From 79c7877c76e4680a37e74a97cd0d005104c71011 Mon Sep 17 00:00:00 2001 From: "Park, Se" <se.park19@imperial.ac.uk> Date: Fri, 28 Feb 2020 20:10:04 +0000 Subject: [PATCH] Delete model.py --- model.py | 35 ----------------------------------- 1 file changed, 35 deletions(-) delete mode 100644 model.py diff --git a/model.py b/model.py deleted file mode 100644 index 58f1cc0..0000000 --- a/model.py +++ /dev/null @@ -1,35 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from transformers import BertModel, BertConfig - -class QualityEstimation(nn.Module): - - def __init__(self, hidden_dim): - super(QualityEstimation, self).__init__() - self.hidden_dim = hidden_dim - - # Instantiating BERT model object - config = BertConfig() - self.bert = BertModel(config).from_pretrained('bert-base-multilingual-cased') - self.dropout = nn.Dropout(0.25) - - # LSTM and classification layers - self.lstm = nn.LSTM(input_size=768, hidden_size=self.hidden_dim, - num_layers=1, batch_first=True, - dropout=0, bidirectional=False) - self.fc1 = nn.Linear(self.hidden_dim, 1) - nn.init.kaiming_normal_(self.fc1.weight) - # self.fc2 = nn.Linear(self.hidden_dim, 1) - # nn.init.kaiming_normal_(self.fc2.weight) - - def forward(self, token_ids, segment_ids=None, attention_mask=None): - - encoded_layers, _ = self.bert(input_ids=token_ids, token_type_ids=segment_ids, attention_mask=attention_mask) - encoded_layers = self.dropout(encoded_layers) - output, _ = self.lstm(encoded_layers) - # output = torch.tanh(self.fc1(output[:,-1,:])) - qe_scores = self.fc1(output[:,-1,:]) - # qe_scores = torch.tanh(qe_scores) - - return qe_scores -- GitLab