From 66088117feb4b0706ad62a3e41c38412dd2cb20c Mon Sep 17 00:00:00 2001 From: Emily Haw <haw.emily@gmail.com> Date: Tue, 1 Mar 2022 15:44:26 +0000 Subject: [PATCH] add code without merge problems --- ...ERTa_baseline_train_dev_dataset copy.ipynb | 8329 +++++++++++++++++ 1 file changed, 8329 insertions(+) create mode 100644 Reconstruct_and_RoBERTa_baseline_train_dev_dataset copy.ipynb diff --git a/Reconstruct_and_RoBERTa_baseline_train_dev_dataset copy.ipynb b/Reconstruct_and_RoBERTa_baseline_train_dev_dataset copy.ipynb new file mode 100644 index 0000000..369fd39 --- /dev/null +++ b/Reconstruct_and_RoBERTa_baseline_train_dev_dataset copy.ipynb @@ -0,0 +1,8329 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "H08esTFOYO99" + }, + "source": [ + "# Main imports and code" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EnHQoayhBYlm", + "outputId": "eb747576-9a2a-474c-dbc7-4d6c042f68e6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tue Mar 1 11:31:44 2022 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.4 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|===============================+======================+======================|\n", + "| 0 Quadro M4000 Off | 00000000:00:05.0 Off | N/A |\n", + "| 46% 27C P8 12W / 120W | 0MiB / 8126MiB | 0% Default |\n", + "| | | N/A |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=============================================================================|\n", + "| No running processes found |\n", + "+-----------------------------------------------------------------------------+\n" + ] + } + ], + "source": [ + "# check which gpu we're using\n", + "!nvidia-smi" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "hYhFR7nSYOjG", + "outputId": "23ed0686-29d3-45ff-dc22-b2fe54e86ec4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Collecting simpletransformers\n", + " Downloading simpletransformers-0.63.4-py3-none-any.whl (248 kB)\n", + "\u001b[K |████████████████████████████████| 248 kB 26.5 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting tensorflow\n", + " Downloading tensorflow-2.8.0-cp38-cp38-manylinux2010_x86_64.whl (497.6 MB)\n", + "\u001b[K |████████████████████████████████| 497.6 MB 24.2 MB/s eta 0:00:01 |▋ | 9.7 MB 37.2 MB/s eta 0:00:14 |███████████████████▉ | 309.2 MB 23.9 MB/s eta 0:00:08 |█████████████████████████████ | 452.3 MB 24.9 MB/s eta 0:00:02\n", + "\u001b[?25hRequirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.21.2)\n", + "Requirement already satisfied: requests in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2.26.0)\n", + "Requirement already satisfied: tqdm>=4.47.0 in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (4.62.3)\n", + "Collecting datasets\n", + " Downloading datasets-1.18.3-py3-none-any.whl (311 kB)\n", + "\u001b[K |████████████████████████████████| 311 kB 31.6 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: scikit-learn in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.0)\n", + "Collecting seqeval\n", + " Downloading seqeval-1.2.2.tar.gz (43 kB)\n", + "\u001b[K |████████████████████████████████| 43 kB 43.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting streamlit\n", + " Downloading streamlit-1.6.0-py2.py3-none-any.whl (9.7 MB)\n", + "\u001b[K |████████████████████████████████| 9.7 MB 36.0 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: tensorboard in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2.6.0)\n", + "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (2021.10.8)\n", + "Requirement already satisfied: scipy in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.6.3)\n", + "Requirement already satisfied: tokenizers in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (0.11.6)\n", + "Requirement already satisfied: pandas in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (1.4.1)\n", + "Collecting wandb>=0.10.32\n", + " Downloading wandb-0.12.10-py2.py3-none-any.whl (1.7 MB)\n", + "\u001b[K |████████████████████████████████| 1.7 MB 30.6 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: transformers>=4.6.0 in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (4.16.2)\n", + "Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.8/site-packages (from simpletransformers) (0.1.96)\n", + "Collecting h5py>=2.9.0\n", + " Downloading h5py-3.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB)\n", + "\u001b[K |████████████████████████████████| 4.5 MB 31.8 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: typing-extensions>=3.6.6 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.10.0.2)\n", + "Collecting wrapt>=1.11.0\n", + " Downloading wrapt-1.13.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (84 kB)\n", + "\u001b[K |████████████████████████████████| 84 kB 29.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting google-pasta>=0.1.1\n", + " Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\n", + "\u001b[K |████████████████████████████████| 57 kB 42.4 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting keras<2.9,>=2.8.0rc0\n", + " Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB)\n", + "\u001b[K |████████████████████████████████| 1.4 MB 28.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting keras-preprocessing>=1.1.1\n", + " Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)\n", + "\u001b[K |████████████████████████████████| 42 kB 31.9 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting flatbuffers>=1.12\n", + " Downloading flatbuffers-2.0-py2.py3-none-any.whl (26 kB)\n", + "Collecting termcolor>=1.1.0\n", + " Downloading termcolor-1.1.0.tar.gz (3.9 kB)\n", + "Collecting gast>=0.2.1\n", + " Downloading gast-0.5.3-py3-none-any.whl (19 kB)\n", + "Collecting tensorboard\n", + " Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB)\n", + "\u001b[K |████████████████████████████████| 5.8 MB 39.6 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: absl-py>=0.4.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (0.14.1)\n", + "Requirement already satisfied: protobuf>=3.9.2 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (3.18.1)\n", + "Collecting tf-estimator-nightly==2.8.0.dev2021122109\n", + " Downloading tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl (462 kB)\n", + "\u001b[K |████████████████████████████████| 462 kB 28.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting astunparse>=1.6.0\n", + " Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.8/site-packages (from tensorflow) (58.2.0)\n", + "Requirement already satisfied: six>=1.12.0 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.16.0)\n", + "Collecting opt-einsum>=2.3.2\n", + " Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\n", + "\u001b[K |████████████████████████████████| 65 kB 43.5 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/lib/python3.8/site-packages (from tensorflow) (1.41.0)\n", + "Collecting libclang>=9.0.1\n", + " Downloading libclang-13.0.0-py2.py3-none-manylinux1_x86_64.whl (14.5 MB)\n", + "\u001b[K |████████████████████████████████| 14.5 MB 28.2 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting tensorflow-io-gcs-filesystem>=0.23.1\n", + " Downloading tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB)\n", + "\u001b[K |████████████████████████████████| 2.1 MB 30.9 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: wheel<1.0,>=0.23.0 in /opt/conda/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.0)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (0.4.6)\n", + "Requirement already satisfied: werkzeug>=0.11.15 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (2.0.2)\n", + "Requirement already satisfied: markdown>=2.6.8 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (3.3.4)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (1.35.0)\n", + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (1.8.0)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->simpletransformers) (0.6.1)\n", + "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (4.2.4)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (4.7.2)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->simpletransformers) (0.2.8)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/conda/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->simpletransformers) (1.3.0)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->simpletransformers) (0.4.8)\n", + "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (3.1)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (1.26.7)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (2.0.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests->simpletransformers) (2021.5.30)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->simpletransformers) (3.1.1)\n", + "Requirement already satisfied: filelock in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (3.3.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (5.4.1)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (0.4.0)\n", + "Requirement already satisfied: sacremoses in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (0.0.46)\n", + "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.8/site-packages (from transformers>=4.6.0->simpletransformers) (21.0)\n", + "Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.8/site-packages (from packaging>=20.0->transformers>=4.6.0->simpletransformers) (2.4.7)\n", + "Collecting sentry-sdk>=1.0.0\n", + " Downloading sentry_sdk-1.5.6-py2.py3-none-any.whl (144 kB)\n", + "\u001b[K |████████████████████████████████| 144 kB 31.7 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting pathtools\n", + " Downloading pathtools-0.1.2.tar.gz (11 kB)\n", + "Collecting GitPython>=1.0.0\n", + " Downloading GitPython-3.1.27-py3-none-any.whl (181 kB)\n", + "\u001b[K |████████████████████████████████| 181 kB 27.6 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: Click!=8.0.0,>=7.0 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (8.0.1)\n", + "Requirement already satisfied: psutil>=5.0.0 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (5.8.0)\n", + "Collecting promise<3,>=2.0\n", + " Downloading promise-2.3.tar.gz (19 kB)\n", + "Collecting shortuuid>=0.5.0\n", + " Downloading shortuuid-1.0.8-py3-none-any.whl (9.5 kB)\n", + "Collecting docker-pycreds>=0.4.0\n", + " Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n", + "Collecting yaspin>=1.0.0\n", + " Downloading yaspin-2.1.0-py3-none-any.whl (18 kB)\n", + "Requirement already satisfied: python-dateutil>=2.6.1 in /opt/conda/lib/python3.8/site-packages (from wandb>=0.10.32->simpletransformers) (2.8.2)\n", + "Collecting gitdb<5,>=4.0.1\n", + " Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)\n", + "\u001b[K |████████████████████████████████| 63 kB 46.1 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting smmap<6,>=3.0.1\n", + " Downloading smmap-5.0.0-py3-none-any.whl (24 kB)\n", + "Collecting aiohttp\n", + " Downloading aiohttp-3.8.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.3 MB)\n", + "\u001b[K |████████████████████████████████| 1.3 MB 28.9 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting pyarrow!=4.0.0,>=3.0.0\n", + " Downloading pyarrow-7.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.7 MB)\n", + "\u001b[K |████████████████████████████████| 26.7 MB 25.8 MB/s eta 0:00:01 |██■| 2.0 MB 26.8 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting dill\n", + " Downloading dill-0.3.4-py2.py3-none-any.whl (86 kB)\n", + "\u001b[K |████████████████████████████████| 86 kB 35.7 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting multiprocess\n", + " Downloading multiprocess-0.70.12.2-py38-none-any.whl (128 kB)\n", + "\u001b[K |████████████████████████████████| 128 kB 33.4 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting xxhash\n", + " Downloading xxhash-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", + "\u001b[K |████████████████████████████████| 212 kB 31.4 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting fsspec[http]>=2021.05.0\n", + " Downloading fsspec-2022.2.0-py3-none-any.whl (134 kB)\n", + "\u001b[K |████████████████████████████████| 134 kB 31.2 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets->simpletransformers) (21.2.0)\n", + "Collecting frozenlist>=1.1.1\n", + " Downloading frozenlist-1.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n", + "\u001b[K |████████████████████████████████| 158 kB 29.9 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting yarl<2.0,>=1.0\n", + " Downloading yarl-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (308 kB)\n", + "\u001b[K |████████████████████████████████| 308 kB 30.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting async-timeout<5.0,>=4.0.0a3\n", + " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", + "Collecting aiosignal>=1.1.2\n", + " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n", + "Collecting multidict<7.0,>=4.5\n", + " Downloading multidict-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (121 kB)\n", + "\u001b[K |████████████████████████████████| 121 kB 29.4 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.8/site-packages (from pandas->simpletransformers) (2021.3)\n", + "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers>=4.6.0->simpletransformers) (1.1.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from scikit-learn->simpletransformers) (3.0.0)\n", + "Requirement already satisfied: toml in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (0.10.2)\n", + "Collecting semver\n", + " Downloading semver-2.13.0-py2.py3-none-any.whl (12 kB)\n", + "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (8.2.0)\n", + "Collecting blinker\n", + " Downloading blinker-1.4.tar.gz (111 kB)\n", + "\u001b[K |████████████████████████████████| 111 kB 38.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting validators\n", + " Downloading validators-0.18.2-py3-none-any.whl (19 kB)\n", + "Collecting pydeck>=0.1.dev5\n", + " Downloading pydeck-0.7.1-py2.py3-none-any.whl (4.3 MB)\n", + "\u001b[K |████████████████████████████████| 4.3 MB 29.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting astor\n", + " Downloading astor-0.8.1-py2.py3-none-any.whl (27 kB)\n", + "Requirement already satisfied: tornado>=5.0 in /opt/conda/lib/python3.8/site-packages (from streamlit->simpletransformers) (6.1)\n", + "Collecting pympler>=0.9\n", + " Downloading Pympler-1.0.1-py3-none-any.whl (164 kB)\n", + "\u001b[K |████████████████████████████████| 164 kB 36.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting watchdog\n", + " Downloading watchdog-2.1.6-py3-none-manylinux2014_x86_64.whl (76 kB)\n", + "\u001b[K |████████████████████████████████| 76 kB 35.4 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting tzlocal\n", + " Downloading tzlocal-4.1-py3-none-any.whl (19 kB)\n", + "Collecting importlib-metadata>=1.4\n", + " Downloading importlib_metadata-4.11.2-py3-none-any.whl (17 kB)\n", + "Collecting altair>=3.2.0\n", + " Downloading altair-4.2.0-py3-none-any.whl (812 kB)\n", + "\u001b[K |████████████████████████████████| 812 kB 29.5 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting base58\n", + " Downloading base58-2.1.1-py3-none-any.whl (5.6 kB)\n", + "Requirement already satisfied: entrypoints in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (0.3)\n", + "Collecting toolz\n", + " Downloading toolz-0.11.2-py3-none-any.whl (55 kB)\n", + "\u001b[K |████████████████████████████████| 55 kB 46.6 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: jinja2 in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (3.0.1)\n", + "Requirement already satisfied: jsonschema>=3.0 in /opt/conda/lib/python3.8/site-packages (from altair>=3.2.0->streamlit->simpletransformers) (4.0.1)\n", + "Collecting zipp>=0.5\n", + " Downloading zipp-3.7.0-py3-none-any.whl (5.3 kB)\n", + "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /opt/conda/lib/python3.8/site-packages (from jsonschema>=3.0->altair>=3.2.0->streamlit->simpletransformers) (0.18.0)\n", + "Collecting ipywidgets>=7.0.0\n", + " Downloading ipywidgets-7.6.5-py2.py3-none-any.whl (121 kB)\n", + "\u001b[K |████████████████████████████████| 121 kB 32.7 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: traitlets>=4.3.2 in /opt/conda/lib/python3.8/site-packages (from pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.0)\n", + "Requirement already satisfied: ipykernel>=5.1.2 in /opt/conda/lib/python3.8/site-packages (from pydeck>=0.1.dev5->streamlit->simpletransformers) (6.4.1)\n", + "Requirement already satisfied: ipython<8.0,>=7.23.1 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (7.28.0)\n", + "Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.0)\n", + "Requirement already satisfied: matplotlib-inline<0.2.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.1.3)\n", + "Requirement already satisfied: debugpy<2.0,>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.0)\n", + "Requirement already satisfied: jupyter-client<8.0 in /opt/conda/lib/python3.8/site-packages (from ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (7.0.6)\n", + "Requirement already satisfied: pickleshare in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (3.0.20)\n", + "Requirement already satisfied: backcall in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.0)\n", + "Requirement already satisfied: pygments in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (2.10.0)\n", + "Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.18.0)\n", + "Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.8.0)\n", + "Requirement already satisfied: decorator in /opt/conda/lib/python3.8/site-packages (from ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.0)\n", + "Collecting jupyterlab-widgets>=1.0.0\n", + " Downloading jupyterlab_widgets-1.0.2-py3-none-any.whl (243 kB)\n", + "\u001b[K |████████████████████████████████| 243 kB 35.8 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: nbformat>=4.2.0 in /opt/conda/lib/python3.8/site-packages (from ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (5.1.3)\n", + "Collecting widgetsnbextension~=3.5.0\n", + " Downloading widgetsnbextension-3.5.2-py2.py3-none-any.whl (1.6 MB)\n", + "\u001b[K |████████████████████████████████| 1.6 MB 30.2 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /opt/conda/lib/python3.8/site-packages (from jedi>=0.16->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.8.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.8/site-packages (from jinja2->altair>=3.2.0->streamlit->simpletransformers) (2.0.1)\n", + "Requirement already satisfied: pyzmq>=13 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (22.3.0)\n", + "Requirement already satisfied: nest-asyncio>=1.5 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.1)\n", + "Requirement already satisfied: jupyter-core>=4.6.0 in /opt/conda/lib/python3.8/site-packages (from jupyter-client<8.0->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.8.1)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.8/site-packages (from pexpect>4.3->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /opt/conda/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0,>=7.23.1->ipykernel>=5.1.2->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.2.5)\n", + "Requirement already satisfied: notebook>=4.4.1 in /opt/conda/lib/python3.8/site-packages (from widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (6.4.1)\n", + "Requirement already satisfied: nbconvert in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (6.2.0)\n", + "Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.11.0)\n", + "Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (21.1.0)\n", + "Requirement already satisfied: Send2Trash>=1.5.0 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.8.0)\n", + "Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.12.1)\n", + "Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.8/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.14.6)\n", + "Requirement already satisfied: pycparser in /opt/conda/lib/python3.8/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (2.20)\n", + "Requirement already satisfied: defusedxml in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.7.1)\n", + "Requirement already satisfied: testpath in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.0)\n", + "Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.1.2)\n", + "Requirement already satisfied: bleach in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (4.1.0)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (1.5.0)\n", + "Requirement already satisfied: mistune<2,>=0.8.1 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.8.4)\n", + "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /opt/conda/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.4)\n", + "Requirement already satisfied: webencodings in /opt/conda/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.0.0->pydeck>=0.1.dev5->streamlit->simpletransformers) (0.5.1)\n", + "Collecting backports.zoneinfo\n", + " Downloading backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl (74 kB)\n", + "\u001b[K |████████████████████████████████| 74 kB 35.7 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting pytz-deprecation-shim\n", + " Downloading pytz_deprecation_shim-0.1.0.post0-py2.py3-none-any.whl (15 kB)\n", + "Collecting tzdata\n", + " Downloading tzdata-2021.5-py2.py3-none-any.whl (339 kB)\n", + "\u001b[K |████████████████████████████████| 339 kB 45.9 MB/s eta 0:00:01\n", + "\u001b[?25hBuilding wheels for collected packages: termcolor, promise, pathtools, seqeval, blinker\n", + " Building wheel for termcolor (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4847 sha256=c490c0105be70b729d7a26de3e6628e3b531e4ab3a5bb8ec4005c4cecda96504\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-9g_c4y_8/wheels/a0/16/9c/5473df82468f958445479c59e784896fa24f4a5fc024b0f501\n", + " Building wheel for promise (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for promise: filename=promise-2.3-py3-none-any.whl size=21502 sha256=19c9cb9fff75124d0e814bd26f15f71a1a1a2b7a93587487a8471fb61eb0512c\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-9g_c4y_8/wheels/54/aa/01/724885182f93150035a2a91bce34a12877e8067a97baaf5dc8\n", + " Building wheel for pathtools (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8807 sha256=fe96f66170e7602a5a085bd804c9fc52e8d630dd03953f794b7a03db2c0f1f7b\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-9g_c4y_8/wheels/4c/8e/7e/72fbc243e1aeecae64a96875432e70d4e92f3d2d18123be004\n", + " Building wheel for seqeval (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for seqeval: filename=seqeval-1.2.2-py3-none-any.whl size=16181 sha256=efb4afac83cee1e4862c210b77c31b659136a35b442e4eddb18e7752b6693e93\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-9g_c4y_8/wheels/ad/5c/ba/05fa33fa5855777b7d686e843ec07452f22a66a138e290e732\n", + " Building wheel for blinker (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for blinker: filename=blinker-1.4-py3-none-any.whl size=13478 sha256=79fd2d88eb00b6a17999dc47d7c7793b40e2400833855f9a4c2041d67764de14\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-9g_c4y_8/wheels/b7/a5/68/fe632054a5eadd531c7a49d740c50eb6adfbeca822b4eab8d4\n", + "Successfully built termcolor promise pathtools seqeval blinker\n", + "Installing collected packages: multidict, frozenlist, yarl, widgetsnbextension, tzdata, smmap, jupyterlab-widgets, backports.zoneinfo, async-timeout, aiosignal, zipp, toolz, termcolor, pytz-deprecation-shim, ipywidgets, gitdb, fsspec, dill, aiohttp, yaspin, xxhash, watchdog, validators, tzlocal, shortuuid, sentry-sdk, semver, pympler, pydeck, pyarrow, promise, pathtools, multiprocess, importlib-metadata, GitPython, docker-pycreds, blinker, base58, astor, altair, wrapt, wandb, tf-estimator-nightly, tensorflow-io-gcs-filesystem, tensorboard, streamlit, seqeval, opt-einsum, libclang, keras-preprocessing, keras, h5py, google-pasta, gast, flatbuffers, datasets, astunparse, tensorflow, simpletransformers\n", + " Attempting uninstall: tensorboard\n", + " Found existing installation: tensorboard 2.6.0\n", + " Uninstalling tensorboard-2.6.0:\n", + " Successfully uninstalled tensorboard-2.6.0\n", + "Successfully installed GitPython-3.1.27 aiohttp-3.8.1 aiosignal-1.2.0 altair-4.2.0 astor-0.8.1 astunparse-1.6.3 async-timeout-4.0.2 backports.zoneinfo-0.2.1 base58-2.1.1 blinker-1.4 datasets-1.18.3 dill-0.3.4 docker-pycreds-0.4.0 flatbuffers-2.0 frozenlist-1.3.0 fsspec-2022.2.0 gast-0.5.3 gitdb-4.0.9 google-pasta-0.2.0 h5py-3.6.0 importlib-metadata-4.11.2 ipywidgets-7.6.5 jupyterlab-widgets-1.0.2 keras-2.8.0 keras-preprocessing-1.1.2 libclang-13.0.0 multidict-6.0.2 multiprocess-0.70.12.2 opt-einsum-3.3.0 pathtools-0.1.2 promise-2.3 pyarrow-7.0.0 pydeck-0.7.1 pympler-1.0.1 pytz-deprecation-shim-0.1.0.post0 semver-2.13.0 sentry-sdk-1.5.6 seqeval-1.2.2 shortuuid-1.0.8 simpletransformers-0.63.4 smmap-5.0.0 streamlit-1.6.0 tensorboard-2.8.0 tensorflow-2.8.0 tensorflow-io-gcs-filesystem-0.24.0 termcolor-1.1.0 tf-estimator-nightly-2.8.0.dev2021122109 toolz-0.11.2 tzdata-2021.5 tzlocal-4.1 validators-0.18.2 wandb-0.12.10 watchdog-2.1.6 widgetsnbextension-3.5.2 wrapt-1.13.3 xxhash-3.0.0 yarl-1.7.2 yaspin-2.1.0 zipp-3.7.0\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Collecting tensorboardx\n", + " Downloading tensorboardX-2.5-py2.py3-none-any.whl (125 kB)\n", + "\u001b[K |████████████████████████████████| 125 kB 19.5 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (1.16.0)\n", + "Requirement already satisfied: protobuf>=3.8.0 in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (3.18.1)\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (from tensorboardx) (1.21.2)\n", + "Installing collected packages: tensorboardx\n", + "Successfully installed tensorboardx-2.5\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install simpletransformers tensorflow\n", + "!pip install tensorboardx" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.8/site-packages (1.21.2)\n", + "Requirement already satisfied: requests in /opt/conda/lib/python3.8/site-packages (2.26.0)\n", + "Collecting nlpaug\n", + " Downloading nlpaug-1.1.10-py3-none-any.whl (410 kB)\n", + "\u001b[K |████████████████████████████████| 410 kB 21.0 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests) (1.26.7)\n", + "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests) (3.1)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/lib/python3.8/site-packages (from requests) (2.0.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests) (2021.5.30)\n", + "Collecting pandas>=1.2.0\n", + " Downloading pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB)\n", + "\u001b[K |████████████████████████████████| 11.7 MB 31.3 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in /opt/conda/lib/python3.8/site-packages (from pandas>=1.2.0->nlpaug) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.8/site-packages (from pandas>=1.2.0->nlpaug) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.8/site-packages (from python-dateutil>=2.8.1->pandas>=1.2.0->nlpaug) (1.16.0)\n", + "Installing collected packages: pandas, nlpaug\n", + "Successfully installed nlpaug-1.1.10 pandas-1.4.1\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install numpy requests nlpaug\n", + "!pip install torch>=1.6.0 transformers>=4.11.3 sentencepiece\n", + "!pip install nltk>-3.4.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "RJC8wj73Zd_p" + }, + "outputs": [], + "source": [ + "from simpletransformers.classification import ClassificationModel, ClassificationArgs, MultiLabelClassificationModel, MultiLabelClassificationArgs\n", + "from urllib import request\n", + "import pandas as pd\n", + "import logging\n", + "import torch\n", + "from collections import Counter\n", + "from ast import literal_eval" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bsX3b7ZNYVZe", + "outputId": "845660e8-c68b-4a52-d9ce-3c06bf7356d8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cuda available? True\n" + ] + } + ], + "source": [ + "# prepare logger\n", + "logging.basicConfig(level=logging.INFO)\n", + "\n", + "transformers_logger = logging.getLogger(\"transformers\")\n", + "transformers_logger.setLevel(logging.WARNING)\n", + "\n", + "# check gpu\n", + "cuda_available = torch.cuda.is_available()\n", + "\n", + "print('Cuda available? ',cuda_available)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HpRLLRzkTwdL", + "outputId": "9dc072ea-e419-4bc1-ad99-507cdd4e1394" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found GPU at: /device:GPU:0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2022-03-01 12:15:47.331960: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2022-03-01 12:15:47.333216: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-03-01 12:15:47.334375: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-03-01 12:15:47.335463: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-03-01 12:15:50.556457: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-03-01 12:15:50.557050: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-03-01 12:15:50.557563: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2022-03-01 12:15:50.558143: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /device:GPU:0 with 7001 MB memory: -> device: 0, name: Quadro M4000, pci bus id: 0000:00:05.0, compute capability: 5.2\n" + ] + } + ], + "source": [ + "if cuda_available:\n", + " import tensorflow as tf\n", + " # Get the GPU device name.\n", + " device_name = tf.test.gpu_device_name()\n", + " # The device name should look like the following:\n", + " if device_name == '/device:GPU:0':\n", + " print('Found GPU at: {}'.format(device_name))\n", + " else:\n", + " raise SystemError('GPU device not found')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BMQDATlOZHxu" + }, + "source": [ + "# Fetch Don't Patronize Me! data manager module" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UW903YxwThrH", + "outputId": "4dc91901-fa9f-446a-a883-dca331443d3d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fetching https://raw.githubusercontent.com/Perez-AlmendrosC/dontpatronizeme/master/semeval-2022/dont_patronize_me.py\n" + ] + } + ], + "source": [ + "module_url = f\"https://raw.githubusercontent.com/Perez-AlmendrosC/dontpatronizeme/master/semeval-2022/dont_patronize_me.py\"\n", + "module_name = module_url.split('/')[-1]\n", + "print(f'Fetching {module_url}')\n", + "#with open(\"file_1.txt\") as f1, open(\"file_2.txt\") as f2\n", + "with request.urlopen(module_url) as f, open(module_name,'w') as outf:\n", + " a = f.read()\n", + " outf.write(a.decode('utf-8'))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "PRxm0179aqzw" + }, + "outputs": [], + "source": [ + "# helper function to save predictions to an output file\n", + "def labels2file(p, outf_path):\n", + "\twith open(outf_path,'w') as outf:\n", + "\t\tfor pi in p:\n", + "\t\t\toutf.write(','.join([str(k) for k in pi])+'\\n')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "gcDThFWVBxGb" + }, + "outputs": [], + "source": [ + "from dont_patronize_me import DontPatronizeMe" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "3Ay5_5Y0ThrI" + }, + "outputs": [], + "source": [ + "dpm = DontPatronizeMe('.', '.')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2r3USK4eThrJ", + "outputId": "53bbe18a-47df-4079-d28a-cf890c08b306" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Map of label to numerical label:\n", + "{'Unbalanced_power_relations': 0, 'Shallow_solution': 1, 'Presupposition': 2, 'Authority_voice': 3, 'Metaphors': 4, 'Compassion': 5, 'The_poorer_the_merrier': 6}\n" + ] + } + ], + "source": [ + "dpm.load_task1()\n", + "dpm.load_task2(return_one_hot=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P0YcdU80IbiS" + }, + "source": [ + "# Load paragraph IDs" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "8AReWYHYOUqx" + }, + "outputs": [], + "source": [ + "trids = pd.read_csv('./practice_splits/train_semeval_parids-labels.csv')\n", + "teids = pd.read_csv('./practice_splits/dev_semeval_parids-labels.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 205 + }, + "id": "a-_ADoJAOWJA", + "outputId": "85dbe757-4ee5-4887-deac-60185515e141" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " par_id label\n", + "0 4341 [1, 0, 0, 1, 0, 0, 0]\n", + "1 4136 [0, 1, 0, 0, 0, 0, 0]\n", + "2 10352 [1, 0, 0, 0, 0, 1, 0]\n", + "3 8279 [0, 0, 0, 1, 0, 0, 0]\n", + "4 1164 [1, 0, 0, 1, 1, 1, 0]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trids.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "7IfCZjwQ16MS" + }, + "outputs": [], + "source": [ + "trids.par_id = trids.par_id.astype(str)\n", + "teids.par_id = teids.par_id.astype(str)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8lXrNj_Ww_FC" + }, + "source": [ + "\n", + "\n", + "# Rebuild training set (Task 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "BOxDR1H2g_3p" + }, + "outputs": [], + "source": [ + "rows = [] # will contain par_id, label and text\n", + "for idx in range(len(trids)): \n", + " parid = trids.par_id[idx]\n", + " #print(parid)\n", + " # select row from original dataset to retrieve `text` and binary label\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " label = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].label.values[0]\n", + " rows.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "8e3E08Yown5p" + }, + "outputs": [], + "source": [ + "trdf1 = pd.DataFrame(rows)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " par_id text label\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1\n", + "1 4136 Durban 's homeless communities reconciliation ... 1\n", + "2 10352 The next immediate problem that cropped up was... 1\n", + "3 8279 Far more important than the implications for t... 1\n", + "4 1164 To strengthen child-sensitive social protectio... 1" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8375" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 7581\n", + "1 794\n", + "Name: label, dtype: int64" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1[\"label\"].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preprocessing of data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:matplotlib.font_manager:generated new fontManager\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" + ] + } + ], + "source": [ + "from nlpaug.util.file.download import DownloadUtil\n", + "DownloadUtil.download_word2vec(dest_dir='.') # Download word2vec model\n", + "# DownloadUtil.download_glove(model_name='glove.6B', dest_dir='.') # Download GloVe model\n", + "# DownloadUtil.download_fasttext(model_name='wiki-news-300d-1M', dest_dir='.') # Download fasttext model\n", + "\n", + "!pip install gensim>=4.1.2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import nlpaug.augmenter.word as naw\n", + "import nlpaug.augmenter.sentence as nas " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"MODEL_DIR\"] = '../model'\n", + "model_dir = '../model'" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The scheme saw an estimated 150,000 children from poor families being sent to parts of the British Empire between 1920 and 1974 , by religious orders and charities who said they would lead better lives .\n" + ] + } + ], + "source": [ + "text = trdf1[\"text\"][0]\n", + "print(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Collecting wget\n", + " Downloading wget-3.2.zip (10 kB)\n", + "Building wheels for collected packages: wget\n", + " Building wheel for wget (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for wget: filename=wget-3.2-py3-none-any.whl size=9672 sha256=390fdfe2916c94d3a54c5a47d4ec17cf45d640db731ecef267039deb53667c24\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-4nync2gp/wheels/bd/a8/c3/3cf2c14a1837a4e04bd98631724e81f33f462d86a1d895fae0\n", + "Successfully built wget\n", + "Installing collected packages: wget\n", + "Successfully installed wget-3.2\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install wget\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model at GoogleNews-vectors-negative300.bin\n" + ] + } + ], + "source": [ + "import gzip\n", + "import shutil\n", + "import wget\n", + "\n", + "gn_vec_path = \"GoogleNews-vectors-negative300.bin\"\n", + "if not os.path.exists(\"GoogleNews-vectors-negative300.bin\"):\n", + " if not os.path.exists(\"../Ch3/GoogleNews-vectors-negative300.bin\"):\n", + " # Downloading the reqired model\n", + " if not os.path.exists(\"../Ch3/GoogleNews-vectors-negative300.bin.gz\"):\n", + " if not os.path.exists(\"GoogleNews-vectors-negative300.bin.gz\"):\n", + " wget.download(\"https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz\")\n", + " gn_vec_zip_path = \"GoogleNews-vectors-negative300.bin.gz\"\n", + " else:\n", + " gn_vec_zip_path = \"../Ch3/GoogleNews-vectors-negative300.bin.gz\"\n", + " # Extracting the required model\n", + " with gzip.open(gn_vec_zip_path, 'rb') as f_in:\n", + " with open(gn_vec_path, 'wb') as f_out:\n", + " shutil.copyfileobj(f_in, f_out)\n", + " else:\n", + " gn_vec_path = \"../Ch3/\" + gn_vec_path\n", + "\n", + "print(f\"Model at {gn_vec_path}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# use model pre trained word embeddings to insert word randomly\n", + "sub_aug = naw.WordEmbsAug(\n", + " model_type='word2vec', model_path='/notebooks/GoogleNews-vectors-negative300.bin',\n", + " action=\"substitute\")\n", + "\n", + "substitute_txt = sub_aug.augment(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Yet there was one occasion when COACH_BLUDER went to the scene of the triple murder. The woman who taken care of her two disabled children, wasn killed bу robbers. Just put themeselves all against the wall and Lidstrom_slap but the coach. You know, when you have to clorox the blood from children ' s Barbie_dolls_Hot_Wheels and Cribs, it ' s creepy.\n" + ] + } + ], + "source": [ + "print(substitute_txt)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "add_aug = naw.WordEmbsAug(\n", + " model_type='word2vec', model_path='/notebooks/GoogleNews-vectors-negative300.bin',\n", + " action=\"substitute\")\n", + "\n", + "add_txt = add_aug.augment(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Yet there was one occasion when we went to the scene of the triple murder . The woman who took care of her two disabled children , was killed by robbers . Just put them all against the wall and shot in the head . You know , when you have to scrub the blood from children 's toys and Cribs , it 's creepy .\n" + ] + } + ], + "source": [ + "print(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Yet LG there was one occasion when we went activists to the scene of the triple Darren murder. The Tra woman who took care of her two disabled children, was killed by ROB robbers. Just put them Forthill all against the wall and shot in the head. You know, when iVendix you have Feargal to scrub the blood still from children ' Skywards s toys and Cribs, it ' s creepy.\n" + ] + } + ], + "source": [ + "print(augmented_txt)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to acquire lock 140461694723792 on /root/.cache/huggingface/transformers/c1d7f0a763fb63861cc08553866f1fc3e5a6f4f07621be277452d26d71303b7e.20430bd8e10ef77a7d2977accefe796051e01bc2fc4aa146bc862997a1a15e79.lock\n", + "DEBUG:filelock:Lock 140461694723792 acquired on /root/.cache/huggingface/transformers/c1d7f0a763fb63861cc08553866f1fc3e5a6f4f07621be277452d26d71303b7e.20430bd8e10ef77a7d2977accefe796051e01bc2fc4aa146bc862997a1a15e79.lock\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8672c8f59f3b4faa94c1b73b3f4ef4aa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/28.0 [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 140461694723792 on /root/.cache/huggingface/transformers/c1d7f0a763fb63861cc08553866f1fc3e5a6f4f07621be277452d26d71303b7e.20430bd8e10ef77a7d2977accefe796051e01bc2fc4aa146bc862997a1a15e79.lock\n", + "DEBUG:filelock:Lock 140461694723792 released on /root/.cache/huggingface/transformers/c1d7f0a763fb63861cc08553866f1fc3e5a6f4f07621be277452d26d71303b7e.20430bd8e10ef77a7d2977accefe796051e01bc2fc4aa146bc862997a1a15e79.lock\n", + "DEBUG:filelock:Attempting to acquire lock 140461694723792 on /root/.cache/huggingface/transformers/3c61d016573b14f7f008c02c4e51a366c67ab274726fe2910691e2a761acf43e.37395cee442ab11005bcd270f3c34464dc1704b715b5d7d52b1a461abe3b9e4e.lock\n", + "DEBUG:filelock:Lock 140461694723792 acquired on /root/.cache/huggingface/transformers/3c61d016573b14f7f008c02c4e51a366c67ab274726fe2910691e2a761acf43e.37395cee442ab11005bcd270f3c34464dc1704b715b5d7d52b1a461abe3b9e4e.lock\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79598aef988247efb2461eddd0183a68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/570 [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 140461694723792 on /root/.cache/huggingface/transformers/3c61d016573b14f7f008c02c4e51a366c67ab274726fe2910691e2a761acf43e.37395cee442ab11005bcd270f3c34464dc1704b715b5d7d52b1a461abe3b9e4e.lock\n", + "DEBUG:filelock:Lock 140461694723792 released on /root/.cache/huggingface/transformers/3c61d016573b14f7f008c02c4e51a366c67ab274726fe2910691e2a761acf43e.37395cee442ab11005bcd270f3c34464dc1704b715b5d7d52b1a461abe3b9e4e.lock\n", + "DEBUG:filelock:Attempting to acquire lock 140457839724240 on /root/.cache/huggingface/transformers/45c3f7a79a80e1cf0a489e5c62b43f173c15db47864303a55d623bb3c96f72a5.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99.lock\n", + "DEBUG:filelock:Lock 140457839724240 acquired on /root/.cache/huggingface/transformers/45c3f7a79a80e1cf0a489e5c62b43f173c15db47864303a55d623bb3c96f72a5.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99.lock\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8631767b21834f32a18d98d3d6078e9b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/226k [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 140457839724240 on /root/.cache/huggingface/transformers/45c3f7a79a80e1cf0a489e5c62b43f173c15db47864303a55d623bb3c96f72a5.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99.lock\n", + "DEBUG:filelock:Lock 140457839724240 released on /root/.cache/huggingface/transformers/45c3f7a79a80e1cf0a489e5c62b43f173c15db47864303a55d623bb3c96f72a5.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99.lock\n", + "DEBUG:filelock:Attempting to acquire lock 140457840166608 on /root/.cache/huggingface/transformers/534479488c54aeaf9c3406f647aa2ec13648c06771ffe269edabebd4c412da1d.7f2721073f19841be16f41b0a70b600ca6b880c8f3df6f3535cbc704371bdfa4.lock\n", + "DEBUG:filelock:Lock 140457840166608 acquired on /root/.cache/huggingface/transformers/534479488c54aeaf9c3406f647aa2ec13648c06771ffe269edabebd4c412da1d.7f2721073f19841be16f41b0a70b600ca6b880c8f3df6f3535cbc704371bdfa4.lock\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ccc383cd708e4509abee9fa28576a451", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/455k [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 140457840166608 on /root/.cache/huggingface/transformers/534479488c54aeaf9c3406f647aa2ec13648c06771ffe269edabebd4c412da1d.7f2721073f19841be16f41b0a70b600ca6b880c8f3df6f3535cbc704371bdfa4.lock\n", + "DEBUG:filelock:Lock 140457840166608 released on /root/.cache/huggingface/transformers/534479488c54aeaf9c3406f647aa2ec13648c06771ffe269edabebd4c412da1d.7f2721073f19841be16f41b0a70b600ca6b880c8f3df6f3535cbc704371bdfa4.lock\n", + "DEBUG:filelock:Attempting to acquire lock 140463416449968 on /root/.cache/huggingface/transformers/a8041bf617d7f94ea26d15e218abd04afc2004805632abc0ed2066aa16d50d04.faf6ea826ae9c5867d12b22257f9877e6b8367890837bd60f7c54a29633f7f2f.lock\n", + "DEBUG:filelock:Lock 140463416449968 acquired on /root/.cache/huggingface/transformers/a8041bf617d7f94ea26d15e218abd04afc2004805632abc0ed2066aa16d50d04.faf6ea826ae9c5867d12b22257f9877e6b8367890837bd60f7c54a29633f7f2f.lock\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "12b7ff3d5a0d43ae883ae63782957db9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/420M [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:filelock:Attempting to release lock 140463416449968 on /root/.cache/huggingface/transformers/a8041bf617d7f94ea26d15e218abd04afc2004805632abc0ed2066aa16d50d04.faf6ea826ae9c5867d12b22257f9877e6b8367890837bd60f7c54a29633f7f2f.lock\n", + "DEBUG:filelock:Lock 140463416449968 released on /root/.cache/huggingface/transformers/a8041bf617d7f94ea26d15e218abd04afc2004805632abc0ed2066aa16d50d04.faf6ea826ae9c5867d12b22257f9877e6b8367890837bd60f7c54a29633f7f2f.lock\n" + ] + } + ], + "source": [ + "wordContextAug = naw.ContextualWordEmbsAug(\n", + " model_path='bert-base-uncased', action=\"insert\"\n", + ")\n", + "\n", + "word_aug_txt = wordContextAug.augment(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "wordContextAug_subs = naw.ContextualWordEmbsAug(\n", + " model_path='bert-base-uncased', action=\"substitute\"\n", + ")\n", + "\n", + "word_aug_sub_txt = wordContextAug.augment(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Yet there was one occasion when we went to the scene of the triple murder . The woman who took care of her two disabled children , was killed by robbers . Just put them all against the wall and shot in the head . You know , when you have to scrub the blood from children 's toys and Cribs , it 's creepy .\n", + "66\n" + ] + } + ], + "source": [ + "print(text)\n", + "print(len(text.split(\" \")))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "well yet there was the one occasion when we went to the scene of the classic triple murder. how the old woman who took great care of her three two disabled children, was basically killed by robbers. just put them all against the wall and shot in back the head. you know, when you have to scrub the blood from children's used toys and cribs, it's creepy.\n", + "67\n" + ] + } + ], + "source": [ + "print(word_aug_sub_txt)\n", + "print(len(word_aug_sub_txt.split(\" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Discussion regarding Analysis of class labels**\n", + "\n", + "The dataset is a skewed dataset, with 10 times more sentences not exhibiting pcl compared to sentences exhibiting pcl." + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: py-readability-metrics in /opt/conda/lib/python3.8/site-packages (1.4.5)\n", + "Requirement already satisfied: nltk in /opt/conda/lib/python3.8/site-packages (from py-readability-metrics) (3.6.4)\n", + "Requirement already satisfied: tqdm in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (4.62.3)\n", + "Requirement already satisfied: regex in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (2021.10.8)\n", + "Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (1.1.0)\n", + "Requirement already satisfied: click in /opt/conda/lib/python3.8/site-packages (from nltk->py-readability-metrics) (8.0.1)\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n", + "/opt/conda/lib/python3.8/runpy.py:127: RuntimeWarning: 'nltk.downloader' found in sys.modules after import of package 'nltk', but prior to execution of 'nltk.downloader'; this may result in unpredictable behaviour\n", + " warn(RuntimeWarning(msg))\n", + "[nltk_data] Downloading package punkt to /root/nltk_data...\n", + "[nltk_data] Unzipping tokenizers/punkt.zip.\n" + ] + } + ], + "source": [ + "!pip install py-readability-metrics\n", + "!python -m nltk.downloader punkt" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [ + "from readability import Readability\n", + "\n", + "def calculate_readability(text):\n", + " try:\n", + " r = Readability(text)\n", + " return r.flesch_kincaid().score\n", + " except:\n", + " return 0" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " par_id text label \\\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", + "1 4136 Durban 's homeless communities reconciliation ... 1 \n", + "2 10352 The next immediate problem that cropped up was... 1 \n", + "3 8279 Far more important than the implications for t... 1 \n", + "4 1164 To strengthen child-sensitive social protectio... 1 \n", + "\n", + " num_sentences_in_paragraph \n", + "0 2 \n", + "1 1 \n", + "2 3 \n", + "3 2 \n", + "4 2 " + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "paragraphs = trdf1[\"text\"]\n", + "\n", + "trdf1[\"num_sentences_in_paragraph\"] = paragraphs.apply(lambda x: len(x.split(\".\")))\n", + "\n", + "trdf1.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "trdf1[\"readability_score\"] = trdf1[\"text\"].apply(lambda x: calculate_readability(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "def avg_sentence_length(para):\n", + " sentences = para.split(\".\")\n", + " s_len = [len(s.split(\" \")) for s in sentences]\n", + " return sum(s_len) / len(s_len)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "trdf1[\"avg_sentence_length\"] = paragraphs.apply(lambda x : avg_sentence_length(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 8375.000000\n", + "mean 0.544217\n", + "std 2.946594\n", + "min 0.000000\n", + "25% 0.000000\n", + "50% 0.000000\n", + "75% 0.000000\n", + "max 67.778221\n", + "Name: readability_score, dtype: float64" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1[\"readability_score\"].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " <th>avg_sentence_length</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>The scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>18.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>Durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>6.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>The next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>24.666667</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>Far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>23.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>To strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>25.000000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " par_id text label \\\n", + "0 4341 The scheme saw an estimated 150,000 children f... 1 \n", + "1 4136 Durban 's homeless communities reconciliation ... 1 \n", + "2 10352 The next immediate problem that cropped up was... 1 \n", + "3 8279 Far more important than the implications for t... 1 \n", + "4 1164 To strengthen child-sensitive social protectio... 1 \n", + "\n", + " num_sentences_in_paragraph avg_sentence_length \n", + "0 2 18.500000 \n", + "1 1 6.000000 \n", + "2 3 24.666667 \n", + "3 2 23.000000 \n", + "4 2 25.000000 " + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pat_sent = trdf1.loc[trdf1['label'] == 1]\n", + "non_pat_sent = trdf1.loc[trdf1['label'] == 0]\n", + "\n", + "pat_sent.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABEaUlEQVR4nO3deZhlVX3v//dHmkkgAtIShtY2iAMmEbWDGEkkogjoDehVg9cBFYMmmGiiSVBzIw7cYKKS+IshQUFwljhEoiaCxiEmCjYKSANqq41000AzgxgU+P7+2KvDoqyqruqqc7qA9+t5zlP7rD181x5qn+9Ze+19UlVIkiRJGtxnU1dAkiRJWkhMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEv3cklOTfKWTRQ7Sd6b5Lok52yKOix0SR6Y5OYkm23qusy3JP+a5IgZTHdzkl8aR53uKZIsTVJJFm3qukh3R/7jSAtMklXAfYEHV9WPW9lLgedX1f6bsGqjsB/wFGD39es6DkkK2LOqVo4r5saqqh8B2447bpKlwA+BzavqtlHEqKqDZzjd2Ndf0r2bLcjSwrQZ8MpNXYnZ2ohWzgcBq8aZHGv+2Dp5p/neFm5badMyQZYWpr8GXpNk+4kjJrt0muRLrZWZJC9K8p9JTkhyfZIfJPn1Vn5Zkqsmuay9U5KzktyU5MtJHtQt++Ft3LVJvpPkOd24U5OcmOSzSX4M/NYk9d01yRlt/pVJfreVHwm8B3h8u4T+xknmfUirzw1Jrk7y0VnU611JPtPW6ewke7RxX2mTnd/i/k4rf3qS89o2+68kv9otb1WS1yS5oNXlo0m26sYf2ua9Mcn3kxzUyu+X5OQka5OsSfKW9V8iplu36fZ329dvbvv4piRnJtlpinn3T7I6yetajFVJnteNf1qSb7V6X5bk2G729dvp+radHj/h2LoGOLat4/uSrEtyaZI/T3KftvwXJflqkrdl6EbzwyQHd/H743a6fV1JHrKhfdvGH9iOhxuS/H1b5kun2D7HJvlY2583Jflmkkd1449p+/OmJBcleUY3brJtsUeSf09yTVuHD6b7H07ymLa9b0ryTy3uWybsqz9LcgXw3iQ7JPl027bXteHdJ2y/v0xyTtuHn0qy44TVfF6SH7X6vH6y7SBpElXly5evBfQCVgFPBj4BvKWVvRT4UhteChSwqJvnS8BL2/CLgNuAFzO0RL8F+BHwLmBL4EDgJmDbNv2p7f1vtvF/C3y1jdsGuKwtaxHwaOBqYK9u3huAJzB84d5qkvX5CvD3wFbA3sA64EldXb86zbb4MPD69csG9ptFva4B9mnjPwh8pFtuAQ/p3j8auAp4XNtmR7T9sGW3T84BdgV2BC4GXt7G7dO2wVNaPXcDHt7GfRL4x1bfB7RlvGy6dZtkG9xlf7d9/X3gocDW7f3xU8y7fzsW3tH27ROBHwMP68b/SqvDrwJXAodNc5y9qC3vD9p23Rp4H/ApYLs2z3eBI7vpfwb8btuuvwdcDmSS43bK7dHvr+n2LbATcCPwzDbulS3+S6fYPse28c8CNgdew53dSgCe3fb5fYDfadtul2m2xUMYjoMtgcUMx/7ftOm3AC5tddq81fGn3Pk/vn5fvbXNvzVwf+B/M3S52g74J+CfJ/zfrwF+meEY+zjwgQn7791tWY8CbgUesanPcb583R1etiBLC9dfAH+QZPFGzPvDqnpvVd0OfBRYArypqm6tqjMZPpgf0k3/mar6SlXdypCkPD7JEuDpDF0g3ltVt1XVtxg+hJ/dzfupqvrPqrqjqv67r0RbxhOAP6uq/66q8xhajV84w/X4GUM3jF3b/F9t5TOp1yer6pwa+s9+kCE5n8pRwD9W1dlVdXtVncaQTOzbTfPOqrq8qq4F/qVb3pHAKVV1VtsGa6rqkiQ7A4cAr6qqH1fVVcAJwOEbWLeZeG9VfbeqfgKcvoF1A/i/bd9/GfgM8ByAqvpSVX271fsChiT1iRtY1uVV9f+17frTtj6vraqbqmoV8HbgBd30l1bVu9uxeBqwC7DzJMudzfaYat8eAqyoqk+0ce8ErtjA+pxbVR+rqp8xfJHYirbfq+qf2j6/o6o+CnyPITH/uW1RVT+pqpXtOLi1qta15a3fnvsyJNLvrKqfVdUnGL4w9e4A3tDm/0lVXVNVH6+qW6rqJuA4fn7/vL+qLqyhm9L/BZ6Tu3Z1emNb1vnA+QyJsqQNMEGWFqiquhD4NHDMRsx+ZTf8k7a8iWX9jU+XdXFvBq5laDl7EPC4DN0Ork9yPfA84Bcnm3cSuwLXtg/39S5laGWdiT8FApyTZEWSl7TymdSrT4xuYfob3R4EvHrC8pa0+m9oeUsYWnQnW+bmwNpumf/I0JI83brNxGzW7bq6ax/vS2nrleRxSb7YLuHfALycoRV2Ov3+3olhHS+dsPx+//5PXavqljY4WX1nsz2mWv9dueuxXMDqaZbDhOnvaNOv3z4vzJ3dbq5naKndabJ52/Q7J/lIhu40NwIf6KbfFVjT6jTp/MC6/ktmkvsm+cfWdeVGhhbp7SckwP0yLmXYH30dZ3OsSGq8CUBa2N4AfJOhVW699cnOfRkuJ8NdE8ONsWT9QJJtGboRXM7w4fvlqnrKNPPWNOMuB3ZMsl2XJD+Q4bLwBlXVFQyX50myH/D5DH2IZ1Kv2bgMOK6qjtvIefeYovxWYKea5CkQU61bzf+TNXZIsk2XJD8QuLANfwj4O+DgqvrvJH/DncnVVPu1L7+aO1t+L+qWP6P9e5eFzs/2WAv0fXTTv59Cf+zfp01/eYZ++O8GDgC+VlW3JzmPIYn/n2pPWNb/a2W/UlXXJjmMYfuur9tuSdIlyRO/XE1c3quBhwGPq6orkuwNfGtCHZZ0ww9k2B9XTyiXNEu2IEsLWEsOPgr8YVe2jiEBeX6SzVpL22QJ2mwckmS/JFsAbwa+XlWXMbRgPzTJC5Js3l6/luQRM6z/ZcB/AX+ZZKsMN74dydCytkFJnt3dlHQdQwJxx1zrxdDC3j9X993Ay1uLapJsk+EGtu1msKyTgRcnOSDJfZLsluThVbUWOBN4e5JfaOP2SPLEDazbKLwxyRZJfoOhe8o/tfLtGFr4/zvJPsD/6eZZ1+oz5fOHW7eJ04HjkmzXkso/Zob7tzdP2+MzwK8kOSzDTY1Hs+Evj49N8sw2/asYvtR8naFPbzFsB5K8mKEFeTrbATcDNyTZDfiTbtzXgNuBVyRZlORQ7tpdY6rl/YThRskdGb4wT/T8JHsluS/wJuBjbb9ImgMTZGnhexPDh3Xvdxk+fK8BHsmQhM7Fhxg+fK8FHgs8H6C1+h7I0M/0cobLtetvIpqp5zLcMHQ5w01rb6iqz89w3l8Dzk5yM3AG8Mqq+sE81OtY4LR26fw5VbWcYZv+HUNytpLhJqwNqqpzGG4WPIHhZr0vM7SowtDXeguG1tXrgI8x9MGdct1mWP/ZuKLFvpyhv+7Lq+qSNu73gTcluYmhz/vp3XrdwtDn9T/bdtqXyf0Bw1WNHwBfZTiWTtmIes55e1TV1Qz90P+K4X9jL2A5Q9I7lU8x3IB3HUPf6We2PsIXMVy5+RrDF6pfAf5zA1V4I/AYhuPgMww32q6v208Zbsw7Erie4X/s0xuo298w3GB3NUPS/m+TTPN+hhsXr2DoP/2Hk0wjaZZSNd3VUUnS3VWS/RmearChbgb3SK3LxGrgeVX1xUnGH8vwdIznj7tuLf7ZwD9U1Xs3cv4vMezf98xrxSTZgixJuudI8tQk2yfZEngdQ3/dr2/iagGQ5IlJfrF1sTiC4dF6k7UKS9rEvElPknRP8niGbh7ru7Yc1h6HtxA8jKEbyzYMXVKe1fqqS1pg7GIhSZIkdexiIUmSJHUWdBeLnXbaqZYuXbqpqyFJkqS7qXPPPffqqprVr9Iu6AR56dKlLF++fFNXQ5IkSXdTSS7d8FR3ZRcLSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdRb0T03fky095jOzmn7V8U8bUU0kSZLUswVZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJnY1OkJNsleScJOcnWZHkja38wUnOTrIyyUeTbNHKt2zvV7bxS+dpHSRJkqR5M5cW5FuBJ1XVo4C9gYOS7Au8FTihqh4CXAcc2aY/EriulZ/QppMkSZIWlI1OkGtwc3u7eXsV8CTgY638NOCwNnxoe08bf0CSbGx8SZIkaRTm1Ac5yWZJzgOuAs4Cvg9cX1W3tUlWA7u14d2AywDa+BuA+88lviRJkjTf5pQgV9XtVbU3sDuwD/DwuVYoyVFJlidZvm7durkuTpIkSZqVeXmKRVVdD3wReDywfZJFbdTuwJo2vAZYAtDG3w+4ZpJlnVRVy6pq2eLFi+ejepIkSdKMzeUpFouTbN+GtwaeAlzMkCg/q012BPCpNnxGe08b/+9VVRsbX5IkSRqFRRueZEq7AKcl2Ywh0T69qj6d5CLgI0neAnwLOLlNfzLw/iQrgWuBw+cQW5IkSRqJjU6Qq+oC4NGTlP+AoT/yxPL/Bp69sfEkSZKkcfCX9CRJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOhudICdZkuSLSS5KsiLJK1v5sUnWJDmvvQ7p5nltkpVJvpPkqfOxApIkSdJ8WjSHeW8DXl1V30yyHXBukrPauBOq6m39xEn2Ag4HHgnsCnw+yUOr6vY51EGSJEmaVxvdglxVa6vqm234JuBiYLdpZjkU+EhV3VpVPwRWAvtsbHxJkiRpFOalD3KSpcCjgbNb0SuSXJDklCQ7tLLdgMu62VYzSUKd5Kgky5MsX7du3XxUT5IkSZqxOSfISbYFPg68qqpuBE4E9gD2BtYCb5/N8qrqpKpaVlXLFi9ePNfqSZIkSbMypwQ5yeYMyfEHq+oTAFV1ZVXdXlV3AO/mzm4Ua4Al3ey7tzJJkiRpwZjLUywCnAxcXFXv6Mp36SZ7BnBhGz4DODzJlkkeDOwJnLOx8SVJkqRRmMtTLJ4AvAD4dpLzWtnrgOcm2RsoYBXwMoCqWpHkdOAihidgHO0TLCRJkrTQbHSCXFVfBTLJqM9OM89xwHEbG1OSJEkaNX9JT5IkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEmdjU6QkyxJ8sUkFyVZkeSVrXzHJGcl+V77u0MrT5J3JlmZ5IIkj5mvlZAkSZLmy1xakG8DXl1VewH7Akcn2Qs4BvhCVe0JfKG9BzgY2LO9jgJOnENsSZIkaSQ2OkGuqrVV9c02fBNwMbAbcChwWpvsNOCwNnwo8L4afB3YPskuGxtfkiRJGoV56YOcZCnwaOBsYOeqWttGXQHs3IZ3Ay7rZlvdyiYu66gky5MsX7du3XxUT5IkSZqxOSfISbYFPg68qqpu7MdVVQE1m+VV1UlVtayqli1evHiu1ZMkSZJmZU4JcpLNGZLjD1bVJ1rxleu7TrS/V7XyNcCSbvbdW5kkSZK0YMzlKRYBTgYurqp3dKPOAI5ow0cAn+rKX9ieZrEvcEPXFUOSJElaEBbNYd4nAC8Avp3kvFb2OuB44PQkRwKXAs9p4z4LHAKsBG4BXjyH2JIkSdJIbHSCXFVfBTLF6AMmmb6Aozc2niRJkjQOc2lB1gK29JjPzHqeVcc/bQQ1kSRJunvxp6YlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1JlTgpzklCRXJbmwKzs2yZok57XXId241yZZmeQ7SZ46l9iSJEnSKMy1BflU4KBJyk+oqr3b67MASfYCDgce2eb5+ySbzTG+JEmSNK/mlCBX1VeAa2c4+aHAR6rq1qr6IbAS2Gcu8SVJkqT5Nqo+yK9IckHrgrFDK9sNuKybZnUru4skRyVZnmT5unXrRlQ9SZIkaXKjSJBPBPYA9gbWAm+fzcxVdVJVLauqZYsXLx5B9SRJkqSpzXuCXFVXVtXtVXUH8G7u7EaxBljSTbp7K5MkSZIWjHlPkJPs0r19BrD+CRdnAIcn2TLJg4E9gXPmO74kSZI0F4vmMnOSDwP7AzslWQ28Adg/yd5AAauAlwFU1YokpwMXAbcBR1fV7XOJL0mSJM23OSXIVfXcSYpPnmb644Dj5hJTkiRJGiV/SU+SJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJnTklyElOSXJVkgu7sh2TnJXke+3vDq08Sd6ZZGWSC5I8Zq6VlyRJkubbXFuQTwUOmlB2DPCFqtoT+EJ7D3AwsGd7HQWcOMfYkiRJ0rxbNJeZq+orSZZOKD4U2L8NnwZ8CfizVv6+qirg60m2T7JLVa2dSx1097H0mM/MavpVxz9tRDWRJEma2ij6IO/cJb1XADu34d2Ay7rpVreyu0hyVJLlSZavW7duBNWTJEmSpjbSm/Raa3HNcp6TqmpZVS1bvHjxiGomSZIkTW4UCfKVSXYBaH+vauVrgCXddLu3MkmSJGnBGEWCfAZwRBs+AvhUV/7C9jSLfYEb7H8sSZKkhWZON+kl+TDDDXk7JVkNvAE4Hjg9yZHApcBz2uSfBQ4BVgK3AC+eS2xJkiRpFOb6FIvnTjHqgEmmLeDoucSTJEmSRs1f0pMkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6iwa1YKTrAJuAm4HbquqZUl2BD4KLAVWAc+pqutGVQdJkiRptkaWIDe/VVVXd++PAb5QVccnOaa9/7MR10H3IkuP+cyspl91/NNGVBNJknR3Ne4uFocCp7Xh04DDxhxfkiRJmtYoE+QCzkxybpKjWtnOVbW2DV8B7DxxpiRHJVmeZPm6detGWD1JkiTp542yi8V+VbUmyQOAs5Jc0o+sqkpSE2eqqpOAkwCWLVv2c+MlSZKkURpZglxVa9rfq5J8EtgHuDLJLlW1NskuwFWjij8Xs+3HCvZllSRJuqcYSReLJNsk2W79MHAgcCFwBnBEm+wI4FOjiC9JkiRtrFG1IO8MfDLJ+hgfqqp/S/IN4PQkRwKXAs8ZUXxJkiRpo4wkQa6qHwCPmqT8GuCAUcSUJEmS5oO/pCdJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjqj/KEQ6V7PZ2pLknT3YwuyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLU8Zf0pLu52f5an7/UJ0nS9GxBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHV8zJukeeej5yRJd2e2IEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpM7Yb9JLchDwt8BmwHuq6vhx10HS3Zs3AUqSRmmsLchJNgPeBRwM7AU8N8le46yDJEmSNJ1xtyDvA6ysqh8AJPkIcChw0ZjrIUnzatSt2vfGVvPZrjPcM9Zburu4J5+XUlXjC5Y8Czioql7a3r8AeFxVvaKb5ijgqPb2l4ELx1bBO+0EXG1c4xrXuMY1rnGNa9y7fdyHVdV2s5lhwf1QSFWdBJwEkGR5VS0bdx2Ma1zjGte4xjWucY17z4k723nG/RSLNcCS7v3urUySJElaEMadIH8D2DPJg5NsARwOnDHmOkiSJElTGmsXi6q6LckrgM8xPObtlKpaMc0sJ42nZsY1rnGNa1zjGte4xjXuYKw36UmSJEkLnb+kJ0mSJHVMkCVJkqTOgk2QkxyU5DtJViY5ZkwxT0lyVZKxPns5yZIkX0xyUZIVSV45prhbJTknyfkt7hvHEbeLv1mSbyX59Bhjrkry7STnbcxjX+YQd/skH0tySZKLkzx+DDEf1tZz/evGJK8addwW+4/aMXVhkg8n2WpMcV/ZYq4Y5bpOdq5IsmOSs5J8r/3dYUxxn93W944kI3l80hRx/7odzxck+WSS7ccU980t5nlJzkyy6zjiduNenaSS7DSOuEmOTbKm+z8+ZBxxW/kftH28IslfjSNuko9267oqyXljirt3kq+v/2xIss+Y4j4qydfa59K/JPmFEcSdNMcY9TlrmrgjPWdNE3d256yqWnAvhhv4vg/8ErAFcD6w1xji/ibwGODCMa/vLsBj2vB2wHfHtL4Btm3DmwNnA/uOcb3/GPgQ8OkxxlwF7DTO/dvinga8tA1vAWw/5vibAVcADxpDrN2AHwJbt/enAy8aQ9z1Pyx0X4YbkD8PPGREsX7uXAH8FXBMGz4GeOuY4j4CeBjwJWDZGNf3QGBRG37rGNf3F7rhPwT+YRxxW/kShpvMLx3FeWSK9T0WeM0o9usG4v5W+x/asr1/wLi2czf+7cBfjGl9zwQObsOHAF8aU9xvAE9swy8B3jyCuJPmGKM+Z00Td6TnrGnizuqctVBbkP/nJ6mr6qfA+p+kHqmq+gpw7ajjTBJ3bVV9sw3fBFzMkGSMOm5V1c3t7ebtNZa7NpPsDjwNeM844m1KSe7HcGI8GaCqflpV14+5GgcA36+qS8cUbxGwdZJFDAnr5WOI+Qjg7Kq6papuA74MPHMUgaY4VxzK8EWI9vewccStqour6jvzHWsGcc9s2xng6wzPtR9H3Bu7t9swgnPWNJ8FJwB/OoqYG4g7UlPE/T3g+Kq6tU1z1ZjiApAkwHOAD48pbgHrW2/vxwjOWVPEfSjwlTZ8FvC/RxB3qhxjpOesqeKO+pw1TdxZnbMWaoK8G3BZ9341Y0gYF4IkS4FHM7TmjiPeZu0S1lXAWVU1lrjA3zB80NwxpnjrFXBmknMz/Kz5ODwYWAe8N0OXkvck2WZMsdc7nBF80EymqtYAbwN+BKwFbqiqM8cQ+kLgN5LcP8l9GVqBlmxgnvm0c1WtbcNXADuPMfam9hLgX8cVLMlxSS4Dngf8xZhiHgqsqarzxxFvgle0y8KnjKLrzhQeyvD/dHaSLyf5tTHFXe83gCur6ntjivcq4K/bcfU24LVjiruCOxsAn82Iz1kTcoyxnbPGndvMIO4Gz1kLNUG+V0qyLfBx4FUTWklGpqpur6q9Gb5J7ZPkl0cdM8nTgauq6txRx5rEflX1GOBg4OgkvzmGmIsYLqudWFWPBn7McDlrLDL8KM9vA/80png7MJzwHwzsCmyT5PmjjltVFzNcNjsT+DfgPOD2Ucedoi7FmK7GbGpJXg/cBnxwXDGr6vVVtaTFfMWo47UvXK9jTMn4BCcCewB7M3zhfPuY4i4CdgT2Bf4EOL216o7LcxnTl/rm94A/asfVH9Gu+I3BS4DfT3IuQ3eAn44q0HQ5xijPWZsit5ku7kzPWQs1Qb7X/SR1ks0ZduQHq+oT447fLvl/EThoDOGeAPx2klUM3WeelOQDY4i7vnVz/eXCTzJ05xm11cDqrnX+YwwJ87gcDHyzqq4cU7wnAz+sqnVV9TPgE8CvjyNwVZ1cVY+tqt8ErmPoezYuVybZBaD9nfdL0gtNkhcBTwee1z5gx+2DjOCS9CT2YPjCd347b+0OfDPJL446cFVd2Roy7gDezXjOWTCctz7RuuKdw3C1b95vTJxM65r1TOCj44jXHMFwroKhMWEs27mqLqmqA6vqsQxfCL4/ijhT5BgjP2dtqtxmqrizOWct1AT5XvWT1O1b+cnAxVX1jjHGXbz+Ls4kWwNPAS4Zddyqem1V7V5VSxn27b9X1chbGJNsk2S79cMMHfZH/sSSqroCuCzJw1rRAcBFo47bGXdLzI+AfZPctx3bBzD0ARu5JA9ofx/I8AH7oXHEbc5g+JCl/f3UGGOPXZKDGLpJ/XZV3TLGuHt2bw9lPOesb1fVA6pqaTtvrWa4CeiKUcden8A0z2AM56zmnxlu1CPJQxluLr56TLGfDFxSVavHFA+GPsdPbMNPAsbStaM7Z90H+HPgH0YQY6ocY6TnrE2Y20wad9bnrOnu4NuUL4b+g99l+Db1+jHF/DDDJayfMZwAjxxT3P0YLm1cwHBZ+DzgkDHE/VXgWy3uhYzgbuEZ1GF/xvQUC4anopzfXivGdVy12HsDy9u2/mdghzHF3Qa4BrjfmPfrGxkSlwuB99PuhB9D3P9g+PJxPnDACOP83LkCuD/wBYYP1s8DO44p7jPa8K3AlcDnxhR3JcO9IuvPWaN4msRkcT/ejqsLgH9huPlm5HEnjF/FaJ5iMdn6vh/4dlvfM4BdxhR3C+ADbVt/E3jSuLYzcCrw8vmOt4H13Q84t507zgYeO6a4r2TIdb4LHE/7heN5jjtpjjHqc9Y0cUd6zpom7qzOWf7UtCRJktRZqF0sJEmSpE3CBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4Is3YMkOTXJWzZR7CR5b5LrkpyzKeqw0CV5YJKbk2y2qetyd5ZkRZL9NzCN23ojJNk/yepNXQ9pUzNBlkYoyaokVyXZpit7aZIvbcJqjcp+wFOA3atqn3EFTVJJHjKueHNRVT+qqm2r6vZNXZdRGUeCVVWPrKovbWCae/y2ljQ6JsjS6G0GvHJTV2K2NqLl7UHAqqr68Sjqo3uOJIs2dR0WivneFm5baX6YIEuj99fAa5JsP3FEkqWtBXRRV/alJC9twy9K8p9JTkhyfZIfJPn1Vn5Za50+YsJid0pyVpKbknw5yYO6ZT+8jbs2yXeSPKcbd2qSE5N8NsmPgd+apL67Jjmjzb8yye+28iOB9wCPb5e13zjJvA9p9bkhydVJPjqLer0ryWfaOp2dZI827ittsvNb3N9p5U9Pcl7bZv+V5Fe75a1K8pokF7S6fDTJVt34Q9u8Nyb5fpKDWvn9kpycZG2SNUnesv5LxHTrNt3+bvv6zW0f35TkzCQ7TTHv/klWJ3l12+9rk7y4G3+/JO9Lsi7JpUn+PMl92rgXJflqkrdl6ALzwyQHTxanm/4/k/xdW6dLkhzQjX9xkotbnX+Q5GWtfBvgX4Fd2/64uR0zxyb5WJIPJLkReNFUx1JbzrFJTm/rc1OGLhXLJuzDJ7fhfZIsb/vryiTv2JhtneSFbbtdk+T/9jEm2T6nJvmHTP1/9rcZ/j9vTHJukt+YsG4Tt8U+Sb6W4Xhd27b7Ft08B2b4v7ghyd+3eJOdI64Bjk2yR5J/b+tydZIPpjv/tHV7bZKL2vHw3nT/A22aSY8z6V6jqnz58jWiF7AKeDLwCeAtreylwJfa8FKggEXdPF8CXtqGXwTcBryYoSX6LcCPgHcBWwIHAjcB27bpT23vf7ON/1vgq23cNsBlbVmLgEcDVwN7dfPeADyB4cvzVpOsz1eAvwe2AvYG1gFP6ur61Wm2xYeB169fNrDfLOp1DbBPG/9B4CPdcgt4SPf+0cBVwOPaNjui7Yctu31yDrArsCNwMfDyNm6ftg2e0uq5G/DwNu6TwD+2+j6gLeNl063bJNvgLvu77evvAw8Ftm7vj59i3v3bsfAmYHPgEOAWYIc2/n3Ap4DtWpzvAkd2++ZnwO+2bfJ7wOVApoj1ohbrj1qs32nbZcc2/mnAHkCAJ7Z6PKar5+oJyzu2xT+sbaOtmf5YOhb477aOmwF/CXx94v9VG/4a8II2vC2w72y3NbAXcDNDN6EtgLe1+j55iu1zKlP8n7Xxzwfuz3C8vhq4gvb/NMW2eCywb5t+KcMx+ao2/U7AjcAz2/hXtvknniP+oI3fGngIwzG8JbC4beu/mbD9LgSWMPwP/Cd3np/2Z5rjzJeve8trk1fAl6978os7E+RfZkgwFjP7BPl73bhfadPv3JVdA+zdhk/lrsnjtsDt7YPwd4D/mFC/fwTe0M37vmnWZUlb1nZd2V8Cp3Z1nS5Bfh9wEkMf5b58JvV6TzfuEOCS7v3EBPlE4M0Tlvcd4IndPnl+N+6vgH/o4p4wSd13Bm4Ftu7Kngt8cbp1m2Q5d9nfbV//eTf+94F/m2Le/YGfTDhWrmJIrDYDfkr7UtHGvaw7zl4ErOzG3bfV4xeniPUiJiTQDF8IXjDF9P8MvLKr52QJ8ldmcSwdC3y+G7cX8JOJ/1dt+CvAG4GdNnZbA38BfHjC9vkp0yfIk/6fTTH9dcCjJtsWU0z/KuCTbfiFwNe6cWH4QtmfI360geUdBnxrwvZ7+YT/qe9v6DibLoYvX/e0l10spDGoqguBTwPHbMTsV3bDP2nLm1i2bff+si7uzcC1DK2lDwIe1y7jXp/keuB5wC9ONu8kdgWuraqburJLGVpZZ+JPGT7cz2mXzF/SymdSryu64Vu46/pO9CDg1ROWt6TVf0PLW8LQyjjZMjcH1nbL/EeGluTp1m0mZrNu11TVbZNMv1Or36XduIn75n/iVNUtbXDbJL/RdYdY0U2/pqpqwvJ2BUhycJKvt+4R1zMkWJN2Den0x9ZMjqWJ22WrTN6/9kiGVuFLknwjydOnqcNU23pX7vp/cwvDF8/pTPV/RoYuPBe3LhHXA/fjrtvnLv9nSR6a5NNJrmjdLv5fN/3EuhUw8SbIicvbOclHMnQFuhH4AD+/f/p5/mffNlMdZ9K9hp35pfF5A/BN4O1d2fob2u7LcBkV7poYbowl6weSbMtwCfVyhg/EL1fVU6aZt6YZdzmwY5LtusTmgcCamVSqqq5guMRPkv2Az2foQzyTes3GZcBxVXXcRs67xxTltzK0Ut42ceRU61ZVKzeiDhvjaobL7g8CLmplM9o3VfUfTJ787JYkXZL8QOCMJFsCH2do2fxUVf0syT8zfEGAqY+hvnxOx9KE+n8PeG6G/tbPBD6W5P6zXMxa4GHr3yTZmqGLxHQm/T9r/Y3/FDgAWFFVdyS5jju3D/z8NjoR+Bbw3Kq6KcmrgGd1ddu9i5X+/RTL+3+t7Feq6tokhwF/N1X9Gbb95VOvqnTvYwuyNCYtWfoo8Idd2TqGpOD5STZrLY+TJWizcUiS/dpNPm9m6Lt5GUML9kOTvCDJ5u31a0keMcP6Xwb8F/CXSbbKcOPbkQytUxuU5NlJ1n+wX8fwAX7HXOvF0ML+S937dwMvT/K4DLZJ8rQk281gWScDL05yQJL7JNktycOrai1wJvD2JL/Qxu2R5IkbWLexqOFRZqcDxyXZLsMNY3/MDPfNFB4A/GHbH88GHgF8lqGP7pYMfYZvy3Cz34HdfFcC909yv2nqO6djqZfk+UkWV9UdwPWteLbb/mPA/8pwA+wWDN0gMv0sU/6fbcfQh3cdsCjJXwC/sIFlbcfwBfnmJA9n6CO+3meAX0lyWGtBP5oNf4nejqFP9Q1JdgP+ZJJpjk6ye5IdGfrPT3pjqXRvZYIsjdebGG7y6v0uwwfYNcAjGRKHufgQQ2v1tQw3/zwfoLXUHQgcztBadAXwVoZkZ6aey9C383KGm9beUFWfn+G8vwacneRm4AyGPqs/mId6HQuc1ro+PKeqljNs079jSFZXMvTT3KCqOofhZsETGPqMf5mhVRaGFtMtGFpor2NIqnaZbt1mWP/58gcMVyR+AHyV4Tg4ZQ7LOxvYk6F1+jjgWVV1Tdtff8iQkF8H/B+GdQagqi5huGnxB22f7PpzSx7M5VjqHQSsaNv+b4HDq+ons1lAVa1g2H4fYWixvZmh3+2t08w26f8Z8Dng3xhukryU4WbD6bouAbyGYTvexPAF73+S1aq6Gng2Q1/5axj6Yy/fQN3eCDyG4Rj+DMNNwpPV/0yG4+X7DDcAS2py1y5mkqR7uyQvYrgJbL9NXZdNoXWZuB7Ys6p+OMn4UxluRPzzMVeN1pVkNfC8qvriRi5jFcP+3ZgvJNK9gi3IkqR7vST/K8l9MzzL+W3Atxme9rDJJXlqku1b/+/XMXT/+PomrpZ0j2aCLEkSHMrQ3eNyhq4lh9fCucT6eIZuEFcD/ws4bLbdSCTNjl0sJEmSpI4tyJIkSVJnQT8HeaeddqqlS5du6mpIkiTpburcc8+9uqoWz2aeBZ0gL126lOXLl2/qakiSJOluKsmlG57qruxiIUmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdRb0L+ndky095jOzmn7V8U8bUU0kSZLUswVZkiRJ6mwwQU6yVZJzkpyfZEWSN7byU5P8MMl57bV3K0+SdyZZmeSCJI/plnVEku+11xEjWytJkiRpI82ki8WtwJOq6uYkmwNfTfKvbdyfVNXHJkx/MLBnez0OOBF4XJIdgTcAy4ACzk1yRlVdNx8rIkmSJM2HDbYg1+Dm9nbz9qppZjkUeF+b7+vA9kl2AZ4KnFVV17ak+CzgoLlVX5IkSZpfM+qDnGSzJOcBVzEkuWe3Uce1bhQnJNmyle0GXNbNvrqVTVUuSZIkLRgzSpCr6vaq2hvYHdgnyS8DrwUeDvwasCPwZ/NRoSRHJVmeZPm6devmY5GSJEnSjM3qKRZVdT3wReCgqlrbulHcCrwX2KdNtgZY0s22eyubqnxijJOqallVLVu8ePFsqidJkiTN2UyeYrE4yfZteGvgKcAlrV8xSQIcBlzYZjkDeGF7msW+wA1VtRb4HHBgkh2S7AAc2MokSZKkBWMmT7HYBTgtyWYMCfXpVfXpJP+eZDEQ4Dzg5W36zwKHACuBW4AXA1TVtUneDHyjTfemqrp23tZEkiRJmgcbTJCr6gLg0ZOUP2mK6Qs4eopxpwCnzLKOkiRJ0tj4S3qSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktTZYIKcZKsk5yQ5P8mKJG9s5Q9OcnaSlUk+mmSLVr5le7+yjV/aLeu1rfw7SZ46srWSJEmSNtJMWpBvBZ5UVY8C9gYOSrIv8FbghKp6CHAdcGSb/kjgulZ+QpuOJHsBhwOPBA4C/j7JZvO4LpIkSdKcbTBBrsHN7e3m7VXAk4CPtfLTgMPa8KHtPW38AUnSyj9SVbdW1Q+BlcA+87ESkiRJ0nyZUR/kJJslOQ+4CjgL+D5wfVXd1iZZDezWhncDLgNo428A7t+XTzJPH+uoJMuTLF+3bt2sV0iSJEmaixklyFV1e1XtDezO0Or78FFVqKpOqqplVbVs8eLFowojSZIkTWpWT7GoquuBLwKPB7ZPsqiN2h1Y04bXAEsA2vj7Adf05ZPMI0mSJC0IM3mKxeIk27fhrYGnABczJMrPapMdAXyqDZ/R3tPG/3tVVSs/vD3l4sHAnsA587QekiRJ0rxYtOFJ2AU4rT1x4j7A6VX16SQXAR9J8hbgW8DJbfqTgfcnWQlcy/DkCqpqRZLTgYuA24Cjq+r2+V0dSZIkaW42mCBX1QXAoycp/wGTPIWiqv4bePYUyzoOOG721ZQkSZLGw1/SkyRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzgYT5CRLknwxyUVJViR5ZSs/NsmaJOe11yHdPK9NsjLJd5I8tSs/qJWtTHLMaFZJkiRJ2niLZjDNbcCrq+qbSbYDzk1yVht3QlW9rZ84yV7A4cAjgV2Bzyd5aBv9LuApwGrgG0nOqKqL5mNFJEmSpPmwwQS5qtYCa9vwTUkuBnabZpZDgY9U1a3AD5OsBPZp41ZW1Q8AknykTWuCLEmSpAVjVn2QkywFHg2c3YpekeSCJKck2aGV7QZc1s22upVNVT4xxlFJlidZvm7dutlUT5IkSZqzGSfISbYFPg68qqpuBE4E9gD2Zmhhfvt8VKiqTqqqZVW1bPHixfOxSEmSJGnGZtIHmSSbMyTHH6yqTwBU1ZXd+HcDn25v1wBLutl3b2VMUy5JkiQtCDN5ikWAk4GLq+odXfku3WTPAC5sw2cAhyfZMsmDgT2Bc4BvAHsmeXCSLRhu5DtjflZDkiRJmh8zaUF+AvAC4NtJzmtlrwOem2RvoIBVwMsAqmpFktMZbr67DTi6qm4HSPIK4HPAZsApVbVi3tZEkiRJmgczeYrFV4FMMuqz08xzHHDcJOWfnW4+SZIkaVPzl/QkSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKmzwQQ5yZIkX0xyUZIVSV7ZyndMclaS77W/O7TyJHlnkpVJLkjymG5ZR7Tpv5fkiNGtliRJkrRxZtKCfBvw6qraC9gXODrJXsAxwBeqak/gC+09wMHAnu11FHAiDAk18AbgccA+wBvWJ9WSJEnSQrHBBLmq1lbVN9vwTcDFwG7AocBpbbLTgMPa8KHA+2rwdWD7JLsATwXOqqprq+o64CzgoPlcGUmSJGmuZtUHOclS4NHA2cDOVbW2jboC2LkN7wZc1s22upVNVT4xxlFJlidZvm7dutlUT5IkSZqzGSfISbYFPg68qqpu7MdVVQE1HxWqqpOqallVLVu8ePF8LFKSJEmasRklyEk2Z0iOP1hVn2jFV7auE7S/V7XyNcCSbvbdW9lU5ZIkSdKCMZOnWAQ4Gbi4qt7RjToDWP8kiiOAT3XlL2xPs9gXuKF1xfgccGCSHdrNeQe2MkmSJGnBWDSDaZ4AvAD4dpLzWtnrgOOB05McCVwKPKeN+yxwCLASuAV4MUBVXZvkzcA32nRvqqpr52MlJEmSpPmywQS5qr4KZIrRB0wyfQFHT7GsU4BTZlNBSZIkaZz8JT1JkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzqJNXQGNxtJjPjPreVYd/7QR1ESSJOnuxRZkSZIkqWOCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdTaYICc5JclVSS7syo5NsibJee11SDfutUlWJvlOkqd25Qe1spVJjpn/VZEkSZLmbiYtyKcCB01SfkJV7d1enwVIshdwOPDINs/fJ9ksyWbAu4CDgb2A57ZpJUmSpAVl0YYmqKqvJFk6w+UdCnykqm4FfphkJbBPG7eyqn4AkOQjbdqLZl9lSZIkaXTm0gf5FUkuaF0wdmhluwGXddOsbmVTlUuSJEkLysYmyCcCewB7A2uBt89XhZIclWR5kuXr1q2br8VKkiRJM7JRCXJVXVlVt1fVHcC7ubMbxRpgSTfp7q1sqvLJln1SVS2rqmWLFy/emOpJkiRJG22jEuQku3RvnwGsf8LFGcDhSbZM8mBgT+Ac4BvAnkkenGQLhhv5ztj4akuSJEmjscGb9JJ8GNgf2CnJauANwP5J9gYKWAW8DKCqViQ5neHmu9uAo6vq9racVwCfAzYDTqmqFfO9MpIkSdJczeQpFs+dpPjkaaY/DjhukvLPAp+dVe0kSZKkMfOX9CRJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVLHBFmSJEnqmCBLkiRJHRNkSZIkqbPBBDnJKUmuSnJhV7ZjkrOSfK/93aGVJ8k7k6xMckGSx3TzHNGm/16SI0azOpIkSdLczKQF+VTgoAllxwBfqKo9gS+09wAHA3u211HAiTAk1MAbgMcB+wBvWJ9US5IkSQvJBhPkqvoKcO2E4kOB09rwacBhXfn7avB1YPskuwBPBc6qqmur6jrgLH4+6ZYkSZI2uY3tg7xzVa1tw1cAO7fh3YDLuulWt7Kpyn9OkqOSLE+yfN26dRtZPUmSJGnjzPkmvaoqoOahLuuXd1JVLauqZYsXL56vxUqSJEkzsrEJ8pWt6wTt71WtfA2wpJtu91Y2VbkkSZK0oGxsgnwGsP5JFEcAn+rKX9ieZrEvcEPrivE54MAkO7Sb8w5sZZIkSdKCsmhDEyT5MLA/sFOS1QxPozgeOD3JkcClwHPa5J8FDgFWArcALwaoqmuTvBn4RpvuTVU18cY/SZIkaZPbYIJcVc+dYtQBk0xbwNFTLOcU4JRZ1U6SJEkaM39JT5IkSepssAVZmi9Lj/nMrKZfdfzTRlQTSZKkqdmCLEmSJHVMkCVJkqSOCbIkSZLUMUGWJEmSOibIkiRJUscEWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6JsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjomyJIkSVJnTglyklVJvp3kvCTLW9mOSc5K8r32d4dWniTvTLIyyQVJHjMfKyBJkiTNp/loQf6tqtq7qpa198cAX6iqPYEvtPcABwN7ttdRwInzEFuSJEmaV6PoYnEocFobPg04rCt/Xw2+DmyfZJcRxJckSZI22lwT5ALOTHJukqNa2c5VtbYNXwHs3IZ3Ay7r5l3dyu4iyVFJlidZvm7dujlWT5IkSZqdRXOcf7+qWpPkAcBZSS7pR1ZVJanZLLCqTgJOAli2bNms5pUkSZLmak4tyFW1pv29CvgksA9w5fquE+3vVW3yNcCSbvbdW5kkSZK0YGx0gpxkmyTbrR8GDgQuBM4AjmiTHQF8qg2fAbywPc1iX+CGriuGJEmStCDMpYvFzsAnk6xfzoeq6t+SfAM4PcmRwKXAc9r0nwUOAVYCtwAvnkNsaVJLj/nMrKZfdfzTRlQTSZJ0d7XRCXJV/QB41CTl1wAHTFJewNEbG0+SJEkaB39JT5IkSerM9SkW90izvUwPXqqXJEm6p7AFWZIkSeqYIEuSJEkdE2RJkiSpY4IsSZIkdUyQJUmSpI4JsiRJktQxQZYkSZI6PgdZGiGfqS1J0t2PLciSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkjgmyJEmS1DFBliRJkjr+UIh0NzfbHyPxh0gkSZqeLciSJElSxwRZkiRJ6tjFQtK8s9uHJOnuzBZkSZIkqTP2FuQkBwF/C2wGvKeqjh93HSTdvdlCLUkapbG2ICfZDHgXcDCwF/DcJHuNsw6SJEnSdMbdgrwPsLKqfgCQ5CPAocBFY66HJM2rUbdqj6PVfKG1zM+2PuDVAknzI1U1vmDJs4CDquql7f0LgMdV1Su6aY4Cjmpvfxm4cGwVvNNOwNXGNa5xjWtc4xrXuMa928d9WFVtN5sZFtxTLKrqJOAkgCTLq2rZuOtgXOMa17jGNa5xjWvce07c2c4z7qdYrAGWdO93b2WSJEnSgjDuBPkbwJ5JHpxkC+Bw4Iwx10GSJEma0li7WFTVbUleAXyO4TFvp1TVimlmOWk8NTOucY1rXOMa17jGNa5xB2O9SU+SJEla6PwlPUmSJKljgixJkiR1FmyCnOSgJN9JsjLJMWOKeUqSq5KM9dnLSZYk+WKSi5KsSPLKMcXdKsk5Sc5vcd84jrhd/M2SfCvJp8cYc1WSbyc5b2Me+zKHuNsn+ViSS5JcnOTxY4j5sLae6183JnnVqOO22H/UjqkLk3w4yVZjivvKFnPFKNd1snNFkh2TnJXke+3vDmOK++y2vnckGcnjk6aI+9fteL4gySeTbD+muG9uMc9LcmaSXccRtxv36iSVZKdxxE1ybJI13f/xIeOI28r/oO3jFUn+ahxxk3y0W9dVSc4bU9y9k3x9/WdDkn3GFPdRSb7WPpf+JckvjCDupDnGqM9Z08Qd6TlrmrizO2dV1YJ7MdzA933gl4AtgPOBvcYQ9zeBxwAXjnl9dwEe04a3A747pvUNsG0b3hw4G9h3jOv9x8CHgE+PMeYqYKdx7t8W9zTgpW14C2D7McffDLgCeNAYYu0G/BDYur0/HXjRGOKu/2Gh+zLcgPx54CEjivVz5wrgr4Bj2vAxwFvHFPcRwMOALwHLxri+BwKL2vBbx7i+v9AN/yHwD+OI28qXMNxkfukoziNTrO+xwGtGsV83EPe32v/Qlu39A8a1nbvxbwf+YkzreyZwcBs+BPjSmOJ+A3hiG34J8OYRxJ00xxj1OWuauCM9Z00Td1bnrIXagvw/P0ldVT8F1v8k9UhV1VeAa0cdZ5K4a6vqm234JuBihiRj1HGrqm5ubzdvr7HctZlkd+BpwHvGEW9TSnI/hhPjyQBV9dOqun7M1TgA+H5VXTqmeIuArZMsYkhYLx9DzEcAZ1fVLVV1G/Bl4JmjCDTFueJQhi9CtL+HjSNuVV1cVd+Z71gziHtm284AX2d4rv044t7Yvd2GEZyzpvksOAH401HE3EDckZoi7u8Bx1fVrW2aq8YUF4AkAZ4DfHhMcQtY33p7P0Zwzpoi7kOBr7Ths4D/PYK4U+UYIz1nTRV31OesaeLO6py1UBPk3YDLuverGUPCuBAkWQo8mqE1dxzxNmuXsK4CzqqqscQF/obhg+aOMcVbr4Azk5yb4WfNx+HBwDrgvRm6lLwnyTZjir3e4Yzgg2YyVbUGeBvwI2AtcENVnTmG0BcCv5Hk/knuy9AKtGQD88ynnatqbRu+Ath5jLE3tZcA/zquYEmOS3IZ8DzgL8YU81BgTVWdP454E7yiXRY+ZRRdd6bwUIb/p7OTfDnJr40p7nq/AVxZVd8bU7xXAX/djqu3Aa8dU9wV3NkA+GxGfM6akGOM7Zw17txmBnE3eM5aqAnyvVKSbYGPA6+a0EoyMlV1e1XtzfBNap8kvzzqmEmeDlxVVeeOOtYk9quqxwAHA0cn+c0xxFzEcFntxKp6NPBjhstZY5HhR3l+G/inMcXbgeGE/2BgV2CbJM8fddyqupjhstmZwL8B5wG3jzruFHUpxnQ1ZlNL8nrgNuCD44pZVa+vqiUt5itGHa994XodY0rGJzgR2APYm+EL59vHFHcRsCOwL/AnwOmtVXdcnsuYvtQ3vwf8UTuu/oh2xW8MXgL8fpJzGboD/HRUgabLMUZ5ztoUuc10cWd6zlqoCfK97iepk2zOsCM/WFWfGHf8dsn/i8BBYwj3BOC3k6xi6D7zpCQfGEPc9a2b6y8XfpKhO8+orQZWd63zH2NImMflYOCbVXXlmOI9GfhhVa2rqp8BnwB+fRyBq+rkqnpsVf0mcB1D37NxuTLJLgDt77xfkl5okrwIeDrwvPYBO24fZASXpCexB8MXvvPbeWt34JtJfnHUgavqytaQcQfwbsZzzoLhvPWJ1hXvHIarffN+Y+JkWtesZwIfHUe85giGcxUMjQlj2c5VdUlVHVhVj2X4QvD9UcSZIscY+TlrU+U2U8WdzTlroSbI96qfpG7fyk8GLq6qd4wx7uL1d3Em2Rp4CnDJqONW1WuraveqWsqwb/+9qkbewphkmyTbrR9m6LA/8ieWVNUVwGVJHtaKDgAuGnXczrhbYn4E7Jvkvu3YPoChD9jIJXlA+/tAhg/YD40jbnMGw4cs7e+nxhh77JIcxNBN6rer6pYxxt2ze3so4zlnfbuqHlBVS9t5azXDTUBXjDr2+gSmeQZjOGc1/8xwox5JHspwc/HVY4r9ZOCSqlo9pngw9Dl+Yht+EjCWrh3dOes+wJ8D/zCCGFPlGCM9Z23C3GbSuLM+Z013B9+mfDH0H/wuw7ep148p5ocZLmH9jOEEeOSY4u7HcGnjAobLwucBh4wh7q8C32pxL2QEdwvPoA77M6anWDA8FeX89loxruOqxd4bWN629T8DO4wp7jbANcD9xrxf38iQuFwIvJ92J/wY4v4Hw5eP84EDRhjn584VwP2BLzB8sH4e2HFMcZ/Rhm8FrgQ+N6a4KxnuFVl/zhrF0yQmi/vxdlxdAPwLw803I487YfwqRvMUi8nW9/3At9v6ngHsMqa4WwAfaNv6m8CTxrWdgVOBl893vA2s737Aue3ccTbw2DHFfSVDrvNd4HjaLxzPc9xJc4xRn7OmiTvSc9Y0cWd1zvKnpiVJkqTOQu1iIUmSJG0SJsiSJElSxwRZkiRJ6pggS5IkSR0TZEmSJKljgixJkiR1TJAlSZKkzv8PWwU0YKKaJjQAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 720x576 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax1, ax2) = plt.subplots(nrows=2)\n", + "ax1.hist(pat_sent[\"num_sentences_in_paragraph\"], bins=np.linspace(1, 21))\n", + "ax1.xaxis.set_major_locator(plt.MultipleLocator(1))\n", + "ax1.set_title(\"Number of sentences in patronising paragraph\")\n", + "ax2.hist(non_pat_sent[\"num_sentences_in_paragraph\"], bins=np.linspace(1, 21))\n", + "ax2.xaxis.set_major_locator(plt.MultipleLocator(1))\n", + "ax2.set_title(\"Number of sentences in non-patronising paragraph\")\n", + "fig.set_figwidth(10)\n", + "fig.set_figheight(8)\n", + "fig.tight_layout()\n", + "plt.show()\n", + "# ax.xaxis.set_major_locator()\n", + "# pat_sent.hist(grid=False,column=\"num_sentences_in_paragraph\", bins=21, figsize=(10, 8), xticks=pat_sent[\"num_sentences_in_paragraph\"], ax=ax)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " <th>num_sentences_in_paragraph</th>\n", + " <th>avg_sentence_length</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>7590</th>\n", + " <td>7525</td>\n", + " <td>The Trawler : targets anyone with a Muslim con...</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>133.0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " par_id text label \\\n", + "7590 7525 The Trawler : targets anyone with a Muslim con... 0 \n", + "\n", + " num_sentences_in_paragraph avg_sentence_length \n", + "7590 1 133.0 " + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf1[trdf1[\"avg_sentence_length\"] == 133]" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAI4CAYAAACcFxlBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3y0lEQVR4nO3df5Sdd30f+PcnFg4JoRhjVXEsm3GCF+pNi6EKmEIJwQfW4JzY6SEuhB8KdatmF1JymjaIdFsgIY3obsKPJmXjYEAkEOw4sPYiluAaSE7SYJBj88uGRXHk2sZGAmx+JlDDZ/+4j8IwzEgzc2d8H828XufozPPzPp/7na90733r+31udXcAAAAAxuy7Zl0AAAAAwLEIMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAbRlW9qapeMaNrV1W9sarurqoPzqKGsauqM6rqy1V1wqxrWWtV9f9W1c5lHPflqvrB+6KmjaKq5qqqq2rLrGsBYLa8EACwbqrqYJLvTXJmd39l2PbPkzynu580w9LWwxOSPCXJ9iPP9b5QVZ3krO4+cF9dc7W6+78n+b77+rpVNZfkr5Lcr7vvXY9rdPfTlnncff78AWCjMAIDgPV2QpIXzbqIlVrFKIGHJjl4X4YXrB3/u/8ta90W2haAtSLAAGC9/R9J/k1VnbRwx2JDw6vq/cMojVTVz1TVn1XVq6rqnqq6par+0bD9tqo6tMiw/VOq6pqq+lJV/XFVPXTeYz9i2Pf5qvpkVV08b9+bqup1VfWuqvpKkh9bpN4fqKqrh/MPVNW/GLZfkuT1SR43TBF4+SLnPmyo5wtV9dmqunwFdf1WVe0bntN1VfVDw74/GQ778HDdfzps//GqunFos/9WVf9g3uMdrKp/U1UfGWq5vKruP2//hcO5X6yqv6yq84ftD6qqy6rqzqq6o6pecSTkOdpzO9rve/hd/8rwO/5SVb2nqk5Z4twnVdXtVfVLwzUOVtWz5+2/oKpuGOq+rapeNu/0I+10z9BOj1vQtz6X5GXDc3xzVR2uqlur6n+vqu8aHv9nqupPq+r/rMk0ob+qqqfNu/78fnu033VX1cOO9bsd9j916A9fqKr/MjzmP1+ifV5WVVcOv88vVdVfVNUj5+3fPfw+v1RVN1XVT87bt1hb/FBVvbeqPjc8h7fUvL/DVfXoob2/VFV/MFz3FQt+Vy+uqruSvLGqHlxV7xza9u5hefuC9vu1qvrg8Du8qqpOXvA0n11V/32o598t1g4AbGwCDADW2/4k70/yb1Z5/mOTfCTJQ5K8NcnbkvxIkocleU6S36yq+cPyn53kV5KckuTGJG9Jkqp6QJJrhsf4u0memeS/VNXZ88796SS/muSBSf50kVreluT2JD+Q5BlJ/mNVPbm7L0vys0n+vLu/r7tfusi5v5LkPUkenGR7kv+8grqemeTlw7kHhhrT3U8c9j9yuO7lVfWoJG9I8i+HNvvtJFdX1XfPe7yLk5yf5Mwk/yDJzwy1PCbJm5P82yQnJXlikoPDOW9Kcm8m7f6oJE9NcuTD9KLPbZl+Osnzh+d+Yo7eT74/k9/raUl2Jrm0qh4+7PtKkucNdV+Q5H+tqouGfUfa6aShnf58WH9skluSbMukTf9zkgcl+cEkPzo83vPnXf+xST451PCfklxWVbVInStpj0V/t0OQc2WSl2Tye/xkkn90lMdJkguT/EGSkzPpT/93Vd1v2PeXSf7x8PxenuT3qurUBc9tfltUkl/LpK//vSSnJ3nZUNuJSd6RSZ84OcnvJ/nJfLvvH/Y9NMmuTN5zvnFYPyPJXyf5zQXnPC/JP0tyaiZ97bUL9j8hycOTnJfkP1TV3ztGewCwwQgwALgv/IckP1dVW1dx7l919xu7+xtJLs/kg9Qvd/fXuvs9Sb6eyYfqI/Z1959099eS/LtMRkWcnuTHM5ni8cbuvre7b0jyh0l+at65V3X3n3X3N7v7b+YXMTzG45O8uLv/prtvzGTUxfOW+Tz+RyYf3n5gOP9IQLKcut7R3R8c7t/wliTnHOU6u5L8dndf193f6O69Sb6W5Nx5x7y2uz/d3Z9P8v/Me7xLkryhu68Z2uCO7v5EVW1L8vQkP9/dX+nuQ0lelcmH76M9t+V4Y3f/f93910muOMZzS5J/P/zu/zjJvkzCmHT3+7v7o0PdH8nkQ/WPHuOxPt3d/3lo168Pz+cl3f2l7j6Y5NeTPHfe8bd29+8MfXFvJh+0ty3yuCtpj6V+t09P8vHufvuw77VJ7jrG87m+u6/s7v+R5DeS3D/D7727/2D4nX+zuy9P8qkkj1msLbr7r7v7wNAPvtbdh4fHO9Ke52ZyH7XXdvf/6O63J1l449pvJnnpcP5fd/fnuvsPu/ur3f2lTEKShb+f3+3ujw3TsP59kovr26dyvXx4rA8n+XCSRwaATUWAAcC66+6PJXlnkt2rOP0z85b/eni8hdvmj8C4bd51v5zk85n8L/JDkzy2JtMq7qmqezIZrfH9i527iB9I8vnhw9cRt2YyGmA5fjGT/9X+YFV9vKr+2bB9OXXN/+D61Rz9RpgPTfILCx7v9KH+Yz3e6Zn8T/1ij3m/JHfOe8zfzmTUxNGe23Ks5LndveAeI7dmeF5V9diqet8wReELmYyIWXQ6yjzzf9+nZPIcb13w+PN/v39ba3d/dVhcrN6VtMdSz/8H8u19uTMZ/XM084//Zr41WihV9bz61rSie5L8cL69fb6t71fVtqp6W02mC30xye/NO/4Hktwx1LTo+UkOzw8Bq+p7q+q3azI154uZTOs5aUFAMf8xbs3k9zG/xpX0FQA2IDdVAuC+8tIkf5HJ/2ofceTD6Pcm+eKwPP+D+2qcfmRhmFpycpJPZ/Lh6I+7+ylHObePsu/TSU6uqgfOCzHOSHLHcorq7ruSHLlnxhOS/Nea3MNiOXWtxG1JfrW7f3WV5/7QEtu/luSUxb7FY6nntg7fjPLgqnrAvBDjjCQfG5bfmsmUhKd1999U1avzrQ+/S/1e52//bL41cuKmeY+/rN/vtz3o2rTHnZlMP8nwODV/fQnz+/53Dcd/uib3gfmdTKZe/Hl3f6OqbswkZPnbshc81n8ctv397v78MB3nyJSPO5OcVlU1L8RYGH4tfLxfyGT6x2O7+66qOifJDQtqOH3e8hmZ/D4+u2A7AJuYERgA3CeGD2+XJ/lX87YdzuQD4nOq6oThf6oX+wC9Ek+vqicM8/R/JckHuvu2TEaA/E9V9dyqut/w50eWO49+eIz/luTXqur+Nbkx5iWZ/M/0MVXVT827aeHdmXzA++a0dWUyQuUH563/TpKfHUYkVFU9oCY3uHzgMh7rsiTPr6rzquq7quq0qnpEd9+ZyT0dfr2q/s6w74eq6keP8dzWw8ur6sSq+seZTL/5g2H7AzMZIfM3w708fnreOYeHen4wSximhVyR5Fer6oHDh/5/nWX+fudbo/bYl+TvV9VFNbnp6Qty7HDvH1bVPxmO//lMQqcPJHnAUMPhob7nZzIC42gemOTLSb5QVadlcl+UI/48yTeSvLCqtlTVhfn26ShLPd5fZ3Ij1ZMzCTQXek5VnV1V35vkl5NcOfxeACCJAAOA+9YvZ/Jhar5/kcmHo88l+Z8zCQmm8dZMPhx9Psk/zORGnxlGTTw1k/scfDqT4eivTPLdiz/Mop6VZG44/x2ZzPH/r8s890eSXFdVX05ydZIXdfcta1DXy5LsHaYGXNzd+zNp09/M5MPzgQw36TyW7v5gJjetfFWSLyT540xGJCSTe32cmMnohLszucHkkZtALvrclln/Stw1XPvTmdwv4me7+xPDvv8tyS9X1ZcyuefKFfOe11czuefCnw3tdG4W93OZjAq6JZObuL41kxuirtTU7dHdn83kPij/KZO/G2dnckPcrx3ltKuS/NNM2ui5Sf7JcI+KmzIZ+fTnmQRefz/Jnx2jhJcneXQm/WBfkrfPq+3rSf5JJgHePZn8HXvnMWp7dZLvyWRExQeSvHuRY343kxuD3pXJ/Tv+1SLHALCJ1bdPXwQAGJ+qelKS3+vuY02j2JCGKSG3J3l2d79vkf0vS/Kw7n7OfV3bcP3rkvxf3f3GVZ7//kx+v69f08IA2FCMwAAAGKGq+l+q6qSafAXuL2Vyv4gPzLisJElV/WhVff8whWRnJl/Hu9ioCgBYM27iCQAwTo/LZBrLkak7Fw1fNzsGD89kms4DMply84zhXikAsG5MIQEAAABGzxQSAAAAYPRGMYXklFNO6bm5uVmXAQAAAMzY9ddf/9nu3rpw+ygCjLm5uezfv3/WZQAAAAAzVlW3LrbdFBIAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOhtmXUBABvB3O59U51/cM8Fa1QJAABsTEZgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZnm5Ko6Kcnrk/xwkk7yz5J8MsnlSeaSHExycXffPc11ANbb3O59sy4BAAA4imlHYLwmybu7+xFJHpnk5iS7k1zb3WcluXZYBwAAAFi1VQcYVfWgJE9MclmSdPfXu/ueJBcm2TsctjfJRdOVCAAAAGx204zAODPJ4SRvrKobqur1VfWAJNu6+87hmLuSbFvs5KraVVX7q2r/4cOHpygDAAAA2OimCTC2JHl0ktd196OSfCULpot0d2dyb4zv0N2XdveO7t6xdevWKcoAAAAANrppAozbk9ze3dcN61dmEmh8pqpOTZLh56HpSgQAAAA2u1UHGN19V5Lbqurhw6bzktyU5OokO4dtO5NcNVWFAAAAwKY31deoJvm5JG+pqhOT3JLk+ZmEIldU1SVJbk1y8ZTXAAAAADa5qQKM7r4xyY5Fdp03zeMCAAAAzDfNPTAAAAAA7hMCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjt2XWBQAwe3O79039GAf3XLAGlQAAwOKMwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZnm5Ko6mORLSb6R5N7u3lFVJye5PMlckoNJLu7uu6crEwAAANjM1mIExo919zndvWNY353k2u4+K8m1wzoAAADAqq3HFJILk+wdlvcmuWgdrgEAAABsItMGGJ3kPVV1fVXtGrZt6+47h+W7kmyb8hoAAADAJjfVPTCSPKG776iqv5vkmqr6xPyd3d1V1YudOAQeu5LkjDPOmLIMYJbmdu+b6vyDey5Yo0oAAICNaqoRGN19x/DzUJJ3JHlMks9U1alJMvw8tMS5l3b3ju7esXXr1mnKAAAAADa4VQcYVfWAqnrgkeUkT03ysSRXJ9k5HLYzyVXTFgkAAABsbtNMIdmW5B1VdeRx3trd766qDyW5oqouSXJrkounLxMAAADYzFYdYHT3LUkeucj2zyU5b5qiAAAAAOZbj69RBQAAAFhTAgwAAABg9Kb9GlWAUZj2q1wBAIBxMwIDAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDR2zLrAgCY3tzufbMuAQAA1pURGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb+oAo6pOqKobquqdw/qZVXVdVR2oqsur6sTpywQAAAA2s7UYgfGiJDfPW39lkld198OS3J3kkjW4BgAAALCJTRVgVNX2JBckef2wXkmenOTK4ZC9SS6a5hoAAAAAW6Y8/9VJfjHJA4f1hyS5p7vvHdZvT3LaYidW1a4ku5LkjDPOmLIM2Nzmdu+bdQkwdT88uOeCNaoEAICNaNUjMKrqx5Mc6u7rV3N+d1/a3Tu6e8fWrVtXWwYAAACwCUwzAuPxSX6iqp6e5P5J/k6S1yQ5qaq2DKMwtie5Y/oyAQAAgM1s1SMwuvsl3b29u+eSPDPJe7v72Unel+QZw2E7k1w1dZUAAADApjbtPTAW8+Ikb6uqVyS5Icll63ANgA3FfUwAAODo1iTA6O73J3n/sHxLksesxeMCAAAAJFN+jSoAAADAfWE9ppAArIjpEwAAwLEYgQEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDR2zLrAgBgLczt3jfV+Qf3XLBGlQAAsB6MwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9VQcYVXX/qvpgVX24qj5eVS8ftp9ZVddV1YGquryqTly7cgEAAIDNaJoRGF9L8uTufmSSc5KcX1XnJnllkld198OS3J3kkqmrBAAAADa1VQcYPfHlYfV+w59O8uQkVw7b9ya5aJoCAQAAAKa6B0ZVnVBVNyY5lOSaJH+Z5J7uvnc45PYkpy1x7q6q2l9V+w8fPjxNGQAAAMAGN1WA0d3f6O5zkmxP8pgkj1jBuZd2947u3rF169ZpygAAAAA2uDX5FpLuvifJ+5I8LslJVbVl2LU9yR1rcQ0AAABg85rmW0i2VtVJw/L3JHlKkpszCTKeMRy2M8lVU9YIAAAAbHJbjn3Ikk5NsreqTsgkCLmiu99ZVTcleVtVvSLJDUkuW4M6Adjg5nbvm3UJAACM2KoDjO7+SJJHLbL9lkzuhwEAAACwJtbkHhgAAAAA60mAAQAAAIzeNPfAANaIuf8AAABHZwQGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0tsy6ADjeze3eN+sSAAAANjwjMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6W1Z7YlWdnuTNSbYl6SSXdvdrqurkJJcnmUtyMMnF3X339KXC+pjbvW/WJQAAAHAM04zAuDfJL3T32UnOTfKCqjo7ye4k13b3WUmuHdYBAAAAVm3VAUZ339ndfzEsfynJzUlOS3Jhkr3DYXuTXDRljQAAAMAmtyb3wKiquSSPSnJdkm3dfeew665MppgAAAAArNqq74FxRFV9X5I/TPLz3f3Fqvrbfd3dVdVLnLcrya4kOeOMM6YtAwBmai3up3NwzwVrUAkAwMY01QiMqrpfJuHFW7r77cPmz1TVqcP+U5McWuzc7r60u3d0946tW7dOUwYAAACwwa06wKjJUIvLktzc3b8xb9fVSXYOyzuTXLX68gAAAACmm0Ly+CTPTfLRqrpx2PZLSfYkuaKqLklya5KLp6oQAAAA2PRWHWB0958mqSV2n7faxwUAAABYaE2+hQQAAABgPQkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYvVV/jSoAbCRzu/fNugQAAI7CCAwAAABg9AQYAAAAwOiZQgIAIzHtNJaDey5Yo0oAAMbHCAwAAABg9AQYAAAAwOgJMAAAAIDRcw8MANgg3EMDANjIjMAAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNGbKsCoqjdU1aGq+ti8bSdX1TVV9anh54OnLxMAAADYzKYdgfGmJOcv2LY7ybXdfVaSa4d1AAAAgFWbKsDo7j9J8vkFmy9MsndY3pvkommuAQAAALAe98DY1t13Dst3Jdm22EFVtauq9lfV/sOHD69DGQAAAMBGsa438ezuTtJL7Lu0u3d0946tW7euZxkAAADAcW49AozPVNWpSTL8PLQO1wAAAAA2kfUIMK5OsnNY3pnkqnW4BgAAALCJbJnm5Kr6/SRPSnJKVd2e5KVJ9iS5oqouSXJrkounLRIAGL+53fumOv/gngvWqBIAYCOaKsDo7mctseu8aR4XAAAAYL51vYknAAAAwFqYagQGALBxTDsFBABgPRmBAQAAAIyeAAMAAAAYPQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHpbZl0Ax7+53fumOv/gngtmen0AxmEt/j2f9WvKtNef1vFePwAcjREYAAAAwOgJMAAAAIDRM4UEANgwjvdphcd7/QCwnozAAAAAAEZPgAEAAACMngADAAAAGL3q7lnXkB07dvT+/ftnXQarZL4uAHCEr2IFYFpVdX1371i43QgMAAAAYPQEGAAAAMDoCTAAAACA0dsy6wIAANg4Zn1vrFnfg2Mtnv+snwPAWBmBAQAAAIyeAAMAAAAYPVNImPlQTwCAsRjD+6Ix1DBLptBsDNP24+O9H2z2579e1mUERlWdX1WfrKoDVbV7Pa4BAAAAbB5rHmBU1QlJfivJ05KcneRZVXX2Wl8HAAAA2DzWYwTGY5Ic6O5buvvrSd6W5MJ1uA4AAACwSVR3r+0DVj0jyfnd/c+H9ecmeWx3v3DBcbuS7BpWH57kk2tayPKdkuSzM7r2RqENp6cNp6cNp6P9pqcNp6cNp6cNp6cNp6cNp6cNp6cNpzfLNnxod29duHFmN/Hs7kuTXDqr6x9RVfu7e8es6zieacPpacPpacPpaL/pacPpacPpacPpacPpacPpacPpacPpjbEN12MKyR1JTp+3vn3YBgAAALAq6xFgfCjJWVV1ZlWdmOSZSa5eh+sAAAAAm8SaTyHp7nur6oVJ/ijJCUne0N0fX+vrrKGZT2PZALTh9LTh9LThdLTf9LTh9LTh9LTh9LTh9LTh9LTh9LTh9EbXhmt+E08AAACAtbYeU0gAAAAA1pQAAwAAABi9TRtgVNX5VfXJqjpQVbtnXc/xqKoOVtVHq+rGqto/63qOB1X1hqo6VFUfm7ft5Kq6pqo+Nfx88CxrHLsl2vBlVXXH0BdvrKqnz7LGsauq06vqfVV1U1V9vKpeNGzXF5fpKG2oLy5TVd2/qj5YVR8e2vDlw/Yzq+q64fX58uGG4CziKG34pqr6q3n98JwZlzpqVXVCVd1QVe8c1vXBFVqkDfXBFVrsfbXX5eVbov28Jq9AVZ1UVVdW1Seq6uaqetwY++CmDDCq6oQkv5XkaUnOTvKsqjp7tlUdt36su88Z2/cDj9ibkpy/YNvuJNd291lJrh3WWdqb8p1tmCSvGvriOd39rvu4puPNvUl+obvPTnJukhcM/wbqi8u3VBsm+uJyfS3Jk7v7kUnOSXJ+VZ2b5JWZtOHDktyd5JLZlTh6S7Vhkvzbef3wxlkVeJx4UZKb563rgyu3sA0TfXA1Fr6v9rq8Mot9LvGavHyvSfLu7n5Ekkdm8nd6dH1wUwYYSR6T5EB339LdX0/ytiQXzrgmNoHu/pMkn1+w+cIke4flvUkuui9rOt4s0YasQHff2d1/MSx/KZMXqNOiLy7bUdqQZeqJLw+r9xv+dJInJ7ly2K4fHsVR2pBlqqrtSS5I8vphvaIPrsjCNmRNeV3mPlFVD0ryxCSXJUl3f72778kI++BmDTBOS3LbvPXb443nanSS91TV9VW1a9bFHMe2dfedw/JdSbbNspjj2Aur6iPDFJOZD287XlTVXJJHJbku+uKqLGjDRF9ctmHY+Y1JDiW5JslfJrmnu+8dDvH6fAwL27C7j/TDXx364auq6rtnV+HovTrJLyb55rD+kOiDK/XqfHsbHqEPrsxi76u9Li/fUp9LvCYvz5lJDid54zAd7PVV9YCMsA9u1gCDtfGE7n50JlNxXlBVT5x1Qce7nnyvsf89W7nXJfmhTIZQ35nk12dazXGiqr4vyR8m+fnu/uL8ffri8izShvriCnT3N7r7nCTbMxkd+YjZVnT8WdiGVfXDSV6SSVv+SJKTk7x4dhWOV1X9eJJD3X39rGs5Xh2lDfXBlTvq+2qvy8e0WPt5TV6+LUkeneR13f2oJF/JgukiY+mDmzXAuCPJ6fPWtw/bWIHuvmP4eSjJOzJ588nKfaaqTk2S4eehGddz3Onuzwxv4r+Z5HeiLx5TVd0vkw/eb+nutw+b9cUVWKwN9cXVGYapvi/J45KcVFVbhl1en5dpXhueP0xx6u7+WpI3Rj9cyuOT/ERVHcxkOvGTM5kDrg8u33e0YVX9nj64cku8r/a6vEyLtZ/X5BW5Pcnt80bxXZlJoDG6PrhZA4wPJTlruMv0iUmemeTqGdd0XKmqB1TVA48sJ3lqko8d/SyWcHWSncPyziRXzbCW49KRf1gHPxl98aiGOd6XJbm5u39j3i59cZmWakN9cfmqamtVnTQsf0+Sp2RyL5H3JXnGcJh+eBRLtOEn5r3ZrEzmK+uHi+jul3T39u6ey+S94Hu7+9nRB5dtiTZ8jj64Mkd5X+11eRmWaj+vycvX3Xclua2qHj5sOi/JTRlhH9xy7EM2nu6+t6pemOSPkpyQ5A3d/fEZl3W82ZbkHZPXpWxJ8tbufvdsSxq/qvr9JE9KckpV3Z7kpUn2JLmiqi5JcmuSi2dX4fgt0YZPqslXtHWSg0n+5azqO048Pslzk3x0mDufJL8UfXEllmrDZ+mLy3Zqkr3DN4N9V5IruvudVXVTkrdV1SuS3JDhhmIsaqk2fG9VbU1SSW5M8rMzrPF49OLog9N6iz64Iou+r66qD8Xr8nIs1X6/6zV5RX4uk7+7Jya5JcnzM7y2jKkP1mQqCwAAAMB4bdYpJAAAAMBxRIABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABi9LbMuIElOOeWUnpubm3UZAAAAwIxdf/31n+3urQu3jyLAmJuby/79+2ddBgAAADBjVXXrYtuXNYWkqk6qqiur6hNVdXNVPa6qTq6qa6rqU8PPBw/HVlW9tqoOVNVHqurRa/lEAAAAgM1nuffAeE2Sd3f3I5I8MsnNSXYnuba7z0py7bCeJE9LctbwZ1eS161pxQAAAMCmc8wAo6oelOSJSS5Lku7+enffk+TCJHuHw/YmuWhYvjDJm3viA0lOqqpT17huAAAAYBNZzgiMM5McTvLGqrqhql5fVQ9Isq277xyOuSvJtmH5tCS3zTv/9mHbt6mqXVW1v6r2Hz58ePXPAAAAANjwlhNgbEny6CSv6+5HJflKvjVdJEnS3Z2kV3Lh7r60u3d0946tW7/j5qIAAAAAf2s5AcbtSW7v7uuG9SszCTQ+c2RqyPDz0LD/jiSnzzt/+7ANAAAAYFWOGWB0911Jbquqhw+bzktyU5Krk+wctu1MctWwfHWS5w3fRnJuki/Mm2oCAAAAsGJblnnczyV5S1WdmOSWJM/PJPy4oqouSXJrkouHY9+V5OlJDiT56nAsAAAAwKotK8Do7huT7Fhk13mLHNtJXjBdWQAAAADfspx7YAAAAADM1HKnkACM2tzufVOdf3DPBWtUCQAAsB6MwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDobZl1AQBjMLd731TnH9xzwRpVAgAALMYIDAAAAGD0BBgAAADA6JlCArAGTEEBAID1ZQQGAAAAMHpGYAAzN+3oBQAAYOMzAgMAAAAYvWUFGFV1sKo+WlU3VtX+YdvJVXVNVX1q+PngYXtV1Wur6kBVfaSqHr2eTwAAAADY+FYyAuPHuvuc7t4xrO9Ocm13n5Xk2mE9SZ6W5Kzhz64kr1urYgEAAIDNaZp7YFyY5EnD8t4k70/y4mH7m7u7k3ygqk6qqlO7+85pCgXGyz0sAACA9bbcERid5D1VdX1V7Rq2bZsXStyVZNuwfFqS2+ade/uw7dtU1a6q2l9V+w8fPryK0gEAAIDNYrkjMJ7Q3XdU1d9Nck1VfWL+zu7uquqVXLi7L01yaZLs2LFjRecCAAAAm8uyRmB09x3Dz0NJ3pHkMUk+U1WnJsnw89Bw+B1JTp93+vZhGwAAAMCqHDPAqKoHVNUDjywneWqSjyW5OsnO4bCdSa4alq9O8rzh20jOTfIF978AAAAAprGcKSTbkryjqo4c/9bufndVfSjJFVV1SZJbk1w8HP+uJE9PciDJV5M8f82rBgAAADaVYwYY3X1Lkkcusv1zSc5bZHsnecGaVAcAAACQ5X8LCQAAAMDMCDAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGb8usCwAgmdu9b6bXP7jngpleHwAAjsUIDAAAAGD0BBgAAADA6AkwAAAAgNFzDwxg5vdfAAAAOBYjMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6yw4wquqEqrqhqt45rJ9ZVddV1YGquryqThy2f/ewfmDYP7dOtQMAAACbxEpGYLwoyc3z1l+Z5FXd/bAkdye5ZNh+SZK7h+2vGo4DAAAAWLVlBRhVtT3JBUleP6xXkicnuXI4ZG+Si4blC4f1DPvPG44HAAAAWJXljsB4dZJfTPLNYf0hSe7p7nuH9duTnDYsn5bktiQZ9n9hOB4AAABgVY4ZYFTVjyc51N3Xr+WFq2pXVe2vqv2HDx9ey4cGAAAANpjljMB4fJKfqKqDSd6WydSR1yQ5qaq2DMdsT3LHsHxHktOTZNj/oCSfW/ig3X1pd+/o7h1bt26d6kkAAAAAG9sxA4zufkl3b+/uuSTPTPLe7n52kvclecZw2M4kVw3LVw/rGfa/t7t7TasGAAAANpWVfAvJQi9O8q+r6kAm97i4bNh+WZKHDNv/dZLd05UIAAAAbHZbjn3It3T3+5O8f1i+JcljFjnmb5L81BrUBizT3O59sy4BAABgXU0zAgMAAADgPiHAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6K/oWEgA2prX4JpuDey5Yg0oAAGBxRmAAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGD0BBgAAADB6AgwAAABg9LbMugAANoa53fumOv/gngvWqBIAADYiIzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABG75gBRlXdv6o+WFUfrqqPV9XLh+1nVtV1VXWgqi6vqhOH7d89rB8Y9s+t83MAAAAANrjljMD4WpInd/cjk5yT5PyqOjfJK5O8qrsfluTuJJcMx1+S5O5h+6uG4wAAAABWbcuxDujuTvLlYfV+w59O8uQkPz1s35vkZUlel+TCYTlJrkzym1VVw+MAi5jbvW/WJQAAAIzasu6BUVUnVNWNSQ4luSbJXya5p7vvHQ65Pclpw/JpSW5LkmH/F5I8ZJHH3FVV+6tq/+HDh6d6EgAAAMDGtqwAo7u/0d3nJNme5DFJHjHthbv70u7e0d07tm7dOu3DAQAAABvYir6FpLvvSfK+JI9LclJVHZmCsj3JHcPyHUlOT5Jh/4OSfG4tigUAAAA2p+V8C8nWqjppWP6eJE9JcnMmQcYzhsN2JrlqWL56WM+w/73ufwEAAABM45g38UxyapK9VXVCJoHHFd39zqq6KcnbquoVSW5Ictlw/GVJfreqDiT5fJJnrkPdAAAAwCaynG8h+UiSRy2y/ZZM7oexcPvfJPmpNakOAAAAICu8BwYAAADALCxnCgkArLu53fumOv/gngvWqBIAAMbICAwAAABg9AQYAAAAwOgJMAAAAIDRE2AAAAAAoyfAAAAAAEZPgAEAAACMngADAAAAGL0tsy4Ajndzu/fNugQAAIANzwgMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPS2zLoAAFgLc7v3TXX+wT0XrFElAACsByMwAAAAgNETYAAAAACjJ8AAAAAARu+Y98CoqtOTvDnJtiSd5NLufk1VnZzk8iRzSQ4mubi7766qSvKaJE9P8tUkP9Pdf7E+5QPA2nAPDQCAcVvOCIx7k/xCd5+d5NwkL6iqs5PsTnJtd5+V5NphPUmeluSs4c+uJK9b86oBAACATeWYAUZ333lkBEV3fynJzUlOS3Jhkr3DYXuTXDQsX5jkzT3xgSQnVdWpa104AAAAsHms6B4YVTWX5FFJrkuyrbvvHHbdlckUk2QSbtw277Tbh20LH2tXVe2vqv2HDx9ead0AAADAJrLsAKOqvi/JHyb5+e7+4vx93d2Z3B9j2br70u7e0d07tm7dupJTAQAAgE1mWQFGVd0vk/DiLd399mHzZ45MDRl+Hhq235Hk9Hmnbx+2AQAAAKzKMQOM4VtFLktyc3f/xrxdVyfZOSzvTHLVvO3Pq4lzk3xh3lQTAAAAgBU75teoJnl8kucm+WhV3Ths+6Uke5JcUVWXJLk1ycXDvndl8hWqBzL5GtXnr2XBAAAAwOZzzACju/80SS2x+7xFju8kL5iyLgAAAIC/taJvIQEAAACYBQEGAAAAMHoCDAAAAGD0BBgAAADA6AkwAAAAgNETYAAAAACjJ8AAAAAARk+AAQAAAIyeAAMAAAAYPQEGAAAAMHpbZl0AzNrc7n2zLgEAAIBjMAIDAAAAGD0jMABgDazFaK6Dey5Yg0oAADYmIzAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN6WWRcAAEzM7d431fkH91ywRpUAAIyPAIPj3rRv+AEAABg/U0gAAACA0RNgAAAAAKMnwAAAAABGT4ABAAAAjN4xA4yqekNVHaqqj83bdnJVXVNVnxp+PnjYXlX12qo6UFUfqapHr2fxAAAAwOawnBEYb0py/oJtu5Nc291nJbl2WE+SpyU5a/izK8nr1qZMAAAAYDM75teodvefVNXcgs0XJnnSsLw3yfuTvHjY/ubu7iQfqKqTqurU7r5zzSoGABY17ddKH9xzwRpVAgCw9lZ7D4xt80KJu5JsG5ZPS3LbvONuH7Z9h6raVVX7q2r/4cOHV1kGAAAAsBlMfRPPYbRFr+K8S7t7R3fv2Lp167RlAAAAABvYagOMz1TVqUky/Dw0bL8jyenzjts+bAMAAABYtdUGGFcn2Tks70xy1bztzxu+jeTcJF9w/wsAAABgWse8iWdV/X4mN+w8papuT/LSJHuSXFFVlyS5NcnFw+HvSvL0JAeSfDXJ89ehZgAAAGCTWc63kDxriV3nLXJsJ3nBtEUBAAAAzDf1TTwBAAAA1psAAwAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoHfNbSAAAlmNu976pzj+454I1qgQA2IiMwAAAAABGT4ABAAAAjJ4AAwAAABg998Bg5qadMw0AAMDGJ8AAAJIIlAGAcTOFBAAAABg9AQYAAAAwegIMAAAAYPQEGAAAAMDoCTAAAACA0RNgAAAAAKPna1QBgFFYi69xPbjngjWoBAAYIyMwAAAAgNETYAAAAACjZwoJALBhTDsNxRQUABgvIzAAAACA0RNgAAAAAKNnCglTW4u7xgMAAMDRCDAAAAbuoQEA4yXAAABYIwIQAFg/7oEBAAAAjJ4RGLiHBQAAAKMnwAAAIMna/KeGaTAArBcBxnHO6AkA2Dg2wj00NsJzAGCcBBgAABuE/9gQoABsZAIMAABGQwgDwFLWJcCoqvOTvCbJCUle39171uM6AAAwJu4jMj2jaIClrHmAUVUnJPmtJE9JcnuSD1XV1d1901pfCwAA1tIYRoDM+gP8rK+/EWhDpiUMXdx6jMB4TJID3X1LklTV25JcmGRDBhj+cQIAYExmHcJs9uuvhY3wHGYdpLExrUeAcVqS2+at357ksQsPqqpdSXYNq1+uqk+uQy3LcUqSz87o2qlXzurKa2qmbbhBaMPpacPpaL/pacPpacPpacPpacPpacPpHfdtOILPOcd9G05rDX4Hs2zDhy62cWY38ezuS5NcOqvrH1FV+7t7x6zrOJ5pw+lpw+lpw+lov+lpw+lpw+lpw+lpw+lpw+lpw+lpw+mNsQ2/ax0e844kp89b3z5sAwAAAFiV9QgwPpTkrKo6s6pOTPLMJFevw3UAAACATWLNp5B0971V9cIkf5TJ16i+obs/vtbXWUMzn8ayAWjD6WnD6WnD6Wi/6WnD6WnD6WnD6WnD6WnD6WnD6WnD6Y2uDau7Z10DAAAAwFGtxxQSAAAAgDUlwAAAAABGb9MGGFV1flV9sqoOVNXuWddzPKqqg1X10aq6sar2z7qe40FVvaGqDlXVx+ZtO7mqrqmqTw0/HzzLGsduiTZ8WVXdMfTFG6vq6bOsceyq6vSqel9V3VRVH6+qFw3b9cVlOkob6ovLVFX3r6oPVtWHhzZ8+bD9zKq6bnh9vny4ITiLOEobvqmq/mpePzxnxqWOWlWdUFU3VNU7h3V9cIUWaUN9cIUWe1/tdXn5lmg/r8krUFUnVdWVVfWJqrq5qh43xj64KQOMqjohyW8leVqSs5M8q6rOnm1Vx60f6+5zxvb9wCP2piTnL9i2O8m13X1WkmuHdZb2pnxnGybJq4a+eE53v+s+rul4c2+SX+jus5Ocm+QFw7+B+uLyLdWGib64XF9L8uTufmSSc5KcX1XnJnllJm34sCR3J7lkdiWO3lJtmCT/dl4/vHFWBR4nXpTk5nnr+uDKLWzDRB9cjYXvq70ur8xin0u8Ji/fa5K8u7sfkeSRmfydHl0f3JQBRpLHJDnQ3bd099eTvC3JhTOuiU2gu/8kyecXbL4wyd5heW+Si+7Lmo43S7QhK9Ddd3b3XwzLX8rkBeq06IvLdpQ2ZJl64svD6v2GP53kyUmuHLbrh0dxlDZkmapqe5ILkrx+WK/ogyuysA1ZU16XuU9U1YOSPDHJZUnS3V/v7nsywj64WQOM05LcNm/99njjuRqd5D1VdX1V7Zp1Mcexbd1957B8V5JtsyzmOPbCqvrIMMVk5sPbjhdVNZfkUUmui764KgvaMNEXl20Ydn5jkkNJrknyl0nu6e57h0O8Ph/Dwjbs7iP98FeHfviqqvru2VU4eq9O8otJvjmsPyT64Eq9Ot/ehkfogyuz2Ptqr8vLt9TnEq/Jy3NmksNJ3jhMB3t9VT0gI+yDmzXAYG08obsfnclUnBdU1RNnXdDxriffa+x/z1budUl+KJMh1Hcm+fWZVnOcqKrvS/KHSX6+u784f5++uDyLtKG+uALd/Y3uPifJ9kxGRz5ithUdfxa2YVX9cJKXZNKWP5Lk5CQvnl2F41VVP57kUHdfP+tajldHaUN9cOWO+r7a6/IxLdZ+XpOXb0uSRyd5XXc/KslXsmC6yFj64GYNMO5Icvq89e3DNlagu+8Yfh5K8o5M3nyycp+pqlOTZPh5aMb1HHe6+zPDm/hvJvmd6IvHVFX3y+SD91u6++3DZn1xBRZrQ31xdYZhqu9L8rgkJ1XVlmGX1+dlmteG5w9TnLq7v5bkjdEPl/L4JD9RVQczmU785EzmgOuDy/cdbVhVv6cPrtwS76u9Li/TYu3nNXlFbk9y+7xRfFdmEmiMrg9u1gDjQ0nOGu4yfWKSZya5esY1HVeq6gFV9cAjy0memuRjRz+LJVydZOewvDPJVTOs5bh05B/WwU9GXzyqYY73ZUlu7u7fmLdLX1ympdpQX1y+qtpaVScNy9+T5CmZ3EvkfUmeMRymHx7FEm34iXlvNiuT+cr64SK6+yXdvb275zJ5L/je7n529MFlW6INn6MPrsxR3ld7XV6GpdrPa/LydfddSW6rqocPm85LclNG2Ae3HPuQjae7762qFyb5oyQnJHlDd398xmUdb7YlecfkdSlbkry1u98925LGr6p+P8mTkpxSVbcneWmSPUmuqKpLktya5OLZVTh+S7Thk2ryFW2d5GCSfzmr+o4Tj0/y3CQfHebOJ8kvRV9ciaXa8Fn64rKdmmTv8M1g35Xkiu5+Z1XdlORtVfWKJDdkuKEYi1qqDd9bVVuTVJIbk/zsDGs8Hr04+uC03qIPrsii76ur6kPxurwcS7Xf73pNXpGfy+Tv7olJbkny/AyvLWPqgzWZygIAAAAwXpt1CgkAAABwHBFgAAAAAKMnwAAAAABGT4ABAAAAjJ4AAwAAABg9AQYAAAAwegIMAAAAYPT+fyj5T2YyzNh9AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1080x576 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax1, ax2) = plt.subplots(nrows=2)\n", + "ax1.hist(pat_sent[\"avg_sentence_length\"], bins=np.arange(1, 60))\n", + "ax1.xaxis.set_major_locator(plt.MultipleLocator(5))\n", + "ax1.set_title(\"Number of sentences in patronising paragraph\")\n", + "ax2.hist(non_pat_sent[\"avg_sentence_length\"], bins=np.arange(1, 60))\n", + "ax2.xaxis.set_major_locator(plt.MultipleLocator(5))\n", + "# ax2.set_title(\"Number of sentences in non-patronising paragraph\")\n", + "fig.set_figwidth(15)\n", + "fig.set_figheight(8)\n", + "fig.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O1KGYmpnxDjt" + }, + "source": [ + "# Rebuild test set (Task 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "T6FLgB6KxGI2" + }, + "outputs": [], + "source": [ + "rows = [] # will contain par_id, label and text\n", + "for idx in range(len(teids)): \n", + " parid = teids.par_id[idx]\n", + " #print(parid)\n", + " # select row from original dataset\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " label = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].label.values[0]\n", + " rows.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YbB9GdzJxRAH", + "outputId": "c78e311e-9502-4644-b6f7-0c64f64aa66f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2094" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(rows)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vhBhTRIyxSaQ" + }, + "outputs": [], + "source": [ + "tedf1 = pd.DataFrame(rows)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xK6FY70KZ6TY" + }, + "source": [ + "# RoBERTa Baseline for Task 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z-pvjbu_8h1n", + "outputId": "0a9da7ae-181c-40a5-a438-220f5ab960b5" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:numexpr.utils:NumExpr defaulting to 2 threads.\n" + ] + } + ], + "source": [ + "# downsample negative instances\n", + "pcldf = trdf1[trdf1.label==1]\n", + "npos = len(pcldf)\n", + "\n", + "training_set1 = pd.concat([pcldf,trdf1[trdf1.label==0][:npos*2]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "mpSqMp3d8iYu", + "outputId": "037d4f45-eab5-4f04-e9a5-1aa64c46323d" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>the scheme saw an estimated 150,000 children f...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>durban 's homeless communities reconciliation ...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>the next immediate problem that cropped up was...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>far more important than the implications for t...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>to strengthen child-sensitive social protectio...</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2377</th>\n", + " <td>1775</td>\n", + " <td>last but not the least element of culpability ...</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2378</th>\n", + " <td>1776</td>\n", + " <td>then , taking the art of counter-intuitive non...</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2379</th>\n", + " <td>1777</td>\n", + " <td>kagunga village was reported to lack necessary...</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2380</th>\n", + " <td>1778</td>\n", + " <td>\"after her parents high-profile divorce after ...</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2381</th>\n", + " <td>1779</td>\n", + " <td>\"last night one news reported on leaked minist...</td>\n", + " <td>0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2382 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " par_id text label\n", + "0 4341 the scheme saw an estimated 150,000 children f... 1\n", + "1 4136 durban 's homeless communities reconciliation ... 1\n", + "2 10352 the next immediate problem that cropped up was... 1\n", + "3 8279 far more important than the implications for t... 1\n", + "4 1164 to strengthen child-sensitive social protectio... 1\n", + "... ... ... ...\n", + "2377 1775 last but not the least element of culpability ... 0\n", + "2378 1776 then , taking the art of counter-intuitive non... 0\n", + "2379 1777 kagunga village was reported to lack necessary... 0\n", + "2380 1778 \"after her parents high-profile divorce after ... 0\n", + "2381 1779 \"last night one news reported on leaked minist... 0\n", + "\n", + "[2382 rows x 3 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "training_set1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 538, + "referenced_widgets": [ + "de026e2d1ec848fbb35faf1746e7579d", + "7a0d26d292e54498a15bc2e54e6c3aee", + "13bc966911b1433ab6f8245f88b86e2d", + "ec69c0f693b74ac8b737816b1efaa8bf", + "cf4fb870564043cfbc171ae05143ec5f", + "abc4d60485bf40d7abf3cbcf212e39a2", + "85ea942b0e194d2a9160f82494fff8e0", + "6b2a3cde2cdb4bc6a9d0623363c66266", + "a287d92682d644daa34030f58227540f", + "2eea385dfcf745e6b92c37eb6cd901f4", + "59c41a4934cf4ef2b467ae5d97b615f0", + "a90282c995cc4c6db59eaa51e3414ad1", + "d76e461fca524e04810c38b44ad51185", + "b4d34c0c2e364f88b70036cbff6f780a", + "4d22ac94c09d4802b4664e456278308a", + "594d094f060e4481977901e11c2ddaf2", + "b276fc7fd7954ec09fabbcad64b93508", + "29ad13a85dc44e4e919bed1daddf0935", + "c0b81615b8fc4b8d8a48232d029e717d", + "c1dc117db5c444bd918b9ab70b587f48", + "fc14f76deb2549b3a5c6bce9ea3dd7e3", + "a8757d3393f04a55a5bea7f923944281", + "df46941823a540f787e2e9dad52243d3", + "904714fa04be424da224c801f06d52f6", + "790e423a21b840978da497d9d35634a6", + "6cc05e8394ac491999930b9493be855e", + "8cefe2ef3c984e3a8ad1bb8ecb7f0dbb", + "4ec670884e2247ec872defaa5bf7dcc5", + "3d7e4c3c0af84bc4940d2e25ad8a5162", + "4f8aa1c4c8914693a24523c1064ecf97", + "ab2d97c595ff4e55969bc2f1415f747d", + "60b8f43949894143a83263e96d0ac3fa", + "703f69d98e9947f3aeaba07b51d64f3c", + "59458022ec4547beba130ce755946427", + "26178b1ed5164ca7bcea84b65fc95522", + "ac45cf1a895f4ba39c5be0ad136c4591", + "117489e4902040ae97cb222f8c4dda12", + "ba09b68a05644dd1b7d12a19396fb3b8", + "37531d1ef87f45c99df60fb6a8a66d78", + "1c61f90f85a54cbb9d2ccdbf614eb8d5", + "c11ef82d87114a59868d9d7810b936db", + "a8de20f8116142f6bf25aef25f37ad85", + "32fe020b5dc54143af2830ec578eecdf", + "2fcffe85dbcc4c91b840c61799b82772", + "2c3f59321aac4ea78e4c70618f907e08", + "ff3206118d3043b3a9b757ec3ca01d9f", + "d1343667008643c8a893bfae962503c1", + "384f2a4804ed458498b35f04d32e41b5", + "f7e1e00cad5449dfb55c6a920a292540", + "ec68ce238bb04063a74afd67a4f1e877", + "05e6b65f527c48e5ab8aaa8a220287c0", + "ee3cdac0740d43188518e097ae5863a5", + "6f8e6355fcb74fc98cc641bc36bd1707", + "19628b1c68004e9a98ecb5a934d57d2d", + "cafdb944408b42eaacec5b2e8566962b", + "b8654137c93f4a70b0fb8f7e692f7673", + "b088cb07387d4a46b3c7d4d7cc9a5aba", + "e567e754183b42d69d3d200a4517b132", + "e4c905c262994b7d9197f77b2da2c178", + "f0b59d4d691c44a4a7dbb40991518d36", + "fe372945c13845e5bd01ca4e153ed61c", + "c3a17fa9e8da4d9fb571e307f75ac144", + "23ee94259c41435ea19264f4a2937585", + "c3cafc815e4444a8998e608cd9c9300d", + "49fd3eaa74fa493fbe7324607888c542", + "6870cb8717ba407c81d0b7c79ad27d26", + "d32db030dff24fe3bd1983a44c703311", + "ee1cc81a307a4ea6ac00b65a4d314877", + "d16d01773a334ccb8a9231d3cae6e0f4", + "c43f7ff02eb74e0d900029f97652a973", + "d6a37bb80db94947810fa1d69b8b416b", + "4f8b629635194d759b9c91f37a445632", + "d48d137548464c3387dd51494cb969bf", + "89f9d8cab0c44b58afee34914198a9e6", + "3119accf975446eda52b0125571322a4", + "bac5decd48b74036a270f70a05c3f80e", + "2c646f33655d4646b70afef87232d5a1", + "82f733de38ef4c5f8734cbdf47ec1a01", + "818e5dbea2094a97a18974aebe4ddb86", + "c2dae6a605f842d3aaad1f86b2e332b6", + "197dca1cad8b425bb4622c9d5da461dc", + "1cf670526680446db48fbf64b1cae0a6", + "ece446ccb0d3496a81dc0250fff9039d", + "d7d3e0bd4a9c43dd9946a8a63b12d1d7", + "f879197b8c2443278e280f82f20cc609", + "c983b2e75ec44867a14f6d3abdfff2ec", + "d1df90f8eead4f5e8718fd42ec0d5e40", + "b3f807cfae5a44fcbf1069817e6fb79d", + "a308011d2efd403fb6b8d250d8f98fa9", + "770ad4abfc4f4eeebefade5afcad22a3", + "226d2e2955444f9ead05b5991d7939e5", + "9f03facdd7704ab9be2bd65f1060f215", + "fc122d487cbd4ab69e78f1b9425774ba", + "21c2295bc2a54d979f2a5404f6a7ecb1", + "b4bcc997cfa4444287370bbb4819cb43", + "4fbbc5b908c14198b8c86ca2208bd890", + "5bc982f17aec46b3b7f8308f567f6296", + "f1fe964e4d2b4ebb8f76b3d8debdaab6", + "7e3df3b58c7e4117b0a8b8fc45dffa01", + "6851a6f291a04bd59da6cf04d6f762aa", + "3cd79b7a96784504a28dce435f9de5b5", + "d79bd01e1fe44c12ac530376324d9e0e", + "4a03ac52afa84bfd82ced188892b1958", + "8351a84b9c914d80a54ac57a2fb18304", + "419ce58d2ed14589a3d2e1cd7b477e0f", + "568d424c94094d669282ed72b4cf0be4", + "7fe11f4ffd3747079b8de4453b29dbac", + "22a8be9fae3245cca79dc7904ed4f49d", + "ed1ad3ad89334675babf56f9737a17fb", + "dba102bf2b3249c8907d4fe1d5cf0e82" + ] + }, + "id": "PoW_s23AZ_DG", + "outputId": "cae26801-a680-4d5b-9d76-d56872b5e611" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de026e2d1ec848fbb35faf1746e7579d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/481 [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a90282c995cc4c6db59eaa51e3414ad1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/478M [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForSequenceClassification: ['lm_head.layer_norm.weight', 'lm_head.bias', 'lm_head.dense.bias', 'roberta.pooler.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.dense.weight', 'roberta.pooler.dense.weight', 'lm_head.decoder.weight']\n", + "- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.bias', 'classifier.dense.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "df46941823a540f787e2e9dad52243d3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/878k [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "59458022ec4547beba130ce755946427", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/446k [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c3f59321aac4ea78e4c70618f907e08", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/1.29M [00:00<?, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/simpletransformers/classification/classification_model.py:586: UserWarning: Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\n", + " \"Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\"\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b8654137c93f4a70b0fb8f7e692f7673", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/2382 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d32db030dff24fe3bd1983a44c703311", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Epoch: 0%| | 0/1 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "82f733de38ef4c5f8734cbdf47ec1a01", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Running Epoch 0 of 1: 0%| | 0/298 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:simpletransformers.classification.classification_model: Training of roberta model complete. Saved to outputs/.\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a308011d2efd403fb6b8d250d8f98fa9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/2094 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6851a6f291a04bd59da6cf04d6f762aa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/262 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "task1_model_args = ClassificationArgs(num_train_epochs=1, \n", + " no_save=True, \n", + " no_cache=True, \n", + " overwrite_output_dir=True)\n", + "task1_model = ClassificationModel(\"roberta\", \n", + " 'roberta-base', \n", + " args = task1_model_args, \n", + " num_labels=2, \n", + " use_cuda=cuda_available)\n", + "# train model\n", + "task1_model.train_model(training_set1[['text', 'label']])\n", + "# run predictions\n", + "preds_task1, _ = task1_model.predict(tedf1.text.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "h5oxHt2R6t2I", + "outputId": "27505e5d-896b-4d63-dc53-905cc34d7fd2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Counter({0: 1651, 1: 443})" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Counter(preds_task1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kzupJuwTafKa" + }, + "outputs": [], + "source": [ + "labels2file([[k] for k in preds_task1], 'task1.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "k7Cc_u5Oli7j" + }, + "source": [ + "# Rebuild training set (Task 2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D2WLYT7wli7k" + }, + "outputs": [], + "source": [ + "rows2 = [] # will contain par_id, label and text\n", + "for idx in range(len(trids)): \n", + " parid = trids.par_id[idx]\n", + " label = trids.label[idx]\n", + " # select row from original dataset to retrieve the `text` value\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " rows2.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LFqMMb5Jli7l" + }, + "outputs": [], + "source": [ + "trdf2 = pd.DataFrame(rows2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "HayrC9q7mQPl", + "outputId": "db5f1bdf-c09a-4a57-f81e-612100e32b44" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>the scheme saw an estimated 150,000 children f...</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>durban 's homeless communities reconciliation ...</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>the next immediate problem that cropped up was...</td>\n", + " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>far more important than the implications for t...</td>\n", + " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>to strengthen child-sensitive social protectio...</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8370</th>\n", + " <td>8380</td>\n", + " <td>rescue teams search for survivors on the rubbl...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8371</th>\n", + " <td>8381</td>\n", + " <td>the launch of ' happy birthday ' took place la...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8372</th>\n", + " <td>8382</td>\n", + " <td>the unrest has left at least 20,000 people dea...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8373</th>\n", + " <td>8383</td>\n", + " <td>you have to see it from my perspective . i may...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8374</th>\n", + " <td>8384</td>\n", + " <td>yet there was one occasion when we went to the...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>8375 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " par_id ... label\n", + "0 4341 ... [1, 0, 0, 1, 0, 0, 0]\n", + "1 4136 ... [0, 1, 0, 0, 0, 0, 0]\n", + "2 10352 ... [1, 0, 0, 0, 0, 1, 0]\n", + "3 8279 ... [0, 0, 0, 1, 0, 0, 0]\n", + "4 1164 ... [1, 0, 0, 1, 1, 1, 0]\n", + "... ... ... ...\n", + "8370 8380 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8371 8381 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8372 8382 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8373 8383 ... [0, 0, 0, 0, 0, 0, 0]\n", + "8374 8384 ... [0, 0, 0, 0, 0, 0, 0]\n", + "\n", + "[8375 rows x 3 columns]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trdf2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MxHLB_g0pfEb" + }, + "outputs": [], + "source": [ + "trdf2.label = trdf2.label.apply(literal_eval)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Gukbmv0bli7l" + }, + "source": [ + "# Rebuild test set (Task 2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gjH-AJK1li7m" + }, + "outputs": [], + "source": [ + "rows2 = [] # will contain par_id, label and text\n", + "for idx in range(len(teids)): \n", + " parid = teids.par_id[idx]\n", + " label = teids.label[idx]\n", + " #print(parid)\n", + " # select row from original dataset to access the `text` value\n", + " text = dpm.train_task1_df.loc[dpm.train_task1_df.par_id == parid].text.values[0]\n", + " rows2.append({\n", + " 'par_id':parid,\n", + " 'text':text,\n", + " 'label':label\n", + " })\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SRP-tn5wli7n" + }, + "outputs": [], + "source": [ + "tedf2 = pd.DataFrame(rows2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "8U2lrfJiolku", + "outputId": "6bf1181c-3e95-4913-cceb-9cc9e08b6c29" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4046</td>\n", + " <td>we also know that they can benefit by receivin...</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1279</td>\n", + " <td>pope francis washed and kissed the feet of mus...</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>8330</td>\n", + " <td>many refugees do n't want to be resettled anyw...</td>\n", + " <td>[0, 0, 1, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>4063</td>\n", + " <td>\"budding chefs , like \"\" fred \"\" , \"\" winston ...</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4089</td>\n", + " <td>\"in a 90-degree view of his constituency , one...</td>\n", + " <td>[1, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2089</th>\n", + " <td>10462</td>\n", + " <td>the sad spectacle , which occurred on saturday...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2090</th>\n", + " <td>10463</td>\n", + " <td>\"\"\" the pakistani police came to our house and...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2091</th>\n", + " <td>10464</td>\n", + " <td>\"when marie o'donoghue went looking for a spec...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2092</th>\n", + " <td>10465</td>\n", + " <td>\"sri lankan norms and culture inhibit women fr...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2093</th>\n", + " <td>10466</td>\n", + " <td>he added that the afp will continue to bank on...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2094 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " par_id ... label\n", + "0 4046 ... [1, 0, 0, 1, 0, 0, 0]\n", + "1 1279 ... [0, 1, 0, 0, 0, 0, 0]\n", + "2 8330 ... [0, 0, 1, 0, 0, 0, 0]\n", + "3 4063 ... [1, 0, 0, 1, 1, 1, 0]\n", + "4 4089 ... [1, 0, 0, 0, 0, 0, 0]\n", + "... ... ... ...\n", + "2089 10462 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2090 10463 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2091 10464 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2092 10465 ... [0, 0, 0, 0, 0, 0, 0]\n", + "2093 10466 ... [0, 0, 0, 0, 0, 0, 0]\n", + "\n", + "[2094 rows x 3 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tedf2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "81aQFjWqpbe2" + }, + "outputs": [], + "source": [ + "tedf2.label = tedf2.label.apply(literal_eval)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YKFiVaslbAiC" + }, + "source": [ + "# RoBERTa baseline for Task 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hmr5ZZf5Ik5T" + }, + "outputs": [], + "source": [ + "all_negs = trdf2[trdf2.label.apply(lambda x:sum(x) == 0)]\n", + "all_pos = trdf2[trdf2.label.apply(lambda x:sum(x) > 0)]\n", + "\n", + "training_set2 = pd.concat([all_pos,all_negs[:round(len(all_pos)*0.5)]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "zyBcJoHtJHE2", + "outputId": "983b27a6-3bec-47bc-e564-79face4b061c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>par_id</th>\n", + " <th>text</th>\n", + " <th>label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>4341</td>\n", + " <td>the scheme saw an estimated 150,000 children f...</td>\n", + " <td>[1, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4136</td>\n", + " <td>durban 's homeless communities reconciliation ...</td>\n", + " <td>[0, 1, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>10352</td>\n", + " <td>the next immediate problem that cropped up was...</td>\n", + " <td>[1, 0, 0, 0, 0, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>8279</td>\n", + " <td>far more important than the implications for t...</td>\n", + " <td>[0, 0, 0, 1, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>1164</td>\n", + " <td>to strengthen child-sensitive social protectio...</td>\n", + " <td>[1, 0, 0, 1, 1, 1, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1186</th>\n", + " <td>434</td>\n", + " <td>\"\"\" i was absolutely useless at school , hopel...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1187</th>\n", + " <td>435</td>\n", + " <td>i also noticed the change in socio-economic le...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1188</th>\n", + " <td>436</td>\n", + " <td>can donald trump win ? it 's possible , but ce...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1189</th>\n", + " <td>437</td>\n", + " <td>he added that any introduction of new law must...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1190</th>\n", + " <td>439</td>\n", + " <td>lusaka zambia ( xinhua ) -- zambia ? s immigra...</td>\n", + " <td>[0, 0, 0, 0, 0, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>1191 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " par_id ... label\n", + "0 4341 ... [1, 0, 0, 1, 0, 0, 0]\n", + "1 4136 ... [0, 1, 0, 0, 0, 0, 0]\n", + "2 10352 ... [1, 0, 0, 0, 0, 1, 0]\n", + "3 8279 ... [0, 0, 0, 1, 0, 0, 0]\n", + "4 1164 ... [1, 0, 0, 1, 1, 1, 0]\n", + "... ... ... ...\n", + "1186 434 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1187 435 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1188 436 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1189 437 ... [0, 0, 0, 0, 0, 0, 0]\n", + "1190 439 ... [0, 0, 0, 0, 0, 0, 0]\n", + "\n", + "[1191 rows x 3 columns]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "training_set2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 379, + "referenced_widgets": [ + "22e0c7f26e6e462ba7f63d02ed4cc1f0", + "4c58352e4a8a4836ad9d90b68876cadc", + "0649eb3fbea04d98afd7241a9f175dd1", + "36909c71cfeb44c9aa48c96b0724d5a0", + "d447cc0c53974205ade693d0eff0bc7b", + "5cb366b5f6384c408e0b6c8c8e18ca67", + "22363e506fe341e3a59dfea0a972affb", + "1143e9991f3e443a89605fcc72fae27b", + "c88d5b03d6d9498ab972678dedb018bf", + "d79ae039a52a43c0a20ff96b2d32607b", + "05826d440af54576a054d0d8e0b212f6", + "f1e8ea21a9e6457e8dcd35b21be75b22", + "1400f1d23b19496ab51b253b5f87298b", + "5ef5f967ffff4b9689f6f72772e1d9fd", + "e59cd0b3c86e4be28ae6442694b22f9c", + "0ac5312eac44449c8b72030f0d064383", + "d12ad49c9fc54f86affd96e975b93186", + "e98cda63a023489cae4ada214ba5bb38", + "379253e799eb4c9b92342abeffd9b4a2", + "448426e53b934f8d8cfc96a94f95e4b1", + "89e65dddb1884e158cb3d1937843ccab", + "9e3eb217f2c349cf8a2b255ca5a34622", + "7473c3bed5854eacbc818363f4a1ab9a", + "04ae2805168b48da9953754e0989f073", + "7de6deb7064344faa9e4104be09bc1b6", + "dd69b800241e4bb3a856ecd46968b762", + "2ea5a9a7f9a44295ad5364f47926b9d2", + "5d195a90ff5143a998c4cb9ca851811b", + "c4425a4579084d37b000192df67e3ae1", + "e4508e3bbceb40538e0f01a40da539de", + "d7a3b9eef0e347278563217103b4253c", + "a23c1b483a9e4aca8dc12da65527b103", + "dc4ab3d0b89440a38725e54852db46df", + "31e1a0a3fe2f4228887c1abc7443e8ea", + "f107664ab872463fa5dbee7bcfe1a866", + "e778f7c68ce54014a5bfb3050e72292a", + "8ecaba0474a64ea3a4a400107f08b90e", + "3bedc272418949e8bb2897bcfae0a36b", + "5d63fdd645634af381db3abc93ce2b24", + "afd3d0f6506e464c98b9ad57a24c3e9d", + "08263433f8b6426693653ab9955e5410", + "bdda742fee1148d581d8a15e8a560869", + "c4dbb10f007f483a950a95555583dc2a", + "d66f8f8d82f9499488b6ffa16193b320", + "25fdc4ac2d714e5ba99b4f297726d36c", + "5e5ac5500b974cfcbf76d2e5d70adb3d", + "e4ccd1d746ab4f1f826477bb021c34a8", + "16d4a580157446daaa4f721d28d095fa", + "ec1e8ea22a8f4272b258fa19a2c3ec83", + "fba89fa62d6a413b90f3961755794a61", + "22f9701e81034b5ea8d1bdd38ab0d191", + "95392827ab8149388dd9af86d1fb03a1", + "92b7ffe0dd1b49d1acdb2b588f72569d", + "afd5528b85874795ac1d736dde15b810", + "99a8a52b7dfb4fa994a4b09feba8fe58" + ] + }, + "id": "ECb7_mwzbFa6", + "outputId": "d433e1aa-c3c4-4a00-9b2a-c04ccdc20588" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForMultiLabelSequenceClassification: ['lm_head.layer_norm.weight', 'lm_head.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.dense.weight', 'lm_head.decoder.weight']\n", + "- This IS expected if you are initializing RobertaForMultiLabelSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing RobertaForMultiLabelSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "Some weights of RobertaForMultiLabelSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.out_proj.weight', 'classifier.out_proj.bias', 'classifier.dense.bias', 'classifier.dense.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "/usr/local/lib/python3.7/dist-packages/simpletransformers/classification/classification_model.py:586: UserWarning: Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\n", + " \"Dataframe headers not specified. Falling back to using column 0 as text and column 1 as labels.\"\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "22e0c7f26e6e462ba7f63d02ed4cc1f0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1191 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1e8ea21a9e6457e8dcd35b21be75b22", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Epoch: 0%| | 0/1 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7473c3bed5854eacbc818363f4a1ab9a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Running Epoch 0 of 1: 0%| | 0/149 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:simpletransformers.classification.classification_model: Training of roberta model complete. Saved to outputs/.\n", + "INFO:simpletransformers.classification.classification_utils: Converting to features started. Cache is not used.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31e1a0a3fe2f4228887c1abc7443e8ea", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/2094 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "25fdc4ac2d714e5ba99b4f297726d36c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/262 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "task2_model_args = MultiLabelClassificationArgs(num_train_epochs=1,\n", + " no_save=True, \n", + " no_cache=True, \n", + " overwrite_output_dir=True\n", + " )\n", + "task2_model = MultiLabelClassificationModel(\"roberta\", \n", + " 'roberta-base', \n", + " num_labels=7,\n", + " args = task2_model_args, \n", + " use_cuda=cuda_available)\n", + "# train model\n", + "task2_model.train_model(training_set2[['text', 'label']])\n", + "# run predictions\n", + "preds_task2, _ = task2_model.predict(tedf2.text.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0211sxhsbbWZ" + }, + "outputs": [], + "source": [ + "labels2file(preds_task2, 'task2.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RT8hjnxbbfJq" + }, + "source": [ + "## Prepare submission" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U7HICl8MJQf0", + "outputId": "794d8101-dd24-4dd5-b315-93c931a6b040" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "1\n", + "0\n", + "1\n", + "0\n", + "0\n", + "1\n", + "1\n", + "0\n", + "1\n" + ] + } + ], + "source": [ + "!cat task1.txt | head -n 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qCjziGtxJRif", + "outputId": "aef99217-9b4d-46f7-f3b9-c9313bc165dc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1,0,0,0,0,0,0\n", + "1,0,0,0,0,0,0\n", + "0,0,0,0,0,0,0\n", + "1,0,0,0,0,1,0\n", + "0,0,0,0,0,0,0\n", + "0,0,0,0,0,0,0\n", + "1,0,0,0,0,0,0\n", + "1,0,0,0,0,0,0\n", + "0,0,0,0,0,0,0\n", + "0,0,1,0,0,1,0\n" + ] + } + ], + "source": [ + "!cat task2.txt | head -n 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GZDLUcYZbhYg", + "outputId": "7586017d-83f2-4665-eb44-e2264201ac30" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " adding: task1.txt (deflated 92%)\n", + " adding: task2.txt (deflated 97%)\n" + ] + } + ], + "source": [ + "!zip submission.zip task1.txt task2.txt" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Reconstruct and RoBERTa baseline train-dev dataset.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "04ae2805168b48da9953754e0989f073": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05826d440af54576a054d0d8e0b212f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05e6b65f527c48e5ab8aaa8a220287c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0649eb3fbea04d98afd7241a9f175dd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22363e506fe341e3a59dfea0a972affb", + "placeholder": "​", + "style": "IPY_MODEL_5cb366b5f6384c408e0b6c8c8e18ca67", + "value": " 0%" + } + }, + "08263433f8b6426693653ab9955e5410": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0ac5312eac44449c8b72030f0d064383": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e3eb217f2c349cf8a2b255ca5a34622", + "placeholder": "​", + "style": "IPY_MODEL_89e65dddb1884e158cb3d1937843ccab", + "value": " 1/1 [02:05<00:00, 125.32s/it]" + } + }, + "1143e9991f3e443a89605fcc72fae27b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "117489e4902040ae97cb222f8c4dda12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8de20f8116142f6bf25aef25f37ad85", + "max": 456318, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c11ef82d87114a59868d9d7810b936db", + "value": 456318 + } + }, + "13bc966911b1433ab6f8245f88b86e2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85ea942b0e194d2a9160f82494fff8e0", + "placeholder": "​", + "style": "IPY_MODEL_abc4d60485bf40d7abf3cbcf212e39a2", + "value": "Downloading: 100%" + } + }, + "1400f1d23b19496ab51b253b5f87298b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "16d4a580157446daaa4f721d28d095fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92b7ffe0dd1b49d1acdb2b588f72569d", + "max": 262, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_95392827ab8149388dd9af86d1fb03a1", + "value": 262 + } + }, + "19628b1c68004e9a98ecb5a934d57d2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "197dca1cad8b425bb4622c9d5da461dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c983b2e75ec44867a14f6d3abdfff2ec", + "max": 298, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f879197b8c2443278e280f82f20cc609", + "value": 298 + } + }, + "1c61f90f85a54cbb9d2ccdbf614eb8d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cf670526680446db48fbf64b1cae0a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3f807cfae5a44fcbf1069817e6fb79d", + "placeholder": "​", + "style": "IPY_MODEL_d1df90f8eead4f5e8718fd42ec0d5e40", + "value": " 298/298 [04:10<00:00, 1.27it/s]" + } + }, + "21c2295bc2a54d979f2a5404f6a7ecb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "22363e506fe341e3a59dfea0a972affb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "226d2e2955444f9ead05b5991d7939e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4bcc997cfa4444287370bbb4819cb43", + "placeholder": "​", + "style": "IPY_MODEL_21c2295bc2a54d979f2a5404f6a7ecb1", + "value": " 0%" + } + }, + "22a8be9fae3245cca79dc7904ed4f49d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "22e0c7f26e6e462ba7f63d02ed4cc1f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0649eb3fbea04d98afd7241a9f175dd1", + "IPY_MODEL_36909c71cfeb44c9aa48c96b0724d5a0", + "IPY_MODEL_d447cc0c53974205ade693d0eff0bc7b" + ], + "layout": "IPY_MODEL_4c58352e4a8a4836ad9d90b68876cadc" + } + }, + "22f9701e81034b5ea8d1bdd38ab0d191": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23ee94259c41435ea19264f4a2937585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "25fdc4ac2d714e5ba99b4f297726d36c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e4ccd1d746ab4f1f826477bb021c34a8", + "IPY_MODEL_16d4a580157446daaa4f721d28d095fa", + "IPY_MODEL_ec1e8ea22a8f4272b258fa19a2c3ec83" + ], + "layout": "IPY_MODEL_5e5ac5500b974cfcbf76d2e5d70adb3d" + } + }, + "26178b1ed5164ca7bcea84b65fc95522": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29ad13a85dc44e4e919bed1daddf0935": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c3f59321aac4ea78e4c70618f907e08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d1343667008643c8a893bfae962503c1", + "IPY_MODEL_384f2a4804ed458498b35f04d32e41b5", + "IPY_MODEL_f7e1e00cad5449dfb55c6a920a292540" + ], + "layout": "IPY_MODEL_ff3206118d3043b3a9b757ec3ca01d9f" + } + }, + "2c646f33655d4646b70afef87232d5a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ea5a9a7f9a44295ad5364f47926b9d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc4ab3d0b89440a38725e54852db46df", + "placeholder": "​", + "style": "IPY_MODEL_a23c1b483a9e4aca8dc12da65527b103", + "value": " 149/149 [02:05<00:00, 1.24it/s]" + } + }, + "2eea385dfcf745e6b92c37eb6cd901f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2fcffe85dbcc4c91b840c61799b82772": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3119accf975446eda52b0125571322a4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31e1a0a3fe2f4228887c1abc7443e8ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e778f7c68ce54014a5bfb3050e72292a", + "IPY_MODEL_8ecaba0474a64ea3a4a400107f08b90e", + "IPY_MODEL_3bedc272418949e8bb2897bcfae0a36b" + ], + "layout": "IPY_MODEL_f107664ab872463fa5dbee7bcfe1a866" + } + }, + "32fe020b5dc54143af2830ec578eecdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36909c71cfeb44c9aa48c96b0724d5a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c88d5b03d6d9498ab972678dedb018bf", + "max": 1191, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1143e9991f3e443a89605fcc72fae27b", + "value": 3 + } + }, + "37531d1ef87f45c99df60fb6a8a66d78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "379253e799eb4c9b92342abeffd9b4a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "384f2a4804ed458498b35f04d32e41b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f8e6355fcb74fc98cc641bc36bd1707", + "max": 1355863, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee3cdac0740d43188518e097ae5863a5", + "value": 1355863 + } + }, + "3bedc272418949e8bb2897bcfae0a36b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d66f8f8d82f9499488b6ffa16193b320", + "placeholder": "​", + "style": "IPY_MODEL_c4dbb10f007f483a950a95555583dc2a", + "value": " 5/2094 [00:02<17:16, 2.02it/s]" + } + }, + "3cd79b7a96784504a28dce435f9de5b5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d7e4c3c0af84bc4940d2e25ad8a5162": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "419ce58d2ed14589a3d2e1cd7b477e0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "448426e53b934f8d8cfc96a94f95e4b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "49fd3eaa74fa493fbe7324607888c542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a03ac52afa84bfd82ced188892b1958": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22a8be9fae3245cca79dc7904ed4f49d", + "max": 262, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7fe11f4ffd3747079b8de4453b29dbac", + "value": 262 + } + }, + "4c58352e4a8a4836ad9d90b68876cadc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d22ac94c09d4802b4664e456278308a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1dc117db5c444bd918b9ab70b587f48", + "max": 501200538, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0b81615b8fc4b8d8a48232d029e717d", + "value": 501200538 + } + }, + "4ec670884e2247ec872defaa5bf7dcc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4f8aa1c4c8914693a24523c1064ecf97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f8b629635194d759b9c91f37a445632": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fbbc5b908c14198b8c86ca2208bd890": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "568d424c94094d669282ed72b4cf0be4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59458022ec4547beba130ce755946427": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac45cf1a895f4ba39c5be0ad136c4591", + "IPY_MODEL_117489e4902040ae97cb222f8c4dda12", + "IPY_MODEL_ba09b68a05644dd1b7d12a19396fb3b8" + ], + "layout": "IPY_MODEL_26178b1ed5164ca7bcea84b65fc95522" + } + }, + "594d094f060e4481977901e11c2ddaf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8757d3393f04a55a5bea7f923944281", + "placeholder": "​", + "style": "IPY_MODEL_fc14f76deb2549b3a5c6bce9ea3dd7e3", + "value": " 478M/478M [00:18<00:00, 27.3MB/s]" + } + }, + "59c41a4934cf4ef2b467ae5d97b615f0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5bc982f17aec46b3b7f8308f567f6296": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cb366b5f6384c408e0b6c8c8e18ca67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d195a90ff5143a998c4cb9ca851811b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d63fdd645634af381db3abc93ce2b24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5e5ac5500b974cfcbf76d2e5d70adb3d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ef5f967ffff4b9689f6f72772e1d9fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e98cda63a023489cae4ada214ba5bb38", + "placeholder": "​", + "style": "IPY_MODEL_d12ad49c9fc54f86affd96e975b93186", + "value": "Epoch 1 of 1: 100%" + } + }, + "60b8f43949894143a83263e96d0ac3fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6851a6f291a04bd59da6cf04d6f762aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d79bd01e1fe44c12ac530376324d9e0e", + "IPY_MODEL_4a03ac52afa84bfd82ced188892b1958", + "IPY_MODEL_8351a84b9c914d80a54ac57a2fb18304" + ], + "layout": "IPY_MODEL_3cd79b7a96784504a28dce435f9de5b5" + } + }, + "6870cb8717ba407c81d0b7c79ad27d26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b2a3cde2cdb4bc6a9d0623363c66266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6cc05e8394ac491999930b9493be855e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab2d97c595ff4e55969bc2f1415f747d", + "max": 898823, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f8aa1c4c8914693a24523c1064ecf97", + "value": 898823 + } + }, + "6f8e6355fcb74fc98cc641bc36bd1707": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "703f69d98e9947f3aeaba07b51d64f3c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7473c3bed5854eacbc818363f4a1ab9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7de6deb7064344faa9e4104be09bc1b6", + "IPY_MODEL_dd69b800241e4bb3a856ecd46968b762", + "IPY_MODEL_2ea5a9a7f9a44295ad5364f47926b9d2" + ], + "layout": "IPY_MODEL_04ae2805168b48da9953754e0989f073" + } + }, + "770ad4abfc4f4eeebefade5afcad22a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "790e423a21b840978da497d9d35634a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d7e4c3c0af84bc4940d2e25ad8a5162", + "placeholder": "​", + "style": "IPY_MODEL_4ec670884e2247ec872defaa5bf7dcc5", + "value": "Downloading: 100%" + } + }, + "7a0d26d292e54498a15bc2e54e6c3aee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7de6deb7064344faa9e4104be09bc1b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c4425a4579084d37b000192df67e3ae1", + "placeholder": "​", + "style": "IPY_MODEL_5d195a90ff5143a998c4cb9ca851811b", + "value": "Epochs 0/1. Running Loss: 0.3490: 100%" + } + }, + "7e3df3b58c7e4117b0a8b8fc45dffa01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7fe11f4ffd3747079b8de4453b29dbac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "818e5dbea2094a97a18974aebe4ddb86": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82f733de38ef4c5f8734cbdf47ec1a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2dae6a605f842d3aaad1f86b2e332b6", + "IPY_MODEL_197dca1cad8b425bb4622c9d5da461dc", + "IPY_MODEL_1cf670526680446db48fbf64b1cae0a6" + ], + "layout": "IPY_MODEL_818e5dbea2094a97a18974aebe4ddb86" + } + }, + "8351a84b9c914d80a54ac57a2fb18304": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dba102bf2b3249c8907d4fe1d5cf0e82", + "placeholder": "​", + "style": "IPY_MODEL_ed1ad3ad89334675babf56f9737a17fb", + "value": " 262/262 [01:10<00:00, 3.93it/s]" + } + }, + "85ea942b0e194d2a9160f82494fff8e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89e65dddb1884e158cb3d1937843ccab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89f9d8cab0c44b58afee34914198a9e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cefe2ef3c984e3a8ad1bb8ecb7f0dbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_703f69d98e9947f3aeaba07b51d64f3c", + "placeholder": "​", + "style": "IPY_MODEL_60b8f43949894143a83263e96d0ac3fa", + "value": " 878k/878k [00:00<00:00, 637kB/s]" + } + }, + "8ecaba0474a64ea3a4a400107f08b90e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bdda742fee1148d581d8a15e8a560869", + "max": 2094, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_08263433f8b6426693653ab9955e5410", + "value": 5 + } + }, + "904714fa04be424da224c801f06d52f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92b7ffe0dd1b49d1acdb2b588f72569d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95392827ab8149388dd9af86d1fb03a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99a8a52b7dfb4fa994a4b09feba8fe58": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e3eb217f2c349cf8a2b255ca5a34622": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f03facdd7704ab9be2bd65f1060f215": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5bc982f17aec46b3b7f8308f567f6296", + "max": 2094, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4fbbc5b908c14198b8c86ca2208bd890", + "value": 5 + } + }, + "a23c1b483a9e4aca8dc12da65527b103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a287d92682d644daa34030f58227540f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a308011d2efd403fb6b8d250d8f98fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_226d2e2955444f9ead05b5991d7939e5", + "IPY_MODEL_9f03facdd7704ab9be2bd65f1060f215", + "IPY_MODEL_fc122d487cbd4ab69e78f1b9425774ba" + ], + "layout": "IPY_MODEL_770ad4abfc4f4eeebefade5afcad22a3" + } + }, + "a8757d3393f04a55a5bea7f923944281": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8de20f8116142f6bf25aef25f37ad85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a90282c995cc4c6db59eaa51e3414ad1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4d34c0c2e364f88b70036cbff6f780a", + "IPY_MODEL_4d22ac94c09d4802b4664e456278308a", + "IPY_MODEL_594d094f060e4481977901e11c2ddaf2" + ], + "layout": "IPY_MODEL_d76e461fca524e04810c38b44ad51185" + } + }, + "ab2d97c595ff4e55969bc2f1415f747d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abc4d60485bf40d7abf3cbcf212e39a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ac45cf1a895f4ba39c5be0ad136c4591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c61f90f85a54cbb9d2ccdbf614eb8d5", + "placeholder": "​", + "style": "IPY_MODEL_37531d1ef87f45c99df60fb6a8a66d78", + "value": "Downloading: 100%" + } + }, + "afd3d0f6506e464c98b9ad57a24c3e9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "afd5528b85874795ac1d736dde15b810": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b088cb07387d4a46b3c7d4d7cc9a5aba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b276fc7fd7954ec09fabbcad64b93508": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3f807cfae5a44fcbf1069817e6fb79d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4bcc997cfa4444287370bbb4819cb43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4d34c0c2e364f88b70036cbff6f780a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_29ad13a85dc44e4e919bed1daddf0935", + "placeholder": "​", + "style": "IPY_MODEL_b276fc7fd7954ec09fabbcad64b93508", + "value": "Downloading: 100%" + } + }, + "b8654137c93f4a70b0fb8f7e692f7673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e567e754183b42d69d3d200a4517b132", + "IPY_MODEL_e4c905c262994b7d9197f77b2da2c178", + "IPY_MODEL_f0b59d4d691c44a4a7dbb40991518d36" + ], + "layout": "IPY_MODEL_b088cb07387d4a46b3c7d4d7cc9a5aba" + } + }, + "ba09b68a05644dd1b7d12a19396fb3b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fcffe85dbcc4c91b840c61799b82772", + "placeholder": "​", + "style": "IPY_MODEL_32fe020b5dc54143af2830ec578eecdf", + "value": " 446k/446k [00:00<00:00, 2.39MB/s]" + } + }, + "bac5decd48b74036a270f70a05c3f80e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdda742fee1148d581d8a15e8a560869": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0b81615b8fc4b8d8a48232d029e717d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c11ef82d87114a59868d9d7810b936db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c1dc117db5c444bd918b9ab70b587f48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2dae6a605f842d3aaad1f86b2e332b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7d3e0bd4a9c43dd9946a8a63b12d1d7", + "placeholder": "​", + "style": "IPY_MODEL_ece446ccb0d3496a81dc0250fff9039d", + "value": "Epochs 0/1. Running Loss: 0.3547: 100%" + } + }, + "c3a17fa9e8da4d9fb571e307f75ac144": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c3cafc815e4444a8998e608cd9c9300d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c43f7ff02eb74e0d900029f97652a973": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3119accf975446eda52b0125571322a4", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_89f9d8cab0c44b58afee34914198a9e6", + "value": 1 + } + }, + "c4425a4579084d37b000192df67e3ae1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4dbb10f007f483a950a95555583dc2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c88d5b03d6d9498ab972678dedb018bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c983b2e75ec44867a14f6d3abdfff2ec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cafdb944408b42eaacec5b2e8566962b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf4fb870564043cfbc171ae05143ec5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59c41a4934cf4ef2b467ae5d97b615f0", + "placeholder": "​", + "style": "IPY_MODEL_2eea385dfcf745e6b92c37eb6cd901f4", + "value": " 481/481 [00:00<00:00, 10.4kB/s]" + } + }, + "d12ad49c9fc54f86affd96e975b93186": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d1343667008643c8a893bfae962503c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05e6b65f527c48e5ab8aaa8a220287c0", + "placeholder": "​", + "style": "IPY_MODEL_ec68ce238bb04063a74afd67a4f1e877", + "value": "Downloading: 100%" + } + }, + "d16d01773a334ccb8a9231d3cae6e0f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d48d137548464c3387dd51494cb969bf", + "placeholder": "​", + "style": "IPY_MODEL_4f8b629635194d759b9c91f37a445632", + "value": "Epoch 1 of 1: 100%" + } + }, + "d1df90f8eead4f5e8718fd42ec0d5e40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d32db030dff24fe3bd1983a44c703311": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d16d01773a334ccb8a9231d3cae6e0f4", + "IPY_MODEL_c43f7ff02eb74e0d900029f97652a973", + "IPY_MODEL_d6a37bb80db94947810fa1d69b8b416b" + ], + "layout": "IPY_MODEL_ee1cc81a307a4ea6ac00b65a4d314877" + } + }, + "d447cc0c53974205ade693d0eff0bc7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05826d440af54576a054d0d8e0b212f6", + "placeholder": "​", + "style": "IPY_MODEL_d79ae039a52a43c0a20ff96b2d32607b", + "value": " 3/1191 [00:01<10:25, 1.90it/s]" + } + }, + "d48d137548464c3387dd51494cb969bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d66f8f8d82f9499488b6ffa16193b320": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6a37bb80db94947810fa1d69b8b416b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c646f33655d4646b70afef87232d5a1", + "placeholder": "​", + "style": "IPY_MODEL_bac5decd48b74036a270f70a05c3f80e", + "value": " 1/1 [04:10<00:00, 250.44s/it]" + } + }, + "d76e461fca524e04810c38b44ad51185": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d79ae039a52a43c0a20ff96b2d32607b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d79bd01e1fe44c12ac530376324d9e0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_568d424c94094d669282ed72b4cf0be4", + "placeholder": "​", + "style": "IPY_MODEL_419ce58d2ed14589a3d2e1cd7b477e0f", + "value": "100%" + } + }, + "d7a3b9eef0e347278563217103b4253c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7d3e0bd4a9c43dd9946a8a63b12d1d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dba102bf2b3249c8907d4fe1d5cf0e82": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc4ab3d0b89440a38725e54852db46df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd69b800241e4bb3a856ecd46968b762": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7a3b9eef0e347278563217103b4253c", + "max": 149, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4508e3bbceb40538e0f01a40da539de", + "value": 149 + } + }, + "de026e2d1ec848fbb35faf1746e7579d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13bc966911b1433ab6f8245f88b86e2d", + "IPY_MODEL_ec69c0f693b74ac8b737816b1efaa8bf", + "IPY_MODEL_cf4fb870564043cfbc171ae05143ec5f" + ], + "layout": "IPY_MODEL_7a0d26d292e54498a15bc2e54e6c3aee" + } + }, + "df46941823a540f787e2e9dad52243d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_790e423a21b840978da497d9d35634a6", + "IPY_MODEL_6cc05e8394ac491999930b9493be855e", + "IPY_MODEL_8cefe2ef3c984e3a8ad1bb8ecb7f0dbb" + ], + "layout": "IPY_MODEL_904714fa04be424da224c801f06d52f6" + } + }, + "e4508e3bbceb40538e0f01a40da539de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e4c905c262994b7d9197f77b2da2c178": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c3cafc815e4444a8998e608cd9c9300d", + "max": 2382, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_23ee94259c41435ea19264f4a2937585", + "value": 5 + } + }, + "e4ccd1d746ab4f1f826477bb021c34a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22f9701e81034b5ea8d1bdd38ab0d191", + "placeholder": "​", + "style": "IPY_MODEL_fba89fa62d6a413b90f3961755794a61", + "value": "100%" + } + }, + "e567e754183b42d69d3d200a4517b132": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c3a17fa9e8da4d9fb571e307f75ac144", + "placeholder": "​", + "style": "IPY_MODEL_fe372945c13845e5bd01ca4e153ed61c", + "value": " 0%" + } + }, + "e59cd0b3c86e4be28ae6442694b22f9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_448426e53b934f8d8cfc96a94f95e4b1", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_379253e799eb4c9b92342abeffd9b4a2", + "value": 1 + } + }, + "e778f7c68ce54014a5bfb3050e72292a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afd3d0f6506e464c98b9ad57a24c3e9d", + "placeholder": "​", + "style": "IPY_MODEL_5d63fdd645634af381db3abc93ce2b24", + "value": " 0%" + } + }, + "e98cda63a023489cae4ada214ba5bb38": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec1e8ea22a8f4272b258fa19a2c3ec83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99a8a52b7dfb4fa994a4b09feba8fe58", + "placeholder": "​", + "style": "IPY_MODEL_afd5528b85874795ac1d736dde15b810", + "value": " 262/262 [01:11<00:00, 3.95it/s]" + } + }, + "ec68ce238bb04063a74afd67a4f1e877": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec69c0f693b74ac8b737816b1efaa8bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a287d92682d644daa34030f58227540f", + "max": 481, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b2a3cde2cdb4bc6a9d0623363c66266", + "value": 481 + } + }, + "ece446ccb0d3496a81dc0250fff9039d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed1ad3ad89334675babf56f9737a17fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ee1cc81a307a4ea6ac00b65a4d314877": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ee3cdac0740d43188518e097ae5863a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0b59d4d691c44a4a7dbb40991518d36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6870cb8717ba407c81d0b7c79ad27d26", + "placeholder": "​", + "style": "IPY_MODEL_49fd3eaa74fa493fbe7324607888c542", + "value": " 5/2382 [00:01<09:49, 4.03it/s]" + } + }, + "f107664ab872463fa5dbee7bcfe1a866": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1e8ea21a9e6457e8dcd35b21be75b22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ef5f967ffff4b9689f6f72772e1d9fd", + "IPY_MODEL_e59cd0b3c86e4be28ae6442694b22f9c", + "IPY_MODEL_0ac5312eac44449c8b72030f0d064383" + ], + "layout": "IPY_MODEL_1400f1d23b19496ab51b253b5f87298b" + } + }, + "f1fe964e4d2b4ebb8f76b3d8debdaab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7e1e00cad5449dfb55c6a920a292540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cafdb944408b42eaacec5b2e8566962b", + "placeholder": "​", + "style": "IPY_MODEL_19628b1c68004e9a98ecb5a934d57d2d", + "value": " 1.29M/1.29M [00:00<00:00, 898kB/s]" + } + }, + "f879197b8c2443278e280f82f20cc609": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fba89fa62d6a413b90f3961755794a61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fc122d487cbd4ab69e78f1b9425774ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7e3df3b58c7e4117b0a8b8fc45dffa01", + "placeholder": "​", + "style": "IPY_MODEL_f1fe964e4d2b4ebb8f76b3d8debdaab6", + "value": " 5/2094 [00:01<09:10, 3.80it/s]" + } + }, + "fc14f76deb2549b3a5c6bce9ea3dd7e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe372945c13845e5bd01ca4e153ed61c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff3206118d3043b3a9b757ec3ca01d9f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- GitLab