// Copyright (C) 2016 ecmascript_simd authors. All rights reserved.
// This code is governed by the BSD license found in the LICENSE file.

function minNum(x, y) {
  return x != x ? y :
    y != y ? x :
    Math.min(x, y);
}

function maxNum(x, y) {
  return x != x ? y :
    y != y ? x :
    Math.max(x, y);
}

function sameValue(x, y) {
  if (x == y)
    return x != 0 || y != 0 || (1/x == 1/y);

  return x != x && y != y;
}

function binaryMul(a, b) { return a * b; }
var binaryImul;
if (typeof Math.imul !== "undefined") {
  binaryImul = Math.imul;
} else {
  binaryImul = function(a, b) {
  var ah = (a >>> 16) & 0xffff;
  var al = a & 0xffff;
  var bh = (b >>> 16) & 0xffff;
  var bl = b & 0xffff;
  // the shift by 0 fixes the sign on the high part
  // the final |0 converts the unsigned value into a signed value
  return ((al * bl) + (((ah * bl + al * bh) << 16) >>> 0)|0);
  };
}

var _f32x4 = new Float32Array(4);
var _f64x2 = new Float64Array(_f32x4.buffer);
var _i32x4 = new Int32Array(_f32x4.buffer);
var _i16x8 = new Int16Array(_f32x4.buffer);
var _i8x16 = new Int8Array(_f32x4.buffer);
var _ui32x4 = new Uint32Array(_f32x4.buffer);
var _ui16x8 = new Uint16Array(_f32x4.buffer);
var _ui8x16 = new Uint8Array(_f32x4.buffer);

var float32x4 = {
  name: "Float32x4",
  fn: SIMD.Float32x4,
  floatLane: true,
  signed: true,
  numerical: true,
  lanes: 4,
  laneSize: 4,
  interestingValues: [0, -0, 1, -1, 0.9, -0.9, 1.414, 0x7F, -0x80, -0x8000,
  -0x80000000, 0x7FFF, 0x7FFFFFFF, Infinity, -Infinity, NaN],
  view: Float32Array,
  buffer: _f32x4,
  mulFn: binaryMul,
}

var int32x4 = {
  name: "Int32x4",
  fn: SIMD.Int32x4,
  intLane: true,
  signed: true,
  numerical: true,
  logical: true,
  lanes: 4,
  laneSize: 4,
  minVal: -0x80000000,
  maxVal: 0x7FFFFFFF,
  interestingValues: [0, 1, -1, 0x40000000, 0x7FFFFFFF, -0x80000000],
  view: Int32Array,
  buffer: _i32x4,
  mulFn: binaryImul,
}

var int16x8 = {
  name: "Int16x8",
  fn: SIMD.Int16x8,
  intLane: true,
  signed: true,
  numerical: true,
  logical: true,
  lanes: 8,
  laneSize: 2,
  laneMask: 0xFFFF,
  minVal: -0x8000,
  maxVal: 0x7FFF,
  interestingValues: [0, 1, -1, 0x4000, 0x7FFF, -0x8000],
  view: Int16Array,
  buffer: _i16x8,
  mulFn: binaryMul,
}

var int8x16 = {
  name: "Int8x16",
  fn: SIMD.Int8x16,
  intLane: true,
  signed: true,
  numerical: true,
  logical: true,
  lanes: 16,
  laneSize: 1,
  laneMask: 0xFF,
  minVal: -0x80,
  maxVal: 0x7F,
  interestingValues: [0, 1, -1, 0x40, 0x7F, -0x80],
  view: Int8Array,
  buffer: _i8x16,
  mulFn: binaryMul,
}

var uint32x4 = {
  name: "Uint32x4",
  fn: SIMD.Uint32x4,
  intLane: true,
  unsigned: true,
  numerical: true,
  logical: true,
  lanes: 4,
  laneSize: 4,
  minVal: 0,
  maxVal: 0xFFFFFFFF,
  interestingValues: [0, 1, 0x40000000, 0x7FFFFFFF, 0xFFFFFFFF],
  view: Uint32Array,
  buffer: _ui32x4,
  mulFn: binaryImul,
}

var uint16x8 = {
  name: "Uint16x8",
  fn: SIMD.Uint16x8,
  intLane: true,
  unsigned: true,
  numerical: true,
  logical: true,
  lanes: 8,
  laneSize: 2,
  laneMask: 0xFFFF,
  minVal: 0,
  maxVal: 0xFFFF,
  interestingValues: [0, 1, 0x4000, 0x7FFF, 0xFFFF],
  view: Uint16Array,
  buffer: _ui16x8,
  mulFn: binaryMul,
}

var uint8x16 = {
  name: "Uint8x16",
  fn: SIMD.Uint8x16,
  intLane: true,
  unsigned: true,
  numerical: true,
  logical: true,
  lanes: 16,
  laneSize: 1,
  laneMask: 0xFF,
  minVal: 0,
  maxVal: 0xFF,
  interestingValues: [0, 1, 0x40, 0x7F, 0xFF],
  view: Int8Array,
  buffer: _ui8x16,
  mulFn: binaryMul,
}

var bool32x4 = {
  name: "Bool32x4",
  fn: SIMD.Bool32x4,
  boolLane: true,
  logical: true,
  lanes: 4,
  laneSize: 4,
  interestingValues: [true, false],
}

var bool16x8 = {
  name: "Bool16x8",
  fn: SIMD.Bool16x8,
  boolLane: true,
  logical: true,
  lanes: 8,
  laneSize: 2,
  interestingValues: [true, false],
}

var bool8x16 = {
  name: "Bool8x16",
  fn: SIMD.Bool8x16,
  boolLane: true,
  logical: true,
  lanes: 16,
  laneSize: 1,
  interestingValues: [true, false],
}

// Filter functions.
function isFloatType(type) { return type.floatLane; }
function isIntType(type) { return type.intLane; }
function isBoolType(type) { return type.boolLane; }
function isNumerical(type) { return type.numerical; }
function isLogical(type) { return type.logical; }
function isSigned(type) { return type.signed; }
function isSignedIntType(type) { return type.intLane && type.signed; }
function isUnsignedIntType(type) { return type.intLane && type.unsigned; }
function isSmallIntType(type) { return type.intLane && type.lanes >= 8; }
function isSmallUnsignedIntType(type) {
  return type.intLane && type.unsigned && type.lanes >= 8;
}
function hasLoadStore123(type) { return !type.boolLane && type.lanes == 4; }

// Each SIMD type has a corresponding Boolean SIMD type, which is returned by
// relational ops.
float32x4.boolType = int32x4.boolType = uint32x4.boolType = bool32x4;
int16x8.boolType = uint16x8.boolType = bool16x8;
int8x16.boolType = uint8x16.boolType = bool8x16;

// SIMD fromTIMD types.
float32x4.from = [int32x4, uint32x4];
int32x4.from = [float32x4];
int16x8.from = [];
int8x16.from = [];
uint32x4.from = [float32x4];
uint16x8.from = [int16x8];
uint8x16.from = [int8x16];

// SIMD fromBits types.
float32x4.fromBits = [int32x4, int16x8, int8x16, uint32x4, uint16x8, uint8x16];
int32x4.fromBits = [float32x4, int16x8, int8x16, uint32x4, uint16x8, uint8x16];
int16x8.fromBits = [float32x4, int32x4, int8x16, uint32x4, uint16x8, uint8x16];
int8x16.fromBits = [float32x4, int32x4, int16x8, uint32x4, uint16x8, uint8x16];
uint32x4.fromBits = [float32x4, int32x4, int16x8, int8x16, uint16x8, uint8x16];
uint16x8.fromBits = [float32x4, int32x4, int16x8, int8x16, uint32x4, uint8x16];
uint8x16.fromBits = [float32x4, int32x4, int16x8, int8x16, uint32x4, uint16x8];

var simdTypes = [float32x4,
  int32x4, int16x8, int8x16,
  uint32x4, uint16x8, uint8x16,
  bool32x4, bool16x8, bool8x16];

if (typeof simdPhase2 !== "undefined") {
  var float64x2 = {
    name: "Float64x2",
    fn: SIMD.Float64x2,
    floatLane: true,
    signed: true,
    numerical: true,
    lanes: 2,
    laneSize: 8,
    interestingValues: [0, -0, 1, -1, 1.414, 0x7F, -0x80, -0x8000, -0x80000000,
    0x7FFF, 0x7FFFFFFF, Infinity, -Infinity, NaN],
    view: Float64Array,
    buffer: _f64x2,
    mulFn: binaryMul,
  };

  var bool64x2 = {
    name: "Bool64x2",
    fn: SIMD.Bool64x2,
    boolLane: true,
    lanes: 2,
    laneSize: 8,
    interestingValues: [true, false],
  };

  float64x2.boolType = bool64x2;

  float32x4.fromBits.push(float64x2);
  int32x4.fromBits.push(float64x2);
  int16x8.fromBits.push(float64x2);
  int8x16.fromBits.push(float64x2);
  uint32x4.fromBits.push(float64x2);
  uint16x8.fromBits.push(float64x2);
  uint8x16.fromBits.push(float64x2);

  float64x2.fromBits = [float32x4, int32x4, int16x8, int8x16,
  uint32x4, uint16x8, uint8x16];

  int32x4.fromBits = [float32x4, int16x8, int8x16, uint32x4,
  uint16x8, uint8x16];
  int16x8.fromBits = [float32x4, int32x4, int8x16, uint32x4,
  uint16x8, uint8x16];
  int8x16.fromBits = [float32x4, int32x4, int16x8, uint32x4,
  uint16x8, uint8x16];
  uint32x4.fromBits = [float32x4, int32x4, int16x8, int8x16,
  uint16x8, uint8x16];
  uint16x8.fromBits = [float32x4, int32x4, int16x8, int8x16,
  uint32x4, uint8x16];
  uint8x16.fromBits = [float32x4, int32x4, int16x8, int8x16,
  uint32x4, uint16x8];

  simdTypes.push(float64x2);
  simdTypes.push(bool64x2);
}

// SIMD utility functions.

// Create a value for testing, with vanilla lane values, i.e. [0, 1, 2, ..]
// for numeric types, [false, true, true, ..] for boolean types. These test
// values shouldn't contain NaNs or other "interesting" values.
function createTestValue(type) {
  var lanes = [];
  for (var i = 0; i < type.lanes; i++)
    lanes.push(i);
  return type.fn.apply(type.fn, lanes);
}

function createSplatValue(type, v) {
  var lanes = [];
  for (var i = 0; i < type.lanes; i++)
    lanes.push(v);
  return type.fn.apply(type.fn, lanes);
}

// SIMD reference functions.

// Returns converted array buffer value of specified type.
function simdConvert(type, value) {
  if (type.buffer === undefined) return !!value;  // bool types
  type.buffer[0] = value;
  return type.buffer[0];
}

function checkValue(type, a, expect) {
  var fail = false;
  for (var i = 0; i < type.lanes; i++) {
    var v = type.fn.extractLane(a, i);
    var ev = simdConvert(type, expect(i));
    if (!sameValue(ev, v) && Math.abs(ev - v) >= 0.00001)
      fail = true;
  }
  if (fail) {
  var lanes = [];
  for (var i = 0; i < type.lanes; i++){
    lanes.push(simdConvert(type, expect(i)));
  }
  $ERROR("expected SIMD." + type.name + "(" + lanes +
    ") but found " + a.toString());
  }
}

// SIMD reference functions.

// Reference implementation of toLocaleString.
function simdToLocaleString(type, value) {
  value = type.fn.check(value);
  var str = "SIMD." + type.name + "(";
  str += type.fn.extractLane(value, 0).toLocaleString();
  for (var i = 1; i < type.lanes; i++) {
    str += "," + type.fn.extractLane(value, i).toLocaleString();
  }
  return str + ")";
}

function equalInt32x4(a, b) {
  assert.sameValue(SIMD.Int32x4.extractLane(a, 0),
    SIMD.Int32x4.extractLane(b, 0));
  assert.sameValue(SIMD.Int32x4.extractLane(a, 1),
    SIMD.Int32x4.extractLane(b, 1));
  assert.sameValue(SIMD.Int32x4.extractLane(a, 2),
    SIMD.Int32x4.extractLane(b, 2));
  assert.sameValue(SIMD.Int32x4.extractLane(a, 3),
    SIMD.Int32x4.extractLane(b, 3));
}

// Compare unary op's behavior to ref op at each lane.
function testUnaryOp(type, op, refOp) {
  assert.sameValue("function", typeof type.fn[op]);
  for (var v of type.interestingValues) {
    var expected = simdConvert(type, refOp(v));
    var a = type.fn.splat(v);
    var result = type.fn[op](a);
    checkValue(type, result, function(index) { return expected; });
  }
}

// Compare binary op's behavior to ref op at each lane with the Cartesian
// product of the given values.
function testBinaryOp(type, op, refOp) {
  assert.sameValue("function", typeof type.fn[op]);
  var zero = type.fn();
  for (var av of type.interestingValues) {
    for (var bv of type.interestingValues) {
      var expected = simdConvert(type, refOp(simdConvert(type, av),
        simdConvert(type, bv)));
      var a = type.fn.splat(av);
      var b = type.fn.splat(bv);
      var result = type.fn[op](a, b);
      checkValue(type, result, function(index) { return expected; });
    }
  }
}

// Compare relational op's behavior to ref op at each lane with the Cartesian
// product of the given values.
function testRelationalOp(type, op, refOp) {
  assert.sameValue("function", typeof type.fn[op]);
  var zero = type.fn();
  for (var av of type.interestingValues) {
    for (var bv of type.interestingValues) {
      var expected = refOp(simdConvert(type, av), simdConvert(type, bv));
      var a = type.fn.splat(av);
      var b = type.fn.splat(bv);
      var result = type.fn[op](a, b);
      checkValue(type.boolType, result, function(index) { return expected; });
    }
  }
}

// Test utilities.
var currentName = "<global>";
var skipValueTests = false;

function testSimdFunction(name, func) {
  currentName = name;
  if (typeof skipValueTests !== "undefined" && skipValueTests &&
    name.indexOf("value semantics") != -1) return;
  try {
    func();
  } catch (e) {
    e.message += " (Testing with " + name + ".)";
    throw e;
  }
}