From f13bf9bf463d95b5a16aeadd2b02abde31f769f8 Mon Sep 17 00:00:00 2001
From: rromb <robin.rombach@gmail.com>
Date: Mon, 21 Feb 2022 15:06:50 +0100
Subject: [PATCH] add vqgan loss with codebook statistic eval

---
 ldm/modules/losses/vqperceptual.py | 167 +++++++++++++++++++++++++++++
 1 file changed, 167 insertions(+)
 create mode 100644 ldm/modules/losses/vqperceptual.py

diff --git a/ldm/modules/losses/vqperceptual.py b/ldm/modules/losses/vqperceptual.py
new file mode 100644
index 0000000..f699817
--- /dev/null
+++ b/ldm/modules/losses/vqperceptual.py
@@ -0,0 +1,167 @@
+import torch
+from torch import nn
+import torch.nn.functional as F
+from einops import repeat
+
+from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
+from taming.modules.losses.lpips import LPIPS
+from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
+
+
+def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
+    assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
+    loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
+    loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
+    loss_real = (weights * loss_real).sum() / weights.sum()
+    loss_fake = (weights * loss_fake).sum() / weights.sum()
+    d_loss = 0.5 * (loss_real + loss_fake)
+    return d_loss
+
+def adopt_weight(weight, global_step, threshold=0, value=0.):
+    if global_step < threshold:
+        weight = value
+    return weight
+
+
+def measure_perplexity(predicted_indices, n_embed):
+    # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
+    # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
+    encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
+    avg_probs = encodings.mean(0)
+    perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
+    cluster_use = torch.sum(avg_probs > 0)
+    return perplexity, cluster_use
+
+def l1(x, y):
+    return torch.abs(x-y)
+
+
+def l2(x, y):
+    return torch.pow((x-y), 2)
+
+
+class VQLPIPSWithDiscriminator(nn.Module):
+    def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
+                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+                 perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+                 disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
+                 pixel_loss="l1"):
+        super().__init__()
+        assert disc_loss in ["hinge", "vanilla"]
+        assert perceptual_loss in ["lpips", "clips", "dists"]
+        assert pixel_loss in ["l1", "l2"]
+        self.codebook_weight = codebook_weight
+        self.pixel_weight = pixelloss_weight
+        if perceptual_loss == "lpips":
+            print(f"{self.__class__.__name__}: Running with LPIPS.")
+            self.perceptual_loss = LPIPS().eval()
+        else:
+            raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
+        self.perceptual_weight = perceptual_weight
+
+        if pixel_loss == "l1":
+            self.pixel_loss = l1
+        else:
+            self.pixel_loss = l2
+
+        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+                                                 n_layers=disc_num_layers,
+                                                 use_actnorm=use_actnorm,
+                                                 ndf=disc_ndf
+                                                 ).apply(weights_init)
+        self.discriminator_iter_start = disc_start
+        if disc_loss == "hinge":
+            self.disc_loss = hinge_d_loss
+        elif disc_loss == "vanilla":
+            self.disc_loss = vanilla_d_loss
+        else:
+            raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
+        print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
+        self.disc_factor = disc_factor
+        self.discriminator_weight = disc_weight
+        self.disc_conditional = disc_conditional
+        self.n_classes = n_classes
+
+    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+        if last_layer is not None:
+            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+        else:
+            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+        d_weight = d_weight * self.discriminator_weight
+        return d_weight
+
+    def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
+                global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
+        if not exists(codebook_loss):
+            codebook_loss = torch.tensor([0.]).to(inputs.device)
+        #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+        rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
+        if self.perceptual_weight > 0:
+            p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+            rec_loss = rec_loss + self.perceptual_weight * p_loss
+        else:
+            p_loss = torch.tensor([0.0])
+
+        nll_loss = rec_loss
+        #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+        nll_loss = torch.mean(nll_loss)
+
+        # now the GAN part
+        if optimizer_idx == 0:
+            # generator update
+            if cond is None:
+                assert not self.disc_conditional
+                logits_fake = self.discriminator(reconstructions.contiguous())
+            else:
+                assert self.disc_conditional
+                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+            g_loss = -torch.mean(logits_fake)
+
+            try:
+                d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+            except RuntimeError:
+                assert not self.training
+                d_weight = torch.tensor(0.0)
+
+            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+            loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
+
+            log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
+                   "{}/quant_loss".format(split): codebook_loss.detach().mean(),
+                   "{}/nll_loss".format(split): nll_loss.detach().mean(),
+                   "{}/rec_loss".format(split): rec_loss.detach().mean(),
+                   "{}/p_loss".format(split): p_loss.detach().mean(),
+                   "{}/d_weight".format(split): d_weight.detach(),
+                   "{}/disc_factor".format(split): torch.tensor(disc_factor),
+                   "{}/g_loss".format(split): g_loss.detach().mean(),
+                   }
+            if predicted_indices is not None:
+                assert self.n_classes is not None
+                with torch.no_grad():
+                    perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
+                log[f"{split}/perplexity"] = perplexity
+                log[f"{split}/cluster_usage"] = cluster_usage
+            return loss, log
+
+        if optimizer_idx == 1:
+            # second pass for discriminator update
+            if cond is None:
+                logits_real = self.discriminator(inputs.contiguous().detach())
+                logits_fake = self.discriminator(reconstructions.contiguous().detach())
+            else:
+                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+            log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+                   "{}/logits_real".format(split): logits_real.detach().mean(),
+                   "{}/logits_fake".format(split): logits_fake.detach().mean()
+                   }
+            return d_loss, log
-- 
GitLab