From eef5da90dbee4b22bdd864e53726993f98ae3366 Mon Sep 17 00:00:00 2001 From: Patrick von Platen <patrick.v.platen@gmail.com> Date: Fri, 19 Aug 2022 17:05:39 +0000 Subject: [PATCH] finish --- scripts/txt2img.py | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/scripts/txt2img.py b/scripts/txt2img.py index 0af430c..7b15fbd 100644 --- a/scripts/txt2img.py +++ b/scripts/txt2img.py @@ -19,8 +19,10 @@ from ldm.models.diffusion.plms import PLMSSampler from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor -feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True) -safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True) +# load safety model +safety_model_id = "CompVis/stable-diffusion-v-1-3" +safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, use_auth_token=True) +safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, use_auth_token=True) def chunk(it, size): it = iter(it) @@ -266,16 +268,23 @@ def main(): x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) + x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() + + x_image = x_samples_ddim + safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") + x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) + + x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 2, 1) if not opt.skip_save: - for x_sample in x_samples_ddim: + for x_sample in x_checked_image_torch: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') Image.fromarray(x_sample.astype(np.uint8)).save( os.path.join(sample_path, f"{base_count:05}.png")) base_count += 1 if not opt.skip_grid: - all_samples.append(x_samples_ddim) + all_samples.append(x_checked_image_torch) if not opt.skip_grid: # additionally, save as grid @@ -288,12 +297,6 @@ def main(): Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png')) grid_count += 1 - image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() - - # run safety checker - safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt") - image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values) - print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.") -- GitLab