
R E S E A R C H P O S T E R P R E S E N T A T IO N D E S IG N © 2 0 1 5

www.PosterPresentations.com

Imperial	College	London

Program	Specification	and	Verification	Group

An	Infrastructure	for	Tractable	Verification	of	JavaScript	

Philippa	Gardner Daiva	NaudžiūnienėJosé	Fragoso Santos Petar	Maksimović Azalea	Raad Thomas	Wood

Mechanised	specification	
of	the	ES5	Standard	

JSCert ES5	Strict:	
Language	+	Libraries

JSIL

Rosette
(IBM)

CBMC
(Oxford/Amazon)

JaVerT
(Imperial)

DOM

Hand	proof	of	
correctness	for	a	fragment	

Systematic	testing	of	
the	entire	compiler	

JS-2-JSIL
Compiler

Simple	intermediate	
goto language

Suitable	for	
symbolic	verification

JSIL-as-a-Service

JS	Logic	(POPL	‘12)
✓Soundness	proof
! Complex	proof	rules
!	 Difficult	to	automate

JSIL	Logic	(now)
✓ Soundness	proof
✓ Simple	proof	rules
✓ Can	be	automated

The	complexity	of	JavaScript	has	
moved	to	the	translation!

Separation-logic-based	reasoning

The dynamic nature of JavaScript and its complex
semantics make it a difficult target for verification.
To address this issue, we develop JS-2-JSIL, a compi-
ler from JavaScript (ECMAScript 5 strict) to a simple
intermediate goto language, JSIL. We design JS-2-JSIL
to be step-by-step faithful to the ECMAScript
standard, systematically testing it against the official
ECMAScript conformance test suite, and proving it
correct with respect to a fragment of the ES5 Strict
operational semantics. We develop JSIL logic, a
separation logic for JSIL that we prove sound with
respect to its operational semantics, and a semi-
automatic verification tool based on this logic.
Together, these results allow us to verify Hoare
triples for JavaScript using JSIL logic and JS-2-JSIL.

We establish the infrastructure required for verifying
JavaScript code. We focus on the internal functions
underlying JavaScript, which provide essential
functionalities and are used in the semantics of all
JavaScript commands. We implement all of these
functions in JSIL, give functionally correct specifi-
cations for most of them, and verify, using our tool,
that their JSIL implementations are correct with
respect to these specifications. We are able to
translate JavaScript triples to JSIL triples and verify
the JSIL triples using our tool.

JS-2-JSIL
Compilation	follows	English	standard	line-by-line;	correctness	shown	via	hand	proof	and	testing

Correctness	allows	JSIL	analysis	to	lift	to	JavaScript	analysis

JSIL
Goto	language:	extensible	objects,	dynamic	

field	access	and	function	calls	

Built-in	φ-nodes	provide	support	for	SSA

We	have	implemented	all	JavaScript	internal	
functions	and	most	of	the	built-in	libraries	

directly	in	JSIL	(~3Kloc)

ES5 Strict	Tests 10469
Tests	for	non-impl. features 1297
Compiler	Coverage 9160
ES5-ES6	differences 345
Tests	using	non-impl.	features 30
Applicable	Tests 8797
Passed	tests 8797
Failed	tests 0

Testing
Systematic	testing	of	the	full	JS-2-JSIL	

compiler	against	the	official	ECMAScript	
Test262	test	suite

ES6	version	of	the	test	suite	due	to	major	
deficiencies	in	the	ES5	version
Rigorous	filtering	and	analysis

Continuous-integration	infrastructure,	
tests	running	en masse	in	parallel	

Correctness	of	the	translation	for	assertions
when

Translating	assertions	from	JS	logic	to	JSIL	logic
Non-trivial	cases:

• Variable	resolution
• Function	objects

• Property	descriptors
• The	this	object

JaVerT
Semi-automatic	verification	tool	for	JSIL

Based	on	symbolic	execution	and	JSIL	Logic
User	specifies	pre- and	post-conditions,	loop	invariants,	and	predicate	
manipulations	in	JS	Logic;	all	automatically	translated	to	JSIL	Logic

Current	state:	JaVerT	can	verify	a	substantial	fragment	of	JavaScript’s	
internal	functions	and	very	simple	JavaScript	programs

JSIL-as-a-Service
JSIL	front-end	to	enable	verification	tools	to	analyse JavaScript

CBMC,	with	Kroening	and	Tautschnig	at	Amazon
Rosette,	with	Julian	Dolby	at	IBM	

