da9953754e0989f073" - } - }, - "770ad4abfc4f4eeebefade5afcad22a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "790e423a21b840978da497d9d35634a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3d7e4c3c0af84bc4940d2e25ad8a5162", - "placeholder": "​", - "style": "IPY_MODEL_4ec670884e2247ec872defaa5bf7dcc5", - "value": "Downloading: 100%" - } - }, - "7a0d26d292e54498a15bc2e54e6c3aee": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7de6deb7064344faa9e4104be09bc1b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c4425a4579084d37b000192df67e3ae1", - "placeholder": "​", - "style": "IPY_MODEL_5d195a90ff5143a998c4cb9ca851811b", - "value": "Epochs 0/1. Running Loss: 0.3490: 100%" - } - }, - "7e3df3b58c7e4117b0a8b8fc45dffa01": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7fe11f4ffd3747079b8de4453b29dbac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "818e5dbea2094a97a18974aebe4ddb86": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "82f733de38ef4c5f8734cbdf47ec1a01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c2dae6a605f842d3aaad1f86b2e332b6", - "IPY_MODEL_197dca1cad8b425bb4622c9d5da461dc", - "IPY_MODEL_1cf670526680446db48fbf64b1cae0a6" - ], - "layout": "IPY_MODEL_818e5dbea2094a97a18974aebe4ddb86" - } - }, - "8351a84b9c914d80a54ac57a2fb18304": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dba102bf2b3249c8907d4fe1d5cf0e82", - "placeholder": "​", - "style": "IPY_MODEL_ed1ad3ad89334675babf56f9737a17fb", - "value": " 262/262 [01:10<00:00, 3.93it/s]" - } - }, - "85ea942b0e194d2a9160f82494fff8e0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "89e65dddb1884e158cb3d1937843ccab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "89f9d8cab0c44b58afee34914198a9e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8cefe2ef3c984e3a8ad1bb8ecb7f0dbb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_703f69d98e9947f3aeaba07b51d64f3c", - "placeholder": "​", - "style": "IPY_MODEL_60b8f43949894143a83263e96d0ac3fa", - "value": " 878k/878k [00:00<00:00, 637kB/s]" - } - }, - "8ecaba0474a64ea3a4a400107f08b90e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "danger", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bdda742fee1148d581d8a15e8a560869", - "max": 2094, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_08263433f8b6426693653ab9955e5410", - "value": 5 - } - }, - "904714fa04be424da224c801f06d52f6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "92b7ffe0dd1b49d1acdb2b588f72569d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "95392827ab8149388dd9af86d1fb03a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "99a8a52b7dfb4fa994a4b09feba8fe58": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9e3eb217f2c349cf8a2b255ca5a34622": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9f03facdd7704ab9be2bd65f1060f215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "danger", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5bc982f17aec46b3b7f8308f567f6296", - "max": 2094, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4fbbc5b908c14198b8c86ca2208bd890", - "value": 5 - } - }, - "a23c1b483a9e4aca8dc12da65527b103": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a287d92682d644daa34030f58227540f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a308011d2efd403fb6b8d250d8f98fa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_226d2e2955444f9ead05b5991d7939e5", - "IPY_MODEL_9f03facdd7704ab9be2bd65f1060f215", - "IPY_MODEL_fc122d487cbd4ab69e78f1b9425774ba" - ], - "layout": "IPY_MODEL_770ad4abfc4f4eeebefade5afcad22a3" - } - }, - "a8757d3393f04a55a5bea7f923944281": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a8de20f8116142f6bf25aef25f37ad85": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a90282c995cc4c6db59eaa51e3414ad1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b4d34c0c2e364f88b70036cbff6f780a", - "IPY_MODEL_4d22ac94c09d4802b4664e456278308a", - "IPY_MODEL_594d094f060e4481977901e11c2ddaf2" - ], - "layout": "IPY_MODEL_d76e461fca524e04810c38b44ad51185" - } - }, - "ab2d97c595ff4e55969bc2f1415f747d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "abc4d60485bf40d7abf3cbcf212e39a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ac45cf1a895f4ba39c5be0ad136c4591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1c61f90f85a54cbb9d2ccdbf614eb8d5", - "placeholder": "​", - "style": "IPY_MODEL_37531d1ef87f45c99df60fb6a8a66d78", - "value": "Downloading: 100%" - } - }, - "afd3d0f6506e464c98b9ad57a24c3e9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "afd5528b85874795ac1d736dde15b810": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b088cb07387d4a46b3c7d4d7cc9a5aba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b276fc7fd7954ec09fabbcad64b93508": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b3f807cfae5a44fcbf1069817e6fb79d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b4bcc997cfa4444287370bbb4819cb43": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b4d34c0c2e364f88b70036cbff6f780a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_29ad13a85dc44e4e919bed1daddf0935", - "placeholder": "​", - "style": "IPY_MODEL_b276fc7fd7954ec09fabbcad64b93508", - "value": "Downloading: 100%" - } - }, - "b8654137c93f4a70b0fb8f7e692f7673": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e567e754183b42d69d3d200a4517b132", - "IPY_MODEL_e4c905c262994b7d9197f77b2da2c178", - "IPY_MODEL_f0b59d4d691c44a4a7dbb40991518d36" - ], - "layout": "IPY_MODEL_b088cb07387d4a46b3c7d4d7cc9a5aba" - } - }, - "ba09b68a05644dd1b7d12a19396fb3b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2fcffe85dbcc4c91b840c61799b82772", - "placeholder": "​", - "style": "IPY_MODEL_32fe020b5dc54143af2830ec578eecdf", - "value": " 446k/446k [00:00<00:00, 2.39MB/s]" - } - }, - "bac5decd48b74036a270f70a05c3f80e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bdda742fee1148d581d8a15e8a560869": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c0b81615b8fc4b8d8a48232d029e717d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c11ef82d87114a59868d9d7810b936db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c1dc117db5c444bd918b9ab70b587f48": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c2dae6a605f842d3aaad1f86b2e332b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7d3e0bd4a9c43dd9946a8a63b12d1d7", - "placeholder": "​", - "style": "IPY_MODEL_ece446ccb0d3496a81dc0250fff9039d", - "value": "Epochs 0/1. Running Loss: 0.3547: 100%" - } - }, - "c3a17fa9e8da4d9fb571e307f75ac144": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c3cafc815e4444a8998e608cd9c9300d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c43f7ff02eb74e0d900029f97652a973": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3119accf975446eda52b0125571322a4", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_89f9d8cab0c44b58afee34914198a9e6", - "value": 1 - } - }, - "c4425a4579084d37b000192df67e3ae1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c4dbb10f007f483a950a95555583dc2a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c88d5b03d6d9498ab972678dedb018bf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c983b2e75ec44867a14f6d3abdfff2ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cafdb944408b42eaacec5b2e8566962b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cf4fb870564043cfbc171ae05143ec5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_59c41a4934cf4ef2b467ae5d97b615f0", - "placeholder": "​", - "style": "IPY_MODEL_2eea385dfcf745e6b92c37eb6cd901f4", - "value": " 481/481 [00:00<00:00, 10.4kB/s]" - } - }, - "d12ad49c9fc54f86affd96e975b93186": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d1343667008643c8a893bfae962503c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_05e6b65f527c48e5ab8aaa8a220287c0", - "placeholder": "​", - "style": "IPY_MODEL_ec68ce238bb04063a74afd67a4f1e877", - "value": "Downloading: 100%" - } - }, - "d16d01773a334ccb8a9231d3cae6e0f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d48d137548464c3387dd51494cb969bf", - "placeholder": "​", - "style": "IPY_MODEL_4f8b629635194d759b9c91f37a445632", - "value": "Epoch 1 of 1: 100%" - } - }, - "d1df90f8eead4f5e8718fd42ec0d5e40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d32db030dff24fe3bd1983a44c703311": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d16d01773a334ccb8a9231d3cae6e0f4", - "IPY_MODEL_c43f7ff02eb74e0d900029f97652a973", - "IPY_MODEL_d6a37bb80db94947810fa1d69b8b416b" - ], - "layout": "IPY_MODEL_ee1cc81a307a4ea6ac00b65a4d314877" - } - }, - "d447cc0c53974205ade693d0eff0bc7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_05826d440af54576a054d0d8e0b212f6", - "placeholder": "​", - "style": "IPY_MODEL_d79ae039a52a43c0a20ff96b2d32607b", - "value": " 3/1191 [00:01<10:25, 1.90it/s]" - } - }, - "d48d137548464c3387dd51494cb969bf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d66f8f8d82f9499488b6ffa16193b320": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d6a37bb80db94947810fa1d69b8b416b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2c646f33655d4646b70afef87232d5a1", - "placeholder": "​", - "style": "IPY_MODEL_bac5decd48b74036a270f70a05c3f80e", - "value": " 1/1 [04:10<00:00, 250.44s/it]" - } - }, - "d76e461fca524e04810c38b44ad51185": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d79ae039a52a43c0a20ff96b2d32607b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d79bd01e1fe44c12ac530376324d9e0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_568d424c94094d669282ed72b4cf0be4", - "placeholder": "​", - "style": "IPY_MODEL_419ce58d2ed14589a3d2e1cd7b477e0f", - "value": "100%" - } - }, - "d7a3b9eef0e347278563217103b4253c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d7d3e0bd4a9c43dd9946a8a63b12d1d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dba102bf2b3249c8907d4fe1d5cf0e82": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dc4ab3d0b89440a38725e54852db46df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dd69b800241e4bb3a856ecd46968b762": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7a3b9eef0e347278563217103b4253c", - "max": 149, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_e4508e3bbceb40538e0f01a40da539de", - "value": 149 - } - }, - "de026e2d1ec848fbb35faf1746e7579d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13bc966911b1433ab6f8245f88b86e2d", - "IPY_MODEL_ec69c0f693b74ac8b737816b1efaa8bf", - "IPY_MODEL_cf4fb870564043cfbc171ae05143ec5f" - ], - "layout": "IPY_MODEL_7a0d26d292e54498a15bc2e54e6c3aee" - } - }, - "df46941823a540f787e2e9dad52243d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_790e423a21b840978da497d9d35634a6", - "IPY_MODEL_6cc05e8394ac491999930b9493be855e", - "IPY_MODEL_8cefe2ef3c984e3a8ad1bb8ecb7f0dbb" - ], - "layout": "IPY_MODEL_904714fa04be424da224c801f06d52f6" - } - }, - "e4508e3bbceb40538e0f01a40da539de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e4c905c262994b7d9197f77b2da2c178": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "danger", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3cafc815e4444a8998e608cd9c9300d", - "max": 2382, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_23ee94259c41435ea19264f4a2937585", - "value": 5 - } - }, - "e4ccd1d746ab4f1f826477bb021c34a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_22f9701e81034b5ea8d1bdd38ab0d191", - "placeholder": "​", - "style": "IPY_MODEL_fba89fa62d6a413b90f3961755794a61", - "value": "100%" - } - }, - "e567e754183b42d69d3d200a4517b132": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3a17fa9e8da4d9fb571e307f75ac144", - "placeholder": "​", - "style": "IPY_MODEL_fe372945c13845e5bd01ca4e153ed61c", - "value": " 0%" - } - }, - "e59cd0b3c86e4be28ae6442694b22f9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_448426e53b934f8d8cfc96a94f95e4b1", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_379253e799eb4c9b92342abeffd9b4a2", - "value": 1 - } - }, - "e778f7c68ce54014a5bfb3050e72292a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_afd3d0f6506e464c98b9ad57a24c3e9d", - "placeholder": "​", - "style": "IPY_MODEL_5d63fdd645634af381db3abc93ce2b24", - "value": " 0%" - } - }, - "e98cda63a023489cae4ada214ba5bb38": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ec1e8ea22a8f4272b258fa19a2c3ec83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_99a8a52b7dfb4fa994a4b09feba8fe58", - "placeholder": "​", - "style": "IPY_MODEL_afd5528b85874795ac1d736dde15b810", - "value": " 262/262 [01:11<00:00, 3.95it/s]" - } - }, - "ec68ce238bb04063a74afd67a4f1e877": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ec69c0f693b74ac8b737816b1efaa8bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a287d92682d644daa34030f58227540f", - "max": 481, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6b2a3cde2cdb4bc6a9d0623363c66266", - "value": 481 - } - }, - "ece446ccb0d3496a81dc0250fff9039d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ed1ad3ad89334675babf56f9737a17fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ee1cc81a307a4ea6ac00b65a4d314877": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ee3cdac0740d43188518e097ae5863a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f0b59d4d691c44a4a7dbb40991518d36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6870cb8717ba407c81d0b7c79ad27d26", - "placeholder": "​", - "style": "IPY_MODEL_49fd3eaa74fa493fbe7324607888c542", - "value": " 5/2382 [00:01<09:49, 4.03it/s]" - } - }, - "f107664ab872463fa5dbee7bcfe1a866": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f1e8ea21a9e6457e8dcd35b21be75b22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ef5f967ffff4b9689f6f72772e1d9fd", - "IPY_MODEL_e59cd0b3c86e4be28ae6442694b22f9c", - "IPY_MODEL_0ac5312eac44449c8b72030f0d064383" - ], - "layout": "IPY_MODEL_1400f1d23b19496ab51b253b5f87298b" - } - }, - "f1fe964e4d2b4ebb8f76b3d8debdaab6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f7e1e00cad5449dfb55c6a920a292540": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cafdb944408b42eaacec5b2e8566962b", - "placeholder": "​", - "style": "IPY_MODEL_19628b1c68004e9a98ecb5a934d57d2d", - "value": " 1.29M/1.29M [00:00<00:00, 898kB/s]" - } - }, - "f879197b8c2443278e280f82f20cc609": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fba89fa62d6a413b90f3961755794a61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fc122d487cbd4ab69e78f1b9425774ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7e3df3b58c7e4117b0a8b8fc45dffa01", - "placeholder": "​", - "style": "IPY_MODEL_f1fe964e4d2b4ebb8f76b3d8debdaab6", - "value": " 5/2094 [00:01<09:10, 3.80it/s]" - } - }, - "fc14f76deb2549b3a5c6bce9ea3dd7e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fe372945c13845e5bd01ca4e153ed61c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ff3206118d3043b3a9b757ec3ca01d9f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - } + "layout": "IPY_MODEL_04ae2805168b48da9953754e0989f073" + } + }, + "770ad4abfc4f4eeebefade5afcad22a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "790e423a21b840978da497d9d35634a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d7e4c3c0af84bc4940d2e25ad8a5162", + "placeholder": "​", + "style": "IPY_MODEL_4ec670884e2247ec872defaa5bf7dcc5", + "value": "Downloading: 100%" + } + }, + "7a0d26d292e54498a15bc2e54e6c3aee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7de6deb7064344faa9e4104be09bc1b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c4425a4579084d37b000192df67e3ae1", + "placeholder": "​", + "style": "IPY_MODEL_5d195a90ff5143a998c4cb9ca851811b", + "value": "Epochs 0/1. Running Loss: 0.3490: 100%" + } + }, + "7e3df3b58c7e4117b0a8b8fc45dffa01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7fe11f4ffd3747079b8de4453b29dbac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "818e5dbea2094a97a18974aebe4ddb86": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82f733de38ef4c5f8734cbdf47ec1a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2dae6a605f842d3aaad1f86b2e332b6", + "IPY_MODEL_197dca1cad8b425bb4622c9d5da461dc", + "IPY_MODEL_1cf670526680446db48fbf64b1cae0a6" + ], + "layout": "IPY_MODEL_818e5dbea2094a97a18974aebe4ddb86" + } + }, + "8351a84b9c914d80a54ac57a2fb18304": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dba102bf2b3249c8907d4fe1d5cf0e82", + "placeholder": "​", + "style": "IPY_MODEL_ed1ad3ad89334675babf56f9737a17fb", + "value": " 262/262 [01:10<00:00, 3.93it/s]" + } + }, + "85ea942b0e194d2a9160f82494fff8e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89e65dddb1884e158cb3d1937843ccab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89f9d8cab0c44b58afee34914198a9e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cefe2ef3c984e3a8ad1bb8ecb7f0dbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_703f69d98e9947f3aeaba07b51d64f3c", + "placeholder": "​", + "style": "IPY_MODEL_60b8f43949894143a83263e96d0ac3fa", + "value": " 878k/878k [00:00<00:00, 637kB/s]" + } + }, + "8ecaba0474a64ea3a4a400107f08b90e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bdda742fee1148d581d8a15e8a560869", + "max": 2094, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_08263433f8b6426693653ab9955e5410", + "value": 5 + } + }, + "904714fa04be424da224c801f06d52f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92b7ffe0dd1b49d1acdb2b588f72569d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95392827ab8149388dd9af86d1fb03a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99a8a52b7dfb4fa994a4b09feba8fe58": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e3eb217f2c349cf8a2b255ca5a34622": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f03facdd7704ab9be2bd65f1060f215": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5bc982f17aec46b3b7f8308f567f6296", + "max": 2094, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4fbbc5b908c14198b8c86ca2208bd890", + "value": 5 + } + }, + "a23c1b483a9e4aca8dc12da65527b103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a287d92682d644daa34030f58227540f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a308011d2efd403fb6b8d250d8f98fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_226d2e2955444f9ead05b5991d7939e5", + "IPY_MODEL_9f03facdd7704ab9be2bd65f1060f215", + "IPY_MODEL_fc122d487cbd4ab69e78f1b9425774ba" + ], + "layout": "IPY_MODEL_770ad4abfc4f4eeebefade5afcad22a3" + } + }, + "a8757d3393f04a55a5bea7f923944281": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8de20f8116142f6bf25aef25f37ad85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a90282c995cc4c6db59eaa51e3414ad1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4d34c0c2e364f88b70036cbff6f780a", + "IPY_MODEL_4d22ac94c09d4802b4664e456278308a", + "IPY_MODEL_594d094f060e4481977901e11c2ddaf2" + ], + "layout": "IPY_MODEL_d76e461fca524e04810c38b44ad51185" + } + }, + "ab2d97c595ff4e55969bc2f1415f747d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abc4d60485bf40d7abf3cbcf212e39a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ac45cf1a895f4ba39c5be0ad136c4591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c61f90f85a54cbb9d2ccdbf614eb8d5", + "placeholder": "​", + "style": "IPY_MODEL_37531d1ef87f45c99df60fb6a8a66d78", + "value": "Downloading: 100%" + } + }, + "afd3d0f6506e464c98b9ad57a24c3e9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "afd5528b85874795ac1d736dde15b810": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b088cb07387d4a46b3c7d4d7cc9a5aba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b276fc7fd7954ec09fabbcad64b93508": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3f807cfae5a44fcbf1069817e6fb79d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4bcc997cfa4444287370bbb4819cb43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4d34c0c2e364f88b70036cbff6f780a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_29ad13a85dc44e4e919bed1daddf0935", + "placeholder": "​", + "style": "IPY_MODEL_b276fc7fd7954ec09fabbcad64b93508", + "value": "Downloading: 100%" + } + }, + "b8654137c93f4a70b0fb8f7e692f7673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e567e754183b42d69d3d200a4517b132", + "IPY_MODEL_e4c905c262994b7d9197f77b2da2c178", + "IPY_MODEL_f0b59d4d691c44a4a7dbb40991518d36" + ], + "layout": "IPY_MODEL_b088cb07387d4a46b3c7d4d7cc9a5aba" + } + }, + "ba09b68a05644dd1b7d12a19396fb3b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fcffe85dbcc4c91b840c61799b82772", + "placeholder": "​", + "style": "IPY_MODEL_32fe020b5dc54143af2830ec578eecdf", + "value": " 446k/446k [00:00<00:00, 2.39MB/s]" + } + }, + "bac5decd48b74036a270f70a05c3f80e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdda742fee1148d581d8a15e8a560869": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0b81615b8fc4b8d8a48232d029e717d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c11ef82d87114a59868d9d7810b936db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c1dc117db5c444bd918b9ab70b587f48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2dae6a605f842d3aaad1f86b2e332b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7d3e0bd4a9c43dd9946a8a63b12d1d7", + "placeholder": "​", + "style": "IPY_MODEL_ece446ccb0d3496a81dc0250fff9039d", + "value": "Epochs 0/1. Running Loss: 0.3547: 100%" + } + }, + "c3a17fa9e8da4d9fb571e307f75ac144": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c3cafc815e4444a8998e608cd9c9300d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c43f7ff02eb74e0d900029f97652a973": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3119accf975446eda52b0125571322a4", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_89f9d8cab0c44b58afee34914198a9e6", + "value": 1 + } + }, + "c4425a4579084d37b000192df67e3ae1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4dbb10f007f483a950a95555583dc2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c88d5b03d6d9498ab972678dedb018bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c983b2e75ec44867a14f6d3abdfff2ec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cafdb944408b42eaacec5b2e8566962b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf4fb870564043cfbc171ae05143ec5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59c41a4934cf4ef2b467ae5d97b615f0", + "placeholder": "​", + "style": "IPY_MODEL_2eea385dfcf745e6b92c37eb6cd901f4", + "value": " 481/481 [00:00<00:00, 10.4kB/s]" + } + }, + "d12ad49c9fc54f86affd96e975b93186": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d1343667008643c8a893bfae962503c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05e6b65f527c48e5ab8aaa8a220287c0", + "placeholder": "​", + "style": "IPY_MODEL_ec68ce238bb04063a74afd67a4f1e877", + "value": "Downloading: 100%" + } + }, + "d16d01773a334ccb8a9231d3cae6e0f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d48d137548464c3387dd51494cb969bf", + "placeholder": "​", + "style": "IPY_MODEL_4f8b629635194d759b9c91f37a445632", + "value": "Epoch 1 of 1: 100%" + } + }, + "d1df90f8eead4f5e8718fd42ec0d5e40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d32db030dff24fe3bd1983a44c703311": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d16d01773a334ccb8a9231d3cae6e0f4", + "IPY_MODEL_c43f7ff02eb74e0d900029f97652a973", + "IPY_MODEL_d6a37bb80db94947810fa1d69b8b416b" + ], + "layout": "IPY_MODEL_ee1cc81a307a4ea6ac00b65a4d314877" + } + }, + "d447cc0c53974205ade693d0eff0bc7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05826d440af54576a054d0d8e0b212f6", + "placeholder": "​", + "style": "IPY_MODEL_d79ae039a52a43c0a20ff96b2d32607b", + "value": " 3/1191 [00:01<10:25, 1.90it/s]" + } + }, + "d48d137548464c3387dd51494cb969bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d66f8f8d82f9499488b6ffa16193b320": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6a37bb80db94947810fa1d69b8b416b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c646f33655d4646b70afef87232d5a1", + "placeholder": "​", + "style": "IPY_MODEL_bac5decd48b74036a270f70a05c3f80e", + "value": " 1/1 [04:10<00:00, 250.44s/it]" + } + }, + "d76e461fca524e04810c38b44ad51185": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d79ae039a52a43c0a20ff96b2d32607b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d79bd01e1fe44c12ac530376324d9e0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_568d424c94094d669282ed72b4cf0be4", + "placeholder": "​", + "style": "IPY_MODEL_419ce58d2ed14589a3d2e1cd7b477e0f", + "value": "100%" + } + }, + "d7a3b9eef0e347278563217103b4253c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7d3e0bd4a9c43dd9946a8a63b12d1d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dba102bf2b3249c8907d4fe1d5cf0e82": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc4ab3d0b89440a38725e54852db46df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd69b800241e4bb3a856ecd46968b762": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7a3b9eef0e347278563217103b4253c", + "max": 149, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4508e3bbceb40538e0f01a40da539de", + "value": 149 + } + }, + "de026e2d1ec848fbb35faf1746e7579d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13bc966911b1433ab6f8245f88b86e2d", + "IPY_MODEL_ec69c0f693b74ac8b737816b1efaa8bf", + "IPY_MODEL_cf4fb870564043cfbc171ae05143ec5f" + ], + "layout": "IPY_MODEL_7a0d26d292e54498a15bc2e54e6c3aee" + } + }, + "df46941823a540f787e2e9dad52243d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_790e423a21b840978da497d9d35634a6", + "IPY_MODEL_6cc05e8394ac491999930b9493be855e", + "IPY_MODEL_8cefe2ef3c984e3a8ad1bb8ecb7f0dbb" + ], + "layout": "IPY_MODEL_904714fa04be424da224c801f06d52f6" + } + }, + "e4508e3bbceb40538e0f01a40da539de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e4c905c262994b7d9197f77b2da2c178": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c3cafc815e4444a8998e608cd9c9300d", + "max": 2382, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_23ee94259c41435ea19264f4a2937585", + "value": 5 + } + }, + "e4ccd1d746ab4f1f826477bb021c34a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22f9701e81034b5ea8d1bdd38ab0d191", + "placeholder": "​", + "style": "IPY_MODEL_fba89fa62d6a413b90f3961755794a61", + "value": "100%" + } + }, + "e567e754183b42d69d3d200a4517b132": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c3a17fa9e8da4d9fb571e307f75ac144", + "placeholder": "​", + "style": "IPY_MODEL_fe372945c13845e5bd01ca4e153ed61c", + "value": " 0%" + } + }, + "e59cd0b3c86e4be28ae6442694b22f9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_448426e53b934f8d8cfc96a94f95e4b1", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_379253e799eb4c9b92342abeffd9b4a2", + "value": 1 + } + }, + "e778f7c68ce54014a5bfb3050e72292a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afd3d0f6506e464c98b9ad57a24c3e9d", + "placeholder": "​", + "style": "IPY_MODEL_5d63fdd645634af381db3abc93ce2b24", + "value": " 0%" + } + }, + "e98cda63a023489cae4ada214ba5bb38": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec1e8ea22a8f4272b258fa19a2c3ec83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99a8a52b7dfb4fa994a4b09feba8fe58", + "placeholder": "​", + "style": "IPY_MODEL_afd5528b85874795ac1d736dde15b810", + "value": " 262/262 [01:11<00:00, 3.95it/s]" + } + }, + "ec68ce238bb04063a74afd67a4f1e877": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec69c0f693b74ac8b737816b1efaa8bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a287d92682d644daa34030f58227540f", + "max": 481, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b2a3cde2cdb4bc6a9d0623363c66266", + "value": 481 + } + }, + "ece446ccb0d3496a81dc0250fff9039d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed1ad3ad89334675babf56f9737a17fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ee1cc81a307a4ea6ac00b65a4d314877": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ee3cdac0740d43188518e097ae5863a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0b59d4d691c44a4a7dbb40991518d36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6870cb8717ba407c81d0b7c79ad27d26", + "placeholder": "​", + "style": "IPY_MODEL_49fd3eaa74fa493fbe7324607888c542", + "value": " 5/2382 [00:01<09:49, 4.03it/s]" + } + }, + "f107664ab872463fa5dbee7bcfe1a866": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1e8ea21a9e6457e8dcd35b21be75b22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ef5f967ffff4b9689f6f72772e1d9fd", + "IPY_MODEL_e59cd0b3c86e4be28ae6442694b22f9c", + "IPY_MODEL_0ac5312eac44449c8b72030f0d064383" + ], + "layout": "IPY_MODEL_1400f1d23b19496ab51b253b5f87298b" + } + }, + "f1fe964e4d2b4ebb8f76b3d8debdaab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7e1e00cad5449dfb55c6a920a292540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cafdb944408b42eaacec5b2e8566962b", + "placeholder": "​", + "style": "IPY_MODEL_19628b1c68004e9a98ecb5a934d57d2d", + "value": " 1.29M/1.29M [00:00<00:00, 898kB/s]" + } + }, + "f879197b8c2443278e280f82f20cc609": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fba89fa62d6a413b90f3961755794a61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fc122d487cbd4ab69e78f1b9425774ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7e3df3b58c7e4117b0a8b8fc45dffa01", + "placeholder": "​", + "style": "IPY_MODEL_f1fe964e4d2b4ebb8f76b3d8debdaab6", + "value": " 5/2094 [00:01<09:10, 3.80it/s]" + } + }, + "fc14f76deb2549b3a5c6bce9ea3dd7e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe372945c13845e5bd01ca4e153ed61c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff3206118d3043b3a9b757ec3ca01d9f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } - }, - "nbformat": 4, - "nbformat_minor": 0 -} + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file