From d0c714ae4afa1c011269a956d6f260f84f77025e Mon Sep 17 00:00:00 2001 From: Patrick von Platen <patrick.v.platen@gmail.com> Date: Fri, 19 Aug 2022 16:01:56 +0000 Subject: [PATCH] [Safety Checker] Add Safety Checker Module --- scripts/txt2img.py | 25 ++++++++++++++++++++++++- 1 file changed, 24 insertions(+), 1 deletion(-) diff --git a/scripts/txt2img.py b/scripts/txt2img.py index da77e1a..0af430c 100644 --- a/scripts/txt2img.py +++ b/scripts/txt2img.py @@ -16,12 +16,29 @@ from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from transformers import AutoFeatureExtractor + +feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True) +safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True) def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) +def numpy_to_pil(images): + """ + Convert a numpy image or a batch of images to a PIL image. + """ + if images.ndim == 3: + images = images[None, ...] + images = (images * 255).round().astype("uint8") + pil_images = [Image.fromarray(image) for image in images] + + return pil_images + + def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") @@ -220,7 +237,9 @@ def main(): if opt.fixed_code: start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) + print("start code", start_code.abs().sum()) precision_scope = autocast if opt.precision=="autocast" else nullcontext + precision_scope = nullcontext with torch.no_grad(): with precision_scope("cuda"): with model.ema_scope(): @@ -269,7 +288,11 @@ def main(): Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png')) grid_count += 1 - toc = time.time() + image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() + + # run safety checker + safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt") + image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values) print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.") -- GitLab