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Over-approximating (OX) program logics, such as separation logic, are used to verify properties of heap-

manipulating programs: all terminating behaviour is characterised but the reported results and errors need not

be reachable. OX function specifications are thus incompatible with true bug-finding supported by symbolic

execution tools such as Pulse and Gillian. In contrast, under-approximating (UX) program logics, such as

incorrectness separation logic, are used to find true results and bugs: reported results and errors are reachable,

but not all behaviour can be characterised. UX function specifications thus cannot capture full verification.

We introduce exact separation logic (ESL), which provides fully verified function specifications compatible

with true bug finding: all terminating behaviour is characterised, and all reported results and errors are

reachable. ESL requires subtle definitions of internal and external function specifications compared with the

familiar definitions of OX logics. It supports reasoning about mutually recursive functions and non-termination.

We prove frame-preserving soundness for ESL, demonstrating, for the first time, functional compositionality

for a non-OX program logic. We investigate the expressivity of ESL and the role of abstraction in UX reasoning

by verifying abstract ESL specifications of list algorithms. To show overall viability of exact verification for true

bug-finding, we formalise a compositional symbolic execution semantics capable of using ESL specifications

and characterise the conditions that these specifications must respect so that true bug-finding is preserved.

1 INTRODUCTION
Program logics were introduced for reasoning about program correctness, originating with Hoare

logic [28] and evolving to separation logics (SL) [6, 38, 43] for reasoning in a functionally com-

positional way about heap-manipulating programs. These over-approximating (OX) logics are

well-suited for verifying properties of programs: OX specifications capture all terminating be-

haviour, non-termination can also be captured, in some scenarios, via the postcondition False, but
not all reported results and errors are necessarily reachable.

By contrast, under-approximating (UX) logics were comparatively recently introduced for finding

true results and bugs, originating with reverse Hoare logic (RHL) [13] for reasoning about proba-

bilistic programs and coming to prominence with incorrectness logic (IL) [37] for reasoning about

program incorrectness: UX specifications capture some terminating behaviour, non-termination

cannot be characterised, and all reported results and errors are reachable. Since then, many UX logics

have been introduced, including incorrectness separation logic (ISL) [40], concurrent incorrectness

separation logic (CISL) [41], and insecurity separation logic (InsecSL) [35].

The application of UX reasoning to program incorrectness arose from the challenge to record,

as function summaries, the true results and bugs coming from Meta’s symbolic execution tool,

Pulse [37, 40]. Such information tends to be partial: e.g., the SAT solver can fail; the loop unrolling

fuel can run out; a function may not be found; or a computation may take too long. This partiality

is embedded into the meaning of UX specifications, but, as a consequence, UX specifications do

not provide verification guarantees. In addition, symbolic execution tools are not able to use OX

specifications without breaking the UX guarantee of no false positives. Our goal is to develop fully

verified function specifications of, for example, data-structure libraries that are compatible with

symbolic execution tools that target true bug-finding.
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We introduce exact separation logic (ESL) for reasoning about heap-manipulating sequential

programs, using a simple demonstrator programming language with a linear memory model. We

demonstrate that ESL provides verified exact (EX) specifications compatible with true bug-finding.

These specifications capture all terminating behaviour in full, all reported results and errors are

reachable, and non-termination can be characterised using the post-condition False. Despite these
strong properties, we have found ESL specifications to be more expressive and ESL proofs to

be easier than one might expect. We illustrate this by verifying EX correctness specifications of

standard list algorithms and finding standard language errors associated with examples from the

UX literature. In addition, we adapt Gillian [16, 20, 33, 34] to EX verification, and verify these

specifications semi-automatically. We prove a frame-preserving soundness result for ESL with

mutually recursive functions, presented in such a way that it is immediately transferable to ISL

and SL, demonstrating, for the first time, functional compositionality of UX reasoning. In addition,

we introduce a symbolic execution semantics that can call functions with ESL specifications, and

prove a correctness result that demonstrates that verified ESL function specifications are indeed

compatible with true bug-finding. Finally, through the list-algorithm examples, we investigate the

interaction of abstraction with UX reasoning, highlighting the difference between abstraction and

over-approximation, and delineate a boundary for the usability of abstraction in true bug-finding.

In order to better understand the difference between ESL and ISL, consider the ISL quadruple[
𝑃
]
C

[
ok : 𝑄ok

] [
err : 𝑄err

]
, which tells us that any state satisfying either the success post-condi-

tion𝑄ok or the error post-condition𝑄err is reachable from some state satisfying the pre-condition 𝑃

by executing the command C. It says nothing about any other behaviours of C, and even if the

post-condition is complete, it is not possible to identify this within ISL. In contrast, an ESL quadruple(
𝑃
)
C
(
ok : 𝑄ok

) (
err : 𝑄err

)
additionally states that all terminating executions of C starting from a

state satisfying the pre-condition either end successfully in a state that satisfies 𝑄ok or fault in a

state that satisfies 𝑄err . These exact quadruples, which provide unified reasoning about correctness

and incorrectness, are fundamental to ESL and to OX logics requiring such a treatment of errors.
1

They are not fundamental to UX logics, in that a UX quadruple can be split into two separate triples.

An important property of OX separation logics is that the reasoning is functionally compositional,

and hence scalable.
2
This function compositionality is the reason why Meta’s Infer and Pulse tools

can work on industrial-scale codebases. This property is not immediate for ESL and UX logics,

as the OX definitions do not transfer and, to our knowledge, functional compositionality for UX

logics has not been studied.
3
We develop ESL with mutually recursive functions, requiring subtle

definitions of external function specifications, which provide the interface that the function exposes

to the client, and internal function specifications, which provide the interface to the function’s

implementation. With OX logics, these specifications are well-understood and the gap between

them is small. For ESL and UX logics, this gap is larger, especially with the post-conditions. This is

because information cannot be lost within the reasoning, and so parameters and local variables

must remain in the internal post-condition, but at the same time must not be present in the external

post-condition, as their scope does not extend outside the function.

We present ESL rules for calling functions and for extending the set of available functions (the

environment) with a new cluster of mutually recursive functions: function call is analogous to

its OX counterpart; environment extension is substantially different. First, it captures the more

intricate transfer from the internal to the external post-condition. Second, when a new cluster

is added, terminating and non-terminating specifications are treated separately. In particular, to

1
Strictly speaking, the ESL post-condition could be expressed as a disjunction of ok- and err-labelled assertions, but the

quadruple distinction is helpful as compound commands (e.g., sequence) treat the two differently.

2
Interestingly, we were not able to find a direct proof of functional compositionality for sequential SL.

3
ISL [40] and InsecSL [35] use function specifications in examples and associated tools, but provide no logic rules.
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preserve UX reachability, all terminating specifications must be provably terminating: this we

achieve by imposing a joint measure on the pre-conditions and restricting (mutually) recursive

calls to pre-conditions of smaller measure only. Non-terminating specifications, on the other hand,

may be used without constraints to prove themselves, as in OX logics. Relying on transfinite and

Scott induction [45], we prove a frame-preserving soundness result for ESL, achieving functional

compositionality. Our approach can be simply adapted to ISL and SL. We believe we are the first to

have demonstrated functional compositionality for UX reasoning.

We illustrate the usability of ESL by exploring singly-linked list algorithms and specifications

with different degrees of abstraction. For example, two specifications of the list-length algorithm are:

(x = 𝑥 ★ list(𝑥, 𝑛)) LLen(x) (list(𝑥, 𝑛) ★ ret = 𝑛) (SP1)

(x = 𝑥 ★ list(𝑥, xs, vs)) LLen(x) (list(𝑥, xs, vs) ★ ret = |vs |) (SP2)

where the triple notation means that no errors occur.
4
In (SP1), list(𝑥, 𝑛) denotes the standard list

abstraction that tells us that in memory, starting from address 𝑥 , there is a singly-linked list of

length 𝑛, hiding information about node addresses and values. This shows that ESL specifications

can be as abstract as their OX counterparts, which may seem counter-intuitive given the UX

requirement of not losing any information. The insight is that information hidden via abstraction

in the pre-condition may soundly remain hidden in the post-condition as well. We observe that

specifications such as (SP1) cannot be used in standard symbolic execution precisely due to this

hiding of information. By contrast, the specification (SP2) features the list(𝑥, xs, vs) abstraction,
which provides full information about the list structure through variable xs, denoting the list of
node addresses, and vs, denoting a list of values.5 With respect to (SP1), it additionally captures the

fact that the list structure does not change, and can therefore be used in standard symbolic execution

for true bug-finding. Abstractions that expose node addresses are also needed for specifying, e.g., a

list-free algorithm, where the post-condition must explicitly state that these addresses have been

freed, as resource cannot be forgotten with EX or UX reasoning. We adapt the semi-automatic OX

verification of Gillian [33] to handle exact verification for recursive functions, and prove a number

of exact list-algorithm specifications with varying degrees of abstraction.

We introduce compositional symbolic execution (CSE) for our demonstrator language, including a

function call rule that allows it to use EX andUX specifications.We prove that if the abstractions used

in the specifications are strictly exact, then our CSE satisfies backward completeness, a property of

symbolic execution analogous to UX validity in program logics. This result is the first to demonstrate

the feasibility of combining true bug-finding with verified separation-logic specifications.

Contributions. In summary, the contributions of this paper are:

• the introduction of exact specifications and ESL, a sound exact separation logic for verifying

such specifications (§4);

• the first proof of sound function compositionality for a non-OX program logic (§4.12);

• exact specifications of a number of illustrative examples, demonstrating how ESL can be used to

reason about data-structure libraries, language errors, mutual recursion, and non-termination (§5);

• the adaptation of the Gillian platform to support EX verification of recursive functions (§5);

• a compositional symbolic execution semantics for true bug-finding, which can soundly use

verified ESL/ISL function specifications (§6);

• an investigation into the use of abstraction for true bug-finding in UX program logics and

symbolic execution (§5, §6).

4
In ESL, an equality assertion, 𝐸1 = 𝐸2, denotes that the heap is empty and that 𝐸1 and 𝐸2 represent the same value.

5
Abstractions such as list(𝑥, xs, vs) are called strictly exact in the literature [46, p. 149]. Their property is that, for any

concretisation of their parameters, there exists at most one heap that satisfies such a concretisation.
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2 RELATEDWORK
We place ESL in the context of related work on OX and UX logics, symbolic analysis, and associated

tools. In particular, we highlight its relationship to Gillian [16, 20, 33, 34], a recently-developed

platform for unified symbolic analysis. In addition, we briefly discuss existing approaches to use of

summaries and abstraction in symbolic execution.

OX Program Logics. OX separation logics have been applied to many diverse languages and li-

braries, including Java and java.util.concurrent [11, 15, 39], C [3, 29, 31], POSIX [36], JavaScript

and DOM [21, 22, 42], Wasm [44], and Rust [4, 30]. These works account at times for language

errors, almost always use exact axioms for the basic commands, but are set in the overall context of

OX reasoning. An interesting question is just how much of their OX reasoning can be made exact;

our examples, which use list abstractions, suggest that this percentage could be high.

The combination of ideas originating from SL, together with the bi-abductive technique needed

for automation [9, 10], led first to the Monoidics Infer tool for verification and then to Meta’s Infer

tool for bug finding [8]. However, the specifications generated by both of these tools are OX in

principle, meaning that the reported bugs are not necessarily true.

UX Program Logics. The work on UX program logics originated with RHL [13], which introduced

backward consequence and UX correctness triples, and was used to prove properties of non-

deterministic algorithms, e.g., an array shuffle. The recent work on IL [37], ISL [40], CISL [41], and

InsecSL [35] shifted the focus of UX reasoning to true bug-finding, expressed through various UX

incorrectness triples. Themotivation for IL and ISL came fromMeta’s bug-finding tool, Pulse [37, 40],

developed by the Infer team with the goal of only generating true bugs. InsecSL also comes with

an accompanying symbolic execution tool, and the CISL framework has formalised ideas arising

from the concurrent analysis in the work on RacerD [26] and Views [14].

To our knowledge, none of this work on UX reasoning addresses functions, despite functional

compositionality being essential for scalability. Our approach to internal and external function

specifications, informed by the backward consequence of UX logics and hinted at in InsecSL, yields

a unified treatment of functions across OX and UX reasoning. Our ESL soundness proof, which

implies functional compositionality, transfers to ISL by removing the non-terminating specifications

and the Scott-induction part of the proof. When it comes to abstraction, only RHL uses recursive

predicates (e.g., for list permutation), but their predicates are first-order and not abstract.

Independently, LCL𝐴 [7] is a non-functionally-compositional, first-order logic that combines

UX and OX reasoning using abstract interpretation. It is parametric on an abstract domain 𝐴,

and proves UX triples of the form ⊢𝐴 [𝑃] C [𝑄] where, under certain conditions, the triple also

guarantees verification. These conditions, however, normally mean that only a limited number

of pre-conditions can be handled. The conditions also have to be checked per-command and if

they fail to hold (due to, e.g., issues with Boolean guards, which are known to be a major source of

incompleteness), then the abstract domain has to be incrementally adjusted; the complexity of this

adjustment and the expressivity of the resulting formalism is unclear.

Gillian and ESL. Our motivation for ESL came from Gillian [16, 20, 33, 34], a recently-introduced

multi-language platform for unified symbolic analysis that uses EX and OX function specifications.

Gillian’s core symbolic execution engine [34], used for whole- program symbolic testing, has

been shown to satisfy forward soundness and backward completeness, properties that strongly

correspond to to the OX and UX parts of our ESL soundness result. Gillian’s SL-based compositional

verification provides OX specifications [20, 33], and its compositional symbolic testing based on

bi-abduction [20] generates (mostly) EX specifications.
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Compositional Symbolic Execution. There exists a substantial body of work on symbolic

execution with function summaries (e.g. [1, 23, 25, 27, 32, 47]), most of which is based on first-order

logic. We highlight the work of Godefroid et al., which initially used first-order exact summaries of

bounded program behaviour to drive the compositional dynamic test generation of SMART [23],

and later distinguished between may (OX) and must (UX) summaries, leveraging the interaction

between them to design the SMASH algorithm for compositional property checking and test

generation [25]. Our ESL specifications are able to capture properties of unbounded program

behaviour, as well as non-termination, and can be used in both OX and UX program-logic reasoning.

Our compositional symbolic execution is able to soundly use ISL/ESL specifications, which can

contain arbitrary information about the heap. When it comes to abstraction, for example, Anand

et al. [2] implement linked-list and array abstractions for true bug-finding in non-compositional

symbolic execution, in the context of the Java PathFinder, and use it to find bugs in list and array

partitioning algorithms. True bug-finding is maintained by checking for state subsumption, which

requires code modification rather than annotation and a record of all previously visited states.

3 THE PROGRAMMING LANGUAGE
We introduce ESL using a simple programming language, highlighting the most important aspects

in the body of the paper, and delegating the rest to Appendix A due to space constraints.

Language Syntax

𝑣 ∈ Val ::= 𝑛 ∈ Nat | 𝑏 ∈ Bool | 𝑠 ∈ Str | null | 𝑣 x ∈ PVar
E ∈ PExp ::= 𝑣 | x | E + E | E − E | ... | E = E | E < E | ¬ E | E ∧ E | ... | E : E | E · E | ...

C ∈ Cmd ::= skip | x := E | x := nondet | error(E) | if (E) C else C | while (E) C | C;C |
y := 𝑓 (®E) | x := [E] | [E] := E | x := new(E) | free(E)

Syntax. The language syntax is given above. Values, 𝑣 ∈ Val, include: natural numbers, 𝑛 ∈ Nat;
Booleans, 𝑏 ∈ Bool ≜ {true, false}; strings, 𝑠 ∈ Str; a dedicated value null; and lists of values,

𝑣 ∈ List. Expressions, E ∈ Exp, comprise values, program variables, x ∈ PVar, and various unary

and binary operators (e.g., addition, equality, negation, conjunction, list prepending, and list con-

catenation). Commands comprise: variable assignment; non-deterministic number generation; error

raising; if statement; while loop; command sequencing; function call; and memory management

commands, that is, lookup, mutation, allocation, and deallocation. The sets of program variables

for expressions and commands, denoted by pv(E) and pv(C) respectively, and the sets of modified

variables for commands, denoted by mod(C), are defined in the standard way.

Definition 3.1 (Functions). A function, denoted by 𝑓 (®x) {C; return E }, comprises: a function

identifier, 𝑓 ∈ Fid, given by a string; the function parameters, ®x, given by a list of distinct program

variables; a function body, C ∈ Cmd; and a return expression, E ∈ PExp, with pv(E) ⊆ {®x} ∪ pv(C).
Program variables in function bodies that are not the function parameters are treated as local

variables initialised to null, with their scope not extending beyond the function.

Definition 3.2 (Function Implementation Contexts). A function implementation context 𝛾 is a finite

partial function from function identifiers to their implementations:

𝛾 : Fid ⇀fin PVar List × Cmd × PExp

For 𝛾 (𝑓 ) = (®x,C, E), we also write 𝑓 (®x){C; return E} ∈ 𝛾 .

Operational Semantics. We define an operational semantics that gives a complete account of the

behaviour of commands and does not get stuck on any input, as we explicitly account for language

errors and missing resource errors.
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Definition 3.3 (Stores, Heaps, States). Variable stores (also: stores), 𝑠 : PVar ⇀fin Val, are partial
finite functions from program variables to values. Heaps, ℎ : Nat ⇀fin (Val ⊎ ∅), are partial finite
functions from natural numbers to values extended with a dedicated symbol ∅ ∉ Val. Program
states (also: states), 𝜎 = (𝑠, ℎ), consist of a store and a heap.

Heaps are used to model the memory, and the dedicated symbol ∅ ∉ Val is required for UX

frame preservation
6
to hold (cf. Definition 4.5). In particular, ℎ(𝑛) = 𝑣 means that an allocated heap

cell with address 𝑛 contains the value 𝑣 ; and ℎ(𝑛) = ∅ means that a heap cell with address 𝑛 has

been deallocated [17–19, 21, 40]. This linear memory model is used in much of the SL literature,

including ISL [40]. Onward, ∅ denotes the empty heap, ℎ1 ⊎ ℎ2 denotes heap disjoint union, and

ℎ1 ♯ ℎ2 denotes that ℎ1 and ℎ2 are disjoint.

Definition 3.4 (Expression Evaluation). The evaluation of an expression E with respect to a store 𝑠 ,

denoted JEK𝑠 , results in either a value or a dedicated symbol denoting an evaluation error,  ∉ Val.
Some illustrative cases are:

J𝑣K𝑠 = 𝑣 JxK𝑠 =

{
𝑠 (x), x ∈ dom(𝑠)
 , otherwise

JE1 + E2K𝑠 =

{
JE1K𝑠 + JE2K𝑠 , JE1K𝑠 , JE2K𝑠 ∈ Nat

 , otherwise

The big-step operational semantics uses judgements of the form 𝜎,C ⇓𝛾 𝑜 : 𝜎 ′
, read: given

implementation context 𝛾 and starting from state 𝜎 , the execution of command C results in outcome

𝑜 ∈ 𝑂 = {ok, err,miss} and state 𝜎 ′
. The outcome 𝑜 can either equal: ok (elided to avoid clutter

where possible), meaning that the execution was successful; err , meaning that the execution faulted

with a language error, or miss, meaning that the execution faulted with a missing resource error.

Definition 3.5 (Operational Semantics). The big-step operational semantics is given in Figure 1

(all success cases), and Figure 2 (representative error cases).

The successful cases of the semantics are straightforward: for example, the nondet command

generates an arbitrary natural number; the function call executes the function body in a store

where the function parameters are given the values of the arguments of the function call and the

local variables of the function are initialised to null; and the control flow statements behave as

expected. Allocation requires the specified amount of contiguous cells (always available as heaps

are finite), and lookup, mutation, and deallocation require the targeted cell not to have been freed.

The semantics stores error information in a dedicated program variable err, which is not available
to the programmer. For simplicity of error messages, we assume to have a function str : PExp → Str,
which serialises program expressions into strings. The error cases of the semantics are split into

language errors, which can be captured by program-logic reasoning, and missing resource errors,

which cannot. Language errors arise due to, for example: expressions evaluating to  because

a variable is missing from the store, sub-expressions being incorrectly typed (e.g. null + 1), or

operators being partial (e.g. 0 − 5 landing out of Nat); the access of deallocated cells (i.e., the

use-after-free error); incorrect typing in commands (e.g., non-Booleans in the condition of the if or
while statements); and the calling of non-existent functions. On the other hand, missing resource

errors arise from accessing cells that are not present in memory.

6
OX/UX frame preservation essentially means that if a program successfully runs from/to a given initial/final state, then it

will also successfully run from/to an extended initial/final state, and that extension (referred to as frame) will not be affected

by the execution. It is known that losing deallocation information breaks UX frame preservation, because then it would be

possible to frame on the deallocated cells onto the final state, but not the initial state [40]. The solution is to keep explicit

track of deallocated cells, which we achieve through the use of ∅.
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𝜎, skip ⇓𝛾 𝜎

JEK𝑠 = 𝑣 𝑠′ = 𝑠 [x → 𝑣 ]
(𝑠, ℎ), x := E ⇓𝛾 (𝑠′, ℎ)

𝑛 ∈ N 𝑠′ = 𝑠 [x → 𝑛]
(𝑠, ℎ), x := nondet ⇓𝛾 (𝑠′, ℎ)

JEK𝑠 = true (𝑠,ℎ),C1 ⇓𝛾 𝜎 ′

(𝑠, ℎ), if (E) C1 else C2 ⇓𝛾 𝜎 ′

JEK𝑠 = false (𝑠, ℎ),C2 ⇓𝛾 𝜎 ′

(𝑠, ℎ), if (E) C1 else C2 ⇓𝛾 𝜎 ′
JEK𝑠 = false

(𝑠, ℎ), while (E) C ⇓𝛾 (𝑠,ℎ)

JEK𝑠 = true (𝑠,ℎ),C ⇓𝛾 𝜎 ′′

𝜎 ′′, while (E) C ⇓𝛾 𝜎 ′

(𝑠,ℎ), while (E) C ⇓𝛾 𝜎 ′

𝜎,C1 ⇓𝛾 𝜎 ′′

𝜎 ′′,C2 ⇓𝛾 𝜎 ′

𝜎,C1;C2 ⇓𝛾 𝜎 ′

𝑓 (®x) { C; return E′ } ∈ 𝛾 J®EK𝑠 = ®𝑣
pv(C) \ {®x} = {®z} 𝑠𝑝 = ∅[®x → ®𝑣 ] [®z → null]

(𝑠𝑝 , ℎ),C ⇓𝛾 (𝑠𝑞, ℎ′ ) JE′K𝑠𝑞 = 𝑣′

(𝑠,ℎ), y := 𝑓 (®E) ⇓𝛾 (𝑠 [y → 𝑣′ ], ℎ′ )
JEK𝑠 = 𝑛 ℎ (𝑛) = 𝑣

(𝑠, ℎ), x := [E] ⇓𝛾 (𝑠 [x → 𝑣 ], ℎ)

JE1K𝑠 = 𝑛 ℎ (𝑛) ∈ Val
JE2K𝑠 = 𝑣 ℎ′ = ℎ[𝑛 ↦→ 𝑣 ]
(𝑠, ℎ), [E1 ] := E2 ⇓𝛾 (𝑠,ℎ′ )

JEK𝑠 = 𝑛 (𝑛′ + 𝑖 ∉ dom(ℎ) ) |0≤𝑖<𝑛
ℎ′ = ℎ[𝑛′ ↦→ null] · · · [𝑛′ + 𝑛 − 1 ↦→ null]

(𝑠, ℎ), x := new(E) ⇓𝛾 (𝑠 [x → 𝑛′ ], ℎ′ )
JEK𝑠 = 𝑛 ℎ (𝑛) ∈ Val

(𝑠, ℎ), free(E) ⇓𝛾 (𝑠, ℎ[𝑛 ↦→ ∅])

Fig. 1. Operational semantics, successful cases

JE1K𝑠 =  
𝑣err = [“ExprEval”, str(E1 ) ]

(𝑠, ℎ), [E1 ] := E2 ⇓𝛾 err : (𝑠err , ℎ)

JE1K𝑠 = 𝑛 ∉ dom(ℎ)
𝑣err = [“MissingCell”, str(E1 ), 𝑛]
(𝑠, ℎ), [E1 ] := E2 ⇓𝛾 miss : (𝑠err , ℎ)

JE1K𝑠 = 𝑛 ℎ (𝑛) = ∅
𝑣err = [“UseAfterFree”, str(E1 ), 𝑛]
(𝑠, ℎ), [E1 ] := E2 ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑣 𝑣err = [“Error”, 𝑣 ]
(𝑠,ℎ), error(E) ⇓𝛾 err : (𝑠err , ℎ)

𝜎,C1 ⇓𝛾 err : 𝜎 ′

𝜎,C1;C2 ⇓𝛾 err : 𝜎 ′
JEK𝑠 = true (𝑠,ℎ),C ⇓ err : (𝑠, ℎ)
(𝑠, ℎ), while (E) C ⇓ err : (𝑠,ℎ)

Fig. 2. Operational semantics, faulting cases (excerpt), with 𝑠err ≜ 𝑠 [err → 𝑣err ] and str : PExp → Str.

4 EXACT SEPARATION LOGIC
We introduce an exact separation logic for our programming language, giving the assertion language

in §4.1, specifications in §4.2, and the program logic rules in §4.3.

4.1 Assertion Language
To define assertions and their meaning, we introduce logical variables, 𝑥,𝑦, 𝑧, ∈ LVar, distinct from
program variables, and define the set of logical expressions as follows:

E ∈ LExp ≜ 𝑣 | 𝑥 | x | E + E | E − E | ... | E = E | ¬ E | E ∧ E | ... | E · E | E : E | ...
Note that we can use program expressions in assertions (for example, E ∈ Val), as they form a

proper subset of logical expressions.

Definition 4.1 (Assertion Language). The assertion language is defined as follows:

𝜋 ∈ BAsrt ≜ E1 = E2 | E1 < E2 | E ∈ 𝑋 | . . . | ¬𝜋 | 𝜋1 ⇒ 𝜋2

𝑃 ∈ Asrt ≜ 𝜋 | False | 𝑃1 ⇒ 𝑃2 | ∃𝑥 . 𝑃 | emp | E1 ↦→ E2 | E ↦→ ∅ | 𝑃1 ★ 𝑃2 | �E1≤𝑥<E2
𝑃

where E, E1, E2 ∈ LExp, 𝑋 ⊆ Val, and x ∈ LVar.

Boolean assertions, 𝜋 ∈ BAsrt, lift Boolean logical expressions to assertions. Assertions, 𝑃 ∈ Asrt,
contain Boolean assertions, standard first-order connectives and quantifiers, and spatial assertions.

Spatial assertions include the empty memory assertion, emp, the positive cell assertion E1 ↦→ E2,

and the negative cell assertion E ↦→ ∅ as found in [17–19, 21], and in ISL as E��↦→ [40], and assertions

built from separating conjunction (star) and its iteration (iterated star).
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To define assertion satisfiability, we introduce substitutions, 𝜃 : LVar ⇀fin Val, which are partial

finite mappings from logical variables to values, extending expression evaluation of Definition 3.4

to JEK𝜃,𝑠 straightforwardly, with a new base case for logical variables:

J𝑥KE,𝑠 = 𝜃 (𝑥), if 𝑥 ∈ dom(𝜃 ) J𝑥K𝜃,𝑠 =  , if 𝑥 ∉ dom(𝜃 )

Definition 4.2 (Satisfiability). The satisfiability relation is first defined for Boolean assertions,

denoted by 𝜃, 𝑠 |= 𝜋 , and is then lifted to arbitrary assertions, denoted by 𝜃, 𝜎 |= 𝑃 , as follows:

𝜃, 𝑠 |=
E1 = E2 ⇔ JE1 = E2K𝜃,𝑠 = true
E1 < E2 ⇔ JE1 < E2K𝜃,𝑠 = true
E ∈ 𝑋 ⇔ JEK𝜃,𝑠 ∈ 𝑋

𝜋1 ⇒ 𝜋2 ⇔ 𝜃, 𝑠 |= 𝜋1 ⇒ 𝜃, 𝑠 |= 𝜋2

¬(E1 = E2) ⇔ JE1 = E2K𝜃,𝑠 = false
¬(E1 < E2) ⇔ JE1 < E2K𝜃,𝑠 = false
¬(E ∈ 𝑋 ) ⇔ JEK𝜃,𝑠 ∉ 𝑋

¬(𝜋1 ⇒ 𝜋2) ⇔ 𝜃, 𝑠 |= 𝜋1 ∧ 𝜃, 𝑠 |= ¬𝜋2

¬¬𝜋 ⇔ 𝜃, 𝑠 |= 𝜋

𝜃, (𝑠, ℎ) |=
𝜋 ⇔ 𝜃, 𝑠 |= 𝜋 ∧ ℎ = ∅
False ⇔ never

𝑃1 ⇒ 𝑃2 ⇔ 𝜃, (𝑠, ℎ) |= 𝑃1 ⇒ 𝜃, (𝑠, ℎ) |= 𝑃2

∃x . 𝑃 ⇔ ∃𝑣 ∈ Val. 𝜃 [x ↦→ 𝑣], (𝑠, ℎ) |= 𝑃

emp ⇔ ℎ = ∅
E1 ↦→ E2 ⇔ ℎ = {JE1K𝜃,𝑠 ↦→ JE2K𝜃,𝑠 }
E1 ↦→ ∅ ⇔ ℎ = {JE1K𝜃,𝑠 ↦→ ∅}
𝑃1 ★ 𝑃2 ⇔ ∃ℎ1, ℎ2 . ℎ = ℎ1 ⊎ ℎ2 ∧

𝜃, (𝑠, ℎ1) |= 𝑃1 ∧ 𝜃, (𝑠, ℎ2) |= 𝑃2

�E1≤𝑥<E2
𝑃 ⇔ (𝑖 < 𝑘 ∧ ∃ℎ𝑖 , . . . , ℎ𝑘−1

. ℎ = ⊎𝑘−1

𝑗=𝑖
ℎ 𝑗 ∧

∀𝑗 . 𝑖 ≤ 𝑗 < 𝑘 ⇒ 𝜃, (𝑠, ℎ 𝑗 ) |= 𝑃 [ 𝑗/𝑥]) ∨
(𝑖 ≥ 𝑘 ∧ ℎ = ∅),where 𝑖 = JE1K𝜃,𝑠 , 𝑘 = JE2K𝜃,𝑠
and 𝑥 is not featured in either E1 or E2 .

Note that Boolean assertion satisfiability (expectedly) does not depend on the heap, but also

that due to Boolean expression evaluation being three-valued (true, false, or  ), negation has to

be defined case-by-case for Boolean assertions, rather than using the negation of the meta-logic.

The satisfiability cases for first-order and spatial assertions are defined in the standard way. For

convenience, we choose Boolean assertions to be satisfiable only in the empty heap. Also, note that

the iterated star defaults to emp if the upper bound is not greater than the lower.

Definition 4.3 (Validity and Entailment). An assertion 𝑃 is valid, denoted by |= 𝑃 , iff∀𝜃, 𝜎. 𝜃, 𝜎 |= 𝑃 .

An assertion 𝑃 entails an assertion 𝑄 , denoted by 𝑃 |= 𝑄 , iff ∀𝜃, 𝜎. 𝜃, 𝜎 |= 𝑃 =⇒ 𝜃, 𝜎 |= 𝑄 .

4.2 Specifications
We define specifications for commands and functions, focussing in particular on external and

internal function specifications and the relationship between them, as well as various forms of

specification validity.

Definition 4.4. Specifications, 𝑡 = (𝑃) (ok : 𝑄ok) (err : 𝑄err ) ∈ S𝑝𝑒𝑐 : Asrt×Asrt×Asrt, comprise

a pre-condition, 𝑃 , a success post-condition, 𝑄ok , and the faulting post-condition, 𝑄err .

We denote that command C has specification 𝑡 by C : 𝑡 , or
(
𝑃
)
C

(
ok : 𝑄ok

) (
err : 𝑄err

)
in

quadruple form. Additionally, we use the following shorthand:

(𝑃) C (𝑄) ≜
(
𝑃
)
C

(
ok : 𝑄

) (
err : False

)
(𝑃) C (err : 𝑄) ≜

(
𝑃
)
C

(
ok : False

) (
err : 𝑄

)
(𝑃) C (Q) ≜

(
𝑃
)
C

(
ok : −

) (
err : −

)
noting the use of the calligraphic Q for cases in which the post-condition details are not relevant.

The validity of a specification 𝑡 for a command C in an implementation context 𝛾 requires both

OX and UX frame-preserving validity.
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Definition 4.5 (𝛾-Valid Specifications). Given implementation context 𝛾 , command C, and specifi-

cation 𝑡 = (𝑃) (ok : 𝑄ok) (err : 𝑄err ), the specification 𝑡 of command C is 𝛾-valid, if and only if:

// Frame-preserving over-approximating validity

(∀𝜃, 𝑠, ℎ, ℎ𝑓 , 𝑜, 𝑠
′, ℎ′′ . 𝜃, (𝑠, ℎ) |= 𝑃 =⇒

(𝑠, ℎ ⊎ ℎ𝑓 ),C ⇓𝛾 𝑜 : (𝑠′, ℎ′′) =⇒ (𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, (𝑠′, ℎ′) |= 𝑄𝑜 )) ∧
// Frame-preserving under-approximating validity

(∀𝜃, 𝑠′, ℎ′, ℎ𝑓 , 𝑜 . 𝜃, (𝑠′, ℎ′) |= 𝑄𝑜 =⇒ ℎ𝑓 ♯ ℎ
′ =⇒

(∃𝑠, ℎ. 𝜃, (𝑠, ℎ) |= 𝑃 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),C ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )))

We write 𝛾 |= C : 𝑡 or 𝛾 |=
(
𝑃
)
C

(
ok : 𝑄ok

) (
err : 𝑄err

)
to denote that a specification 𝑡 =(

𝑃
)
C

(
ok : 𝑄ok

) (
err : 𝑄err

)
of command C is 𝛾-valid.

Observe that the outcome 𝑜 can either be success or a language error; it cannot be a missing

resource error as this would break frame preservation. As our operational semantics is complete, we

can also use ESL to characterise non-termination. In particular, if a command satisfies a specification

in which both post-conditions are False, then it is guaranteed to not terminate if executed from a

state satisfying the pre-condition. Were the semantics incomplete (e.g., if it did not reason about

errors), then such a specification might also indicate the absence of a semantic transition.

Functions have two kinds of specifications: external specifications, which provide the interface

the function exposes to the client, and the related internal specifications, which provide the interface

to the function implementation. This terminology is also used informally in InsecSL [35].

Definition 4.6 (External Specifications). A specification (𝑃) (ok : 𝑄ok) (err : 𝑄err ) is an external

function specification (also: external specification) if and only if

• 𝑃 = (®x = ®𝑥 ★ 𝑃 ′), for some distinct program variables ®x, distinct logical variables ®𝑥 , and
assertion 𝑃 ′

, with pv(𝑃 ′) = ∅
• pv(𝑄ok) = {ret} or 𝑄ok = False
• pv(𝑄err ) = {err} or 𝑄err = False

The set of external specifications is denoted by ES𝑝𝑒𝑐 .

Definition 4.7 (Function Specification Contexts). A function specification context (also: specifica-

tion context), Γ, is a finite partial function from function identifiers to a set of external specifications:

Γ ∈ Fid ⇀fin P(ES𝑝𝑒𝑐)

The constraints on the program variables in external specifications are well-known from OX

logics and follow the usual scoping of the parameters and local variables of functions: the pre-

conditions only contain the function parameters, ®x; and the post-conditions only have the (dedicated)
program variables ret or err, which hold, respectively, the return value of the function on successful

termination or the error value on faulting termination. No other program variables can be present

in the two post-conditions due to variable scope being limited to the function body.

Internal function specifications are more interesting for exact and UX reasoning. The internal

pre-condition is straightforward, simply extending the external pre-condition by instantiating the

locals to null. The internal post-condition must include information about the parameters and local

variables, as no information can be lost from the pre- to the post-condition. This means that the

connection between internal and external specifications is subtle, given the constraints on external

post-conditions. To address this, we define an internalisation function, relating an external function

specification with a set of possible internal specifications. In particular, the external post-condition

is required to be equivalent to the internal one in which the parameters and local variables of the

internal post-condition have been replaced by fresh existentially quantified logical variables.
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Definition 4.8 (Internalisation). Given implementation context 𝛾 and function 𝑓 ∈ dom(𝛾), a
function specification internalisation, Int𝛾,𝑓 : ES𝑝𝑒𝑐 → P(S𝑝𝑒𝑐) is defined as follows:

Int𝛾,𝑓 ((𝑃) (ok : 𝑄ok) (err : 𝑄err )) =
{(𝑃 ★ ®z = null) (ok : 𝑄 ′

ok) (err : 𝑄 ′
err ) | |= 𝑄 ′

ok ⇒ E ∈ Val and
|= 𝑄ok ⇔ ∃®𝑝.𝑄 ′

ok [ ®𝑝/®p] ★ ret = E[ ®𝑝/®p] and
|= 𝑄err ⇔ ∃®𝑝.𝑄 ′

err [ ®𝑝/®p]},
where 𝑓 (®x){C; return E} ∈ 𝛾 , ®z = pv(C)\pv(𝑃), ®p = pv(𝑃) ⊎ {®z}, and the logical variables ®𝑝 are

fresh with respect to 𝑄ok and 𝑄err .

This approach works for OX logics as well. It is not necessary, however, as information about

program variables can be forgotten in internal post-conditions using forward consequence, making

the internal post-conditions simpler.

Definition 4.9 (Environments). An environment, (𝛾, Γ), is a pair consisting of an implementation

context 𝛾 and a specification context Γ.

An environment (𝛾, Γ) is valid if and only if every function specified in Γ has an implementation

in 𝛾 and every specification in Γ has a 𝛾-valid internal specification.

Definition 4.10 (Valid Environments). Given an implementation context 𝛾 and a specification

context Γ, the environment (𝛾, Γ) is valid, written |= (𝛾, Γ), if and only if

dom(Γ) ⊆ dom(𝛾) ∧
(∀𝑓 , ®x,C, E. 𝑓 (®x){C; return E} ∈ 𝛾 =⇒ (∀𝑡 . 𝑡 ∈ Γ(𝑓 ) =⇒ ∃𝑡 ′ ∈ Int𝛾,𝑓 (𝑡). 𝛾 |= C : 𝑡 ′))

Finally, a specification 𝑡 is valid for a command C in a specification context Γ if and only if 𝑡 is

𝛾-valid for all implementation contexts 𝛾 that validate Γ.

Definition 4.11 (Γ-Valid Specifications). Given a specification context Γ, a command C, and a

specification 𝑡 = (𝑃) (Q), the specification 𝑡 is valid for command C in Γ (also: Γ-valid), written
Γ |= C : 𝑡 or Γ |= (𝑃) C (Q), if and only if:

∀𝛾 . |= (𝛾, Γ) =⇒ 𝛾 |= (𝑃) C (Q)

4.3 Program Logic
The rules for the program logic are given in Figure 3 for basic commands, Figure 4 for composite

commands and structural rules, and Figure 5 for the function-related rules. In the figures, we only

give an excerpt of error-related rules (all are available in Appendix B) and denote the repetition

of the pre-condition in the post-condition by pre. When reading these rules, it is important to

remember that the judgements must not lose information and must cover all paths. The judgement

Γ ⊢
(
𝑃
)
C

(
ok : 𝑄ok

) (
err : 𝑄err

)
means that the specification 𝑡 is derivable for a command C given

the specifications recorded in Γ, whereas the judgement ⊢ (𝛾, Γ) means that the environment (𝛾, Γ)
is well-formed, i.e. constructed through the [env-empty] and [env-extend] rules.

The basic command rules are fairly straightforward. The [Nondet] rule existentially quantifies

the generated value (i.e., x ∈ N) to capture all paths, in contrast with the rules featured in RHL [13]

and ISL [40] which record an explicitly chosen value to describe one path. The E′ ∈ Val is necessary
in the post-condition as we know that E′ evaluates to a value from x = E′ in the pre-condition and

exact reasoning cannot lose information; this also applies to a number of other rules. The [assign]

rule requires that the program expression E evaluates to a value in the pre-condition (E ∈ Val), as we
are working in an untyped setting. Strictly speaking, we should have an additional case in which the

variable being assigned to is not in the store. For the logical reasoning, to avoid clutter, we instead
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skip

Γ ⊢ (emp) skip (emp)

nondet

x ∉ pv(E′ )
𝑄 ≜ E′ ∈ Val ★ x ∈ N

Γ ⊢ (x = E′ ) x := nondet (𝑄 )

assign

x ∉ pv(E′ )
𝑄 ≜ E′ ∈ Val ★ x = E[E′/x]

Γ ⊢ (x = E′ ★ E ∈ Val) x := E (𝑄 )

lookup

x ∉ pv(E′ )
𝑄 ≜ E′ ∈ Val ★ x = E1 [E′/x] ★ E[E′/x] ↦→ E1 [E′/x]

Γ ⊢ (x = E′ ★ E ↦→ E1 ) x := [E] (𝑄 )

mutate

𝑄 ≜ E1 ↦→ E2 ★ E ∈ Val

Γ ⊢ (E1 ↦→ E ★ E2 ∈ Val) [E1 ] := E2 (𝑄 )

new

x ∉ pv(E′ )
𝑄 ≜ E′ ∈ Val ★�

0≤𝑖<E[E′/x] ( (x + 𝑖 ) ↦→ null)
Γ ⊢ (x = E′ ★ E ∈ N) x := new(E) (𝑜𝑘 : 𝑄 )

free

𝑄 ≜ E′ ∈ Val ★ E ↦→ ∅
Γ ⊢ (E ↦→ E′ ) free(E) (𝑜𝑘 : 𝑄 )

error

Eerr ≜ [“Error”, E]
Γ ⊢ (E ∈ Val) error(E) (err : err = Eerr )

lookup-err-val

𝑃 ≜ x = E′ ★ 𝐸 �∈ Val
Eerr ≜ [“ExprEval”, str(E) ]
Γ ⊢ (𝑃 ) x := [E] (err : 𝑄err )

lookup-err-use-after-free

𝑃 ≜ x = E′ ★ E ↦→ ∅
Eerr ≜ [“UseAfterFree”, str(E), E]

Γ ⊢ (𝑃 ) x := [E] (err : 𝑄err )

Fig. 3. ESL basic command rules (excerpt), with 𝑄err = (pre ★ err = Eerr )

if-then

C ≜ if (E) C1 else C2

Γ ⊢ (𝑃 ∧ E) C1 (Q)
Γ ⊢ (𝑃 ∧ E) C (Q)

if-else

C ≜ if (E) C1 else C2

Γ ⊢ (𝑃 ∧ ¬E) C2 (Q)
Γ ⊢ (𝑃 ∧ ¬E) C (Q)

if-err-val

C ≜ if (E) C1 else C2

Eerr ≜ [”ExprEval”, str(E) ]
Γ ⊢ (𝑃 ★ E �∈ Val) C (err : 𝑄err )

seq

Γ ⊢ (𝑃 ) C1 (ok : 𝑅) (err : 𝑄1

err )
Γ ⊢ (𝑅) C2 (ok : 𝑄ok ) (err : 𝑄2

err )
Γ ⊢ (𝑃 ) C1; C2 (ok : 𝑄ok ) (err : 𝑄1

err ∨𝑄2

err )

while-iterate

∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B
∀𝑖 ∈ N. Γ ⊢ (𝑃𝑖 ∧ E) C (ok : 𝑃𝑖+1 ) (err : 𝑄𝑖 )

Γ ⊢ (𝑃0 ) while (E) C (ok : ∃𝑚. 𝑃𝑚 ) (err : ∃𝑚.𝑄𝑚 )

eqiv

Γ ⊢ (𝑃 ′ ) C (ok : 𝑄 ′
ok ) (err : 𝑄 ′

err )
|= 𝑃 ′,𝑄 ′

ok,𝑄
′
err ⇔ 𝑃,𝑄ok,𝑄err

Γ ⊢ (𝑃 ) C (ok : 𝑄ok ) (err : 𝑄err )

frame

mod(C) ∩ fv(𝑅) = ∅
Γ ⊢ (𝑃 ) C (ok : 𝑄ok ) (err : 𝑄err )

Γ ⊢ (𝑃 ★ 𝑅) C (ok : 𝑄ok ★ 𝑅) (err : 𝑄err ★ 𝑅)

exists

Γ ⊢ (𝑃 ) C (ok : 𝑄ok ) (err : 𝑄err )
Γ ⊢ (∃𝑥. 𝑃 ) C (ok : ∃𝑥.𝑄ok ) (err : ∃𝑥.𝑄err )

disj

Γ ⊢ (𝑃1 ) C (ok : 𝑄1

ok ) (err : 𝑄1

err ) Γ ⊢ (𝑃2 ) C (ok : 𝑄2

ok ) (err : 𝑄2

err )
Γ ⊢ (𝑃1 ∨ 𝑃2 ) C (ok : 𝑄1

ok ∨𝑄2

ok ) (err : 𝑄1

err ∨𝑄2

err )

Fig. 4. ESL composite-command and structural rules (excerpt)

assume that the program variables are always in the store because we are analysing function bodies

and all local variables are initialised on function entry. The error-related rules capture cases in

which expression evaluation faults (e.g. [lookup-err-val] rule, using E ∉ Val), expressions are of
the incorrect type, or memory is accessed after it has been freed (e.g. [lookup-err-use-after-free]

rule, using E ↦→ ∅). Note that missing resource errors cannot be captured without breaking frame

preservation, as the added-on frame could contain the missing resource.

When it comes to composite commands, we opt for two if-rules, covering the branches separately.
The sequencing rule shows how exact quadruples of successive commands can be joined together,

highlighting, in particular, how errors are collected using disjunction. The while rule is a simple

adaptation of the RHLwhile rule [13]. Interestingly, it does not need adjustment for non-termination,

as it can already capture it, since it is, in fact, a generalisation of the SL while rule.
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fcall

(®x = ®𝑥 ★ 𝑃 ) (𝑄ok ) (𝑄err ) ∈ Γ (𝑓 ) y ∉ pv(E𝑦 )
Γ ⊢ (y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃 ) y := 𝑓 (®E) (ok : ®E[E𝑦/y] = ®𝑥 ★𝑄ok [y/ret] ) (err : y = E𝑦 ★ ®E = ®𝑥 ★𝑄err )

env-empty

⊢ (∅, ∅)

env-extend

⊢ (𝛾, Γ) 𝐼 = {1, . . . , 𝑛} ∀𝑖 ∈ 𝐼 . 𝑓𝑖 ∉ dom(𝛾 ) 𝛾 ′ = 𝛾 [ 𝑓𝑖 ↦→ (®x𝑖 ,C𝑖 , E𝑖 ) ]𝑖∈𝐼
Γ (𝛼 ) = Γ [ 𝑓𝑖 ↦→ { (𝑃𝑖 (𝛽 ) ) (ok : 𝑄𝑖

ok (𝛽 ) ) (err : 𝑄𝑖
err (𝛽 ) ) | 𝛽 < 𝛼 } ∪ { (𝑃𝑖

∞ (𝛽 ) ) (False) | 𝛽 ≤ 𝛼 } ]𝑖∈𝐼
∀𝑖 ∈ 𝐼 , 𝛼 . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖

(
(𝑃𝑖 (𝛼 ) ) (ok : 𝑄𝑖

ok (𝛼 ) ) (err : 𝑄𝑖
err (𝛼 ) )

)
. Γ (𝛼 ) ⊢ C𝑖 : 𝑡

∀𝑖 ∈ 𝐼 , 𝛼 . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖 ( (𝑃
𝑖
∞ (𝛼 ) ) (False) ) . Γ (𝛼 ) ⊢ C𝑖 : 𝑡

𝑃𝑖 ≜ ∃𝛼. 𝑃𝑖 (𝛼 ) ★ 𝛼 ∈ O 𝑃𝑖
∞ ≜ ∃𝛼. 𝑃𝑖

∞ (𝛼 ) ★ 𝛼 ∈ O
𝑄𝑖

ok ≜ ∃𝛼.𝑄𝑖
ok (𝛼 ) ★ 𝛼 ∈ O 𝑄𝑖

err ≜ ∃𝛼.𝑄𝑖
err (𝛼 ) ★ 𝛼 ∈ O

Γ′′ := Γ [ 𝑓𝑖 ↦→ { (𝑃𝑖 ) (ok : 𝑄𝑖
ok ) (err : 𝑄𝑖

err ), (𝑃𝑖
∞ ) (False) } ]𝑖∈𝐼

⊢ (𝛾 ′, Γ′′ )

Fig. 5. ESL function-related rules (excerpt)

The structural rules are not surprising, with equivalence replacing the forward consequence of

OX reasoning and backward consequence of UX reasoning, and with frame, existential elimination

and disjunction affecting both post-conditions. Disjunction allows us to derive the standard SL

if rule, which captures both branches at the same time. Note, however, the absence of a sound

conjunction rule, due to the fact that the conjunction rules of SL and ISL cannot be combined in ESL,

as conjunction does not distribute over the star in both directions, breaking frame preservation.

We discuss the function-related rules in detail, starting from [fcall], whose premises are standard,

but whose pre- and post-condition are adjusted for sound UX reasoning. In particular, in the pre-

condition, the usual 𝑃 ′ [®E/®x] assertion (𝑃 ′
can have program variables in ®x) now has the form

®E = ®𝑥 ★ 𝑃 (where 𝑃 has no program variables). This is required because the connection between

the passed function arguments and the logical variables has to be maintained in the post-condition

as well, with ®E[E𝑦/y] = ®𝑥 . Otherwise, the rule would not be UX-sound as it could lose information

about the program variables of the calling function.

The [env-extend] rule highlights our need for different treatment of terminating and non-

terminating specifications. In particular, at each extension we add a cluster of mutually recursive

functions {𝑓𝑖 | 𝑖 ∈ {1, . . . , 𝑛}}, imposing a joint non-negative measure on the specifications, denoted

by 𝛼 in the set of computable ordinals O ≜ 𝜔CK

1
. Extending the measure beyond natural numbers

allows us to reason about a broader set of functions, such as those with non-deterministic nested

recursion. We require that any recursive function call of any added function may use a terminating

specification of any 𝑓𝑖 only if its measure is strictly smaller than 𝛼 , or a non-terminating specification

of any 𝑓𝑖 with measure less or equal to 𝛼 . If this distinction were not in place, that is, if we were to

try to use the standard SL rule:

⊢ (𝛾, Γ) 𝐼 = {1, . . . , 𝑛} ∀𝑖 ∈ 𝐼 . 𝑓𝑖 ∉ dom(𝛾)
𝛾 ′ = 𝛾 [𝑓𝑖 ↦→ (®x𝑖 ,C𝑖 , E𝑖 ) |𝑖∈𝐼 ] Γ′ = Γ [𝑓𝑖 ↦→ {𝑡𝑖 | 𝑖 ∈ 𝐼 }] ∀𝑖 ∈ 𝐼 . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖 (𝑡𝑖 ). ⊢ C𝑖 : 𝑡

⊢ (𝛾 ′, Γ′)
then we would be able to prove unsound specifications of non-terminating functions. For example,

we would be able to prove that the non-terminating function f() { r := f(); return r } satisfies the
sound specification (emp) f() (False), but also the unsound specification (emp) f() (ret = 42). This
is not an issue in OX logics because the meaning of triples is conditional on function termination.
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In UX logics, it would imply the existence of an execution path from the pre- to the post-condition,

contradicting the non-termination of f. In the end, the measure 𝛼 is abstracted into a logical

variable in the final specification added to Γ′′, and can normally be eliminated using equivalence,

as shown in examples in §5. Finally, note that, for each 𝑓𝑖 , we provide one terminating and one

non-terminating specification. We can generalise to an arbitrary number of specifications, but this

would complicate the presentation without introducing additional ideas.

4.4 Soundness
We state the soundness results for ESL and give intuition about the proofs, which can be found

integrally in Appendices C, D, and E.

Theorem 4.12. Any derivable specification is valid:

∀Γ, 𝑃,C,Q . Γ ⊢ (𝑃) C (Q) =⇒ Γ |= (𝑃) C (Q)

Proof. By induction on Γ ⊢ (𝑃) C (Q). Most cases are straightforward; the [fcall] rule obtains

a valid specification for the function body from the validity of the environment. □

Theorem 4.13. Any well-formed environment is valid:

∀𝛾, Γ. ⊢ (𝛾, Γ) =⇒ |= (𝛾, Γ)

When a specification can be used to prove itself (e.g, any specification in SL, and the non-

terminating (NT) specifications in ESL), a form of fixpoint induction, called Scott induction [45], is

required, which we use with three slightly varying instantiations to prove Theorem 4.13. We give

the outline of the proof below.

Proof. At the core of the proof is a lemma that states that |= (𝛾, Γ) =⇒ (∀𝛼. |= (𝛾 ′, Γ(𝛼))),
where 𝛾 ′ and Γ(𝛼) have been obtained from 𝛾 and Γ as in the [env-extend] rule. Using this lemma,

and also showing that existential elimination can be soundly lifted to function specifications, we

derive the desired |= (𝛾 ′, Γ′′), where Γ′′ is obtained from Γ and Γ(𝛼) as in the [env-extend] rule.

The proof of this lemma is done by transfinite induction on 𝛼 , which has standard zero, successor,

and limit ordinal cases. For clarity, we outline the proof for the case in which a single function 𝑓

with body C𝑓 is added; the generalisation to 𝑛 mutually recursive functions is straightforward.

In all three induction cases, the soundness of all specifications except the non-terminating (NT)

specification with the highest considered ordinal follows straightforwardly from the inductive

hypothesis. This remaining NT-specification is vacuously UX-valid, meaning that we only need to

prove its OX-validity, for which we use Scott induction [45].

We set up the Scott induction by extending the set of commands with two pseudo-commands,

scope and choice, with the former modelling the function call but allowing arbitrary commands

to be executed in place of the function body, and the latter denoting non-deterministic choice.

We then construct the greatest-fixpoint closure of these extended commands, denoted by C,
whose elements may contain infinite applications of the command constructors. We define a

behavioural equivalence relation ≃𝛾 ′ on C and denote by C𝛾 ′ the obtained quotient space. This

relation induces a partial order ⊑𝛾 ′ , and a join operator that coincides with choice, and we show

that (C𝛾 ′ , ⊑𝛾 ′ ) is a domain.

We next define 𝑆𝛼 as the set of all equivalence classes that hold an element that, for every

specification in (Γ(𝛼)) (𝑓 ), OX-satisfies at least one of its internal specifications, and show that

𝑆𝛼 is an admissible subset of C𝛾 ′ , that is, that it contains the least element of C𝛾 ′ (represented, for

example, by the infinite loop while (true) { skip }) and is chain-closed.



14 Petar Maksimović, Caroline Cronjäger, Julian Sutherland, Andreas Lööw, and Philippa Gardner

We then define the function ℎ(C) ≜ C𝑓 [C, 𝛾 ′, 𝑓 ], which replaces all function calls to 𝑓 in C𝑓

with C using the scope command, and the function 𝑔 as the lifting of ℎ to C𝛾 ′ : 𝑔( [C]) := [ℎ(C)].
We next prove that 𝑔 is continuous (that is, monotonic and supremum-preserving) and that

𝑔(𝑆𝛼 ) ⊆ 𝑆𝛼 , from which we can apply the Scott induction principle, together with a well-known

identity of the least-fixpoint, which implies that C𝑓 ∈ lfp(𝑔), to obtain that [C𝑓 ] ∈ 𝑆𝛼 . From there,

we are finally able to prove that |= (𝛾 ′, Γ(𝛼)). □

These two theorems, to the best of our knowledge, are the first to demonstrate sound functional

compositionality for non-OX logics. In particular, the proof of Theorem 4.13 can be adjusted for

ISL (for which the function call rule is the same, but the [env-extend] rule does not include

non-terminating specifications) by removing the part using Scott induction. On the other hand,

the Scott induction itself can be easily adapted for SL. We were not able to find an SL-proof in the

literature, and wonder whether our proof is the first complete proof of its kind.

Admissible Properties of Function Specifications. We conclude by discussing how the struc-

tural rules of the logic transfer to specifications. In particular, given a valid function specification:(
𝑃
)
𝑓 (®x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
the specifications obtained from it using equivalence, frame, and existential introduction:(

𝑃 ′) 𝑓 (®x) (ok : 𝑄 ′
ok

) (
err : 𝑄 ′

err
)(

𝑃 ★ 𝑅
)
𝑓 (®x)

(
ok : 𝑄ok ★ 𝑅

) (
err : 𝑄err ★ 𝑅

)(
∃𝑥 . 𝑃

)
𝑓 (®x)

(
ok : ∃𝑥 . 𝑄ok

) (
err : ∃𝑥 . 𝑄err

)
where 𝑃 ′

,𝑄 ′
ok , and𝑄

′
err are equivalent, respectively, to 𝑃 ,𝑄ok , and𝑄err , 𝑅 does not contain program

variables, and 𝑥 is an arbitrary logical variable, are also valid.

5 EXAMPLES: LIST ALGORITHMS
Wedemonstrate how to use ESL to specify and verify correctness, incorrectness, and non-termination

properties of recursive and iterative functions, using standard singly-linked list algorithms as

demonstrator examples. In doing so, we give a number of observations from our specific ESL

reasoning which are relevant to EX and UX reasoning in general. In particular, we focus on the

difference between losing information via OX reasoning and hiding information via abstraction,

highlighting strictly exact abstractions which play a fundamental role in compositional symbolic

execution (cf. §6). Further examples, illustrating mutual recursion, can be found in Appendix F.

List Predicates. We implement singly-linked lists (onward: lists) in the standard way: every list

node consists of two contiguous cells in the heap, with the first holding the value of the node, the

second holding a pointer to the next node in the list, and the list terminating with a null pointer.
To capture lists in ESL, we use several standard list predicates:

list(𝑥) ≜ (𝑥 = null) ∨ (∃𝑣, 𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′))
list(𝑥, 𝑛) ≜ (𝑥 = null ★ 𝑛 = 0) ∨ (∃𝑣, 𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1))
list(𝑥, vs) ≜ (𝑥 = null ★ vs = []) ∨ (∃𝑣, 𝑥 ′, vs′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, vs′) ★ vs = 𝑣 : vs′)
list(𝑥, xs) ≜ (𝑥 = null ★ xs = []) ∨ (∃𝑣, 𝑥 ′, xs′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 ′ : xs′)

list(𝑥, xs, vs) ≜ (𝑥 = null ★ xs = [] ★ vs = []) ∨
(∃𝑣, 𝑥 ′, xs′, vs′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, xs′, vs′) ★ xs = 𝑥 ′ : vs′ ★ vs = 𝑣 : vs′)

These predicates expose different parts of the list structure in their parameters, hiding the rest

via existential quantification: the list(𝑥) predicate hides all information about the represented

mathematical list, just declaring that there is a singly-linked list at address 𝑥 ; the list(𝑥, 𝑛) predicate
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hides the internal node addresses and values, exposing the list length via the parameter 𝑛; the

list(𝑥, xs) predicate hides information about the values of the mathematical list, exposing the

internal addresses of the list via the parameter xs; the list(𝑥, vs) predicate hides information about

the internal addresses, exposing the list’s values via the parameter vs; and the strictly exact list

predicate list(𝑥, xs, vs) hides nothing, exposing the entire node-value structure via the parameters

xs and vs. In the following examples, we investigate, for the first time, the use of such predicates in

non-OX program logics. These predicates are related to each other via logical equivalence as follows:

list(𝑥) ⇔ ∃𝑛/vs/xs. list(𝑥, 𝑛/vs/xs) ⇔ ∃xs, vs. list(𝑥, xs, vs)
list(𝑥, 𝑛) ⇔ ∃vs/xs. list(𝑥, vs/xs) ★ |vs/xs | = 𝑛 ⇔ ∃xs, vs. list(𝑥, xs, vs) ★ |xs/vs | = 𝑛

list(𝑥, xs/vs) ⇔ ∃vs/xs. list(𝑥, xs, vs)

List Length: Recursion, Iteration. We verify correctness of a recursive and an iterative imple-

mentation of the LLen(x) function, which returns the length of a given list starting at address x. In
doing so, we illustrate how to handle the measure for recursive function calls, how the folding of

predicates works in the presence of equivalence, and how to move between external and internal

specifications. The implementations are given in Figure 6 (left and middle), and the corresponding

proof sketches are given in Figure 7. The specification we prove for both is standard:

(x = 𝑥 ★ list(𝑥, 𝑛)) LLen(x) (list(𝑥, 𝑛) ★ ret = 𝑛)

We first prove the recursive implementation, where we start by defining a decreasing measure on

the pre-condition, which in this case is trivially 𝑛. Denoting the function body by C and using the

[env-extend] rule, we assume to have a well-formed environment (𝛾, Γ), such that LLen ∉ dom(𝛾),
and define, using 𝑃 (𝛼) ≜ x = 𝑥 ★ list(𝑥, 𝑛) ★ 𝛼 = 𝑛 and 𝑄 (𝛼) ≜ list(𝑥, 𝑛) ★ ret = 𝑛 ★ 𝛼 = 𝑛:

𝛾 ′ ≜ 𝛾 [LLen ↦→ ({x},C, r)] Γ(𝛼) ≜ Γ [LLen ↦→ {(𝑃 (𝛽)) (𝑄 (𝛽)) | 𝛽 < 𝛼}]

Then, we construct the proof sketch in Figure 7 (left), starting from the internal pre-condition of

LLen and arriving at the internal post-condition 𝑄 ′ ≜ 𝑄 ′
1
∨𝑄 ′

2
. Interestingly, it is not possible to

fold list(𝑥, 𝑛) back in 𝑄 ′
2
because the existentially quantified 𝑥 ′ is still held in program variable x,

which can be forgotten in OX logics, but not in ESL/ISL due to equivalence/backward consequence.

This observation can be formulated generally as follows:

(O1) if the analysed code accesses data-structure information that the used predicate hides, then it

might not be possible to fold that predicate in an ESL/ISL proof.

LLen(x) {
if (x = null) {
r := 0

} else {
x := [x + 1];
r := LLen(x);
r := r + 1

};
return r

}

LLen(x) {
r := 0

while (x ≠ null) {
x := [x + 1];
r := r + 1

};
return r

}

LFree(x){
if (x = null) {

r := null
} else {
y := x; x := [x + 1];
free(y); free(y + 1);
r := LFree(x)

};
return r

}

Fig. 6. List algoritms: iterative list-length (left); recursive list-length (middle); recursive list-free (right)
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In such cases, the folding happens in the transition from the internal to the external post-condition,

which forgets all program variables:

∃𝑥𝑞, 𝑟𝑞 . 𝑄′ [𝑥𝑞/x] [𝑟𝑞/r] ★ ret = r[𝑥𝑞/x] [𝑟𝑞/r]
⇔ 𝛼 = 𝑛 ★ ret = 𝑛 ★ ((𝑥 = null ★ 𝑛 = 0) ∨ (∃𝑥𝑞, 𝑟𝑞, 𝑣, 𝑥 ′ . 𝑥𝑞 = 𝑥 ′ ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1) ★ 𝑟𝑞 = 𝑛))
⇔ 𝛼 = 𝑛 ★ ret = 𝑛 ★ ((𝑥 = null ★ 𝑛 = 0) ∨ (∃𝑣, 𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1))) [[ can fold now ]]

⇔ 𝛼 = 𝑛 ★ ret = 𝑛 ★ list(𝑥, 𝑛) ★ (𝑛 = 0 ∨ 𝑛 > 0) ⇔ 𝑄 (𝛼)
This, according to the [env-extend] rule, yields a final Γ′′ which contains the specification

(∃𝛼. 𝑃 (𝛼)) LLen(x) (∃𝛼. 𝑄 (𝛼)), from which we obtain the desired specification using equivalence.

Observe, however, that if the list-length code called another function whose pre-condition

required the list(𝑥, 𝑛) predicate folded while having x = 𝑥 ′, the proof could not continue. We

discuss this ESL/ISL-specific issue further in the upcoming client examples.

We move to the iterative list length algorithm, eliding the measure as there is no recursion. To

state the loop variant, we use the list-segment predicate, defined as follows:

lseg(𝑥,𝑦, 𝑛) ≜ (𝑥 = 𝑦 ★ 𝑛 = 0) ∨ (∃𝑣, 𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ lseg(𝑥 ′, 𝑦, 𝑛 − 1))
and to apply the [while-iterate] rule, we define:

𝑃𝑖 ≜

{
∃ 𝑗 . lseg(𝑥, x, 𝑖) ★ list(x, 𝑗) ★ 𝑛 = 𝑖 + 𝑗 ★ r = 𝑖, if 𝑖 < 𝑛

False otherwise

and via the proof sketch show that its premises hold. On exiting the loop, the negation of the loop

condition collapses the existentials𝑚 and 𝑗 . We obtain the given internal post-condition, from

which we then move to the desired external post-condition, similarly to the recursive version.

For this proof, we also use three equivalence lemmas:

𝐿1 : |= lseg(𝑥,𝑦, 𝑛 + 1) ⇔ ∃𝑥 ′, 𝑣 . lseg(𝑥, 𝑥 ′, 𝑛) ★ 𝑥 ′ ↦→ 𝑣,𝑦

𝐿2 : |= list(null, 𝑗) ⇔ 𝑗 = 0

𝐿3 : |= lseg(𝑥, null, 𝑛) ⇔ list(𝑥, 𝑛)

Γ (𝛼 ) ⊢
( x = 𝑥 ★ list(𝑥,𝑛) ★ 𝛼 = 𝑛 ★ r = null )
if (x = null) {

( x = 𝑥 ★ list(𝑥,𝑛) ★ 𝛼 = 𝑛 ★ r = null ★ x = null )
r := 0

( 𝑄 ′
1

: x = 𝑥 ★ list(𝑥,𝑛) ★ 𝛼 = 𝑛 ★ x = null ★ r = 0 )
} else {

( x = 𝑥 ★ list(𝑥,𝑛) ★ 𝛼 = 𝑛 ★ r = null ★ x ≠ null )(
∃𝑣, 𝑥 ′ . x = 𝑥 ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1) ★

𝛼 = 𝑛 ★ r = null

)
x := [x + 1];(
∃𝑣, 𝑥 ′ . x = 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1) ★ 𝛼 − 1 = 𝑛 − 1 ★

𝑥 ↦→ 𝑣, 𝑥 ′ ★ r = null

)
[[ As 𝛼 − 1 < 𝛼 , we can use the spec for 𝛼 − 1 ]]

r := LLen(x) ;(
∃𝑣, 𝑥 ′ . x = 𝑥 ′ ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1) ★

𝛼 = 𝑛 ★ r = 𝑛 − 1

)
r := r + 1(
𝑄 ′

2
: ∃𝑣, 𝑥 ′ . x = 𝑥 ′ ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, 𝑛 − 1) ★

𝛼 = 𝑛 ★ r = 𝑛

)
}
( 𝑄 ′

: 𝑄 ′
1
∨𝑄 ′

2
)

Γ ⊢ ( x = 𝑥 ★ list(𝑥,𝑛) ★ r = null )
r := 0

( x = 𝑥 ★ list(𝑥,𝑛) ★ r = 0 )
( 𝑃0 )
while (x ≠ null) {

( 𝑃𝑖 ★ x ≠ null )(
∃ 𝑗, 𝑣, 𝑥 ′ . lseg(𝑥, x, 𝑖 ) ★ x ↦→ 𝑣, 𝑥 ′ ★

list(𝑥 ′, 𝑗 − 1) ★ 𝑛 = 𝑖 + 𝑗 ★ r = 𝑖

)
x := [x + 1];(
∃ 𝑗, 𝑥 ′, 𝑣. lseg(𝑥, 𝑥 ′, 𝑖 ) ★ 𝑥 ′ ↦→ 𝑣, x ★ list(x, 𝑗 ) ★

𝑛 = (𝑖 + 1) + 𝑗 ★ r = 𝑖

)
(
∃ 𝑗 . lseg(𝑥, x, 𝑖 + 1) ★ list(x, 𝑗 ) ★

𝑛 = (𝑖 + 1) + 𝑗 ★ r = 𝑖

)
[[ L1 ]]

r := r + 1

( 𝑃𝑖+1 )
}(
∃𝑚, 𝑗 . lseg(𝑥, x,𝑚) ★ list(x, 𝑗 ) ★ 𝑛 =𝑚 + 𝑗 ★

r =𝑚 ★ x = null

)
(
lseg(𝑥, null, 𝑛) ★ r = 𝑛 ★ x = null

)
[[ L2 + equiv ]](

(list(𝑥,𝑛) ★ ret = 𝑛) [r/ret] ★ x = null
)
[[ L3 ]]

Fig. 7. List length algorithm proof sketch: recursive (left) and iterative (right).
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which state, respectively, that we can separate a non-empty list segment into its last element and

the rest, that the length of an empty list is zero, and and that a null-terminated list-segment is a list.

These two proofs lead us to the following observation:

(O2) in ESL/ISL specifications, just as in OX reasoning, information hidden via predicates in the

pre-condition may also remain hidden in the post-condition,

highlighting that hiding information inside predicates does not always lead to over-aproximation.

In particular, for list length, from the UX point of view no information is lost as it was never there

in the first place.

List Free: Deallocation. We next consider an implementation of the LFree(x) function (Figure 6,

right), which frees a given list at address x. Its OX specification is

{
list(x)

}
LFree( [x])

{
ret = null

}
,

but it does not transfer to ESL/ISL because no resource from the pre-condition can be forgotten in

the post-condition. Instead, we have to expose the internal pointers of the list using the list(𝑥, xs)
predicate and then explicitly state that they have been freed in the post-condition:

(x = 𝑥 ★ list(𝑥, xs)) LFree( [x]) (freed(𝑥 : xs) ★ ret = null)

where the freed(xs) predicate is defined as follows:

freed(xs) ≜ (xs = [null]) ∨ (∃𝑥 ′, xs′ . xs = 𝑥 : xs′ ★ 𝑥 ↦→ ∅ ★ 𝑥 + 1 ↦→ ∅ ★ freed(𝑥𝑠′))

This specification, which has to make freed addresses explicit, yields the following observation:

(O3) ESL/ISL specifications may reveal implementation details.

We give the proof sketch in Appendix F, as it carries no additional insight w.r.t. that of LLen(x).

List Reverse. We also consider the LRev(x) function, which reverses a given list at address x, and
prove that it satisfies the following, almost standard, specification:

(x = 𝑥 ★ list(𝑥, vs)) LRev(x) (list(ret, vs†) ★ 𝑅)

where vs† denotes the reverse of the mathematical list. The only difference with respect to its OX

counterpart is in the additional 𝑅 ≜ ( |vs | = 0 ★ 𝑥 = null) ∨ (|vs | > 0 ★ 𝑥 ∈N) in the post-condition,

which has to be there to maintain information about 𝑥 known from the pre-condition. For space

reasons, we give the proof sketch in Appendix F.

Client Code: Degrees of Abstraction, Non-Termination. We conclude the examples with two

somewhat contrived, yet illustrative clients of the previously specified functions. The first example,

given in Figure 8 (left), reverses the tail of a given non-empty list before re-attaching it and then

calculating the list length. This proof sketch exhibits two problems. First, list(𝑥, vs) cannot be folded
back for the call to list-length, as y holds an internal list pointer 𝑥 ′. The way to circumvent this is

to move via equivalence to the strictly exact list(𝑥, xs, vs) predicate, which exposes the internal

pointers and allows the folding. However, we then run into the second problem, which is that our

specification of LLen(x) works with list(𝑥, 𝑛), not list(𝑥, xs, vs). For that, the only solution is to

re-prove LLen(x) with the specification

(x = 𝑥 ★ list(𝑥, xs, vs)) LLen(x) (list(𝑥, xs, vs) ★ ret = |vs |)

which can then be used for this client, reinforcing (O3). However, if we proved this less abstract

LLen specification first, then we could derive the initial, more abstract one from it via equivalence.

This brings us to the following observation:

(O4) admissible properties of function specifications allow the degree of abstraction to be adjusted.
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Γ ⊢ ( list(x, 𝑣 : vs) ★ y = null ★ r = null )
y := [x + 1];
( ∃𝑥 ′ . x ↦→ 𝑣, 𝑥 ′ ★ list(x′, vs) ★ y = 𝑥 ′ ★ r = null )
y := LRev(y) ;
( ∃𝑥 ′ . x ↦→ 𝑣, 𝑥 ′ ★ list(y, vs† ) ★ r = null )
[x + 1] := y
( ∃𝑥 ′ . x ↦→ 𝑣, 𝑥 ′ ★ list(y, vs† ) ★ y = 𝑥 ′ ★ r = null )
[[ Problem: Cannot fold. Solution: Move to list(𝑥, xs, vs) ]]
( ∃xs, 𝑥 ′ . x ↦→ 𝑣, 𝑥 ′ ★ list(y, xs, vs† ) ★ y = 𝑥 ′ ★ r = null )
( ∃xs, 𝑥 ′ . list(x, 𝑥 ′

: xs, 𝑣 : vs† ) ★ y = 𝑥 ′ ★ r = null )
[[ Problem: Predicate not appropriate for LLen ]]

r := LLen(x) ;

LClient(x) {
l := LLen(x) ;
if (l < 5) { r := LFree(x) ; error(“LTS”) } else {

if (l > 10) {
while (true) { skip }

} else {
r := LRev(l)

}
};

return r
}

Fig. 8. Example Clients

Interestingly, applying this observation to the list-free algorithm, we obtain the specification

(x = 𝑥 ★ list(𝑥)) LFree( [x]) (freed( [𝑥]) ★ ret = null ★ (∃xs. freed(xs)))

where the post-condition states that there exists some portion of memory that has been freed. This

is as close as one can get to the OX list-free specification in exact and UX reasoning.

We note that specifications featuring only strictly exact predicates, such as the one for list-length

given above, will play an important role in compositional symbolic execution for true bug-finding

(cf. §6); all of our example algorithms can be easily specified in this style.

Our second client program is given in Figure 8 (right). It takes a list and: reverses it if its length

is between 5 and 10; frees it and then throws a language List-Too-Short (LTS) error if its length is

less than 5; and does not terminate otherwise. Its ESL specification is:

(x = 𝑥 ★ list(𝑥, vs))
LClient(x)
(ok : 5 ≤ |vs | ≤ 10 ★ list(ret, vs†) ★ 𝑅) (err : |vs | < 5 ★ (∃xs.freed(𝑥 : xs) ★ |xs | = |vs |) ★ err = “LTS”)

where the assertion 𝑅 is as given for list reverse; the proof sketch is given in Appendix F. The

specification captures the successful and faulting behaviours explicitly, together with the conditions

under which they occur, and carries two noteworthy points.

First, there is the question of which list predicate is appropriate for this client. As the list is being

reversed in one branch, we believe that a useful predicate should contain node values. We chose

list(𝑥, vs), but could have gone with list(𝑥, xs, vs) instead, obtaining a less abstract specification

from which we could then derive the one given above by existentially quantifying xs.
Second, the non-terminating branch (when |vs | > 10) is implicit, in that it is subsumed by the

success post-condition (since 𝑃 ∨ (|vs | > 10 ★ False) ⇔ 𝑃 ). However, to demonstrate that it exists,

we can constrain the pre-condition appropriately to prove the (partial) specification:

(x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10) LClient(x) (False)
This implicit loss of non-terminating branches can be characterised informally as follows:

(O5) if the post-conditions do not cover all paths allowed by the pre-condition,

then the “gap” is non-terminating.

In this case, the pre-condition implies that |vs | ∈ N and the post-conditions cover the cases where

|vs | ≤ 10, leaving the gap when |vs | > 10, for which we provably have client non-termination.

In general, there are cases when non-terminating branches cannot be captured by ESL specifica-

tions. For example, if the code branches on a value that does not originate from the pre-condition

and if one of the resulting branches does not terminate, and if the code can also terminate success-

fully, then the non-terminating branch will be implicit in the pre-condition, but no gap in the sense
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of (O5) will be present. This is illustrated by the code and specification below, where the pre- and

the post-condition are the same, but a non-terminating path still exists.

( x = null ) x := nondet; if (x > 42) { while (true) {skip} } else { x := null } ( x = null )
Exact Verification in Gillian. We have adapted the OX verification of Gillian to EX verification

of recursive functions by, essentially, disallowing use of forward consequence and replacing it with

equivalence. The details of this adaptation are intricately tied to the parametricity of Gillian and

are, therefore, beyond the scope of this paper.

We have implemented, exactly specified, and verified a number of iterative and recursive list

algorithms, including list-length, list-free, list-reverse, list-copy, list-append, and list membership.

For each, we provided several specifications with different degrees of abstraction, using the various

list predicates given in this section. To illustrate, the EX specifications of the recursive list-length

algorithm given in the introduction and repeated in this section are written in Gillian as follows:

( (x == #x) * list(#x, #n) ) with variant: #n
function LLen(x) { ... }

( list(#x, ret) )

( (x == #x) * list(#x, #xs, #vs) ) with variant: len #vs
function LLen(x) { ... }

( list(#x, #xs, #vs) * (ret == len #vs) )

where the variables prefixed with the hash symbol denote logical variables and len denotes the

list-length operator. When it comes to additional annotation, recursive function pre-conditions and

loop invariants (which are always needed for semi-automatic verification) need to be equipped

with an explicit variant, which corresponds to the decreasing measure (#n and len #vs in the above

specifications), whereas predicate folding and unfolding is automatic.

6 COMPOSITIONAL SYMBOLIC EXECUTIONWITH ESL SPECIFICATIONS
Our motivation for ESL came from Gillian, a multi-language symbolic analysis platform. On the way

to bringing ESL results back to Gillian, we now turn to symbolic execution. Specifically, inspired

by Gillian, we introduce a compositional symbolic execution semantics (CSE), which handles

function calls by using UX (that is, ISL or ESL) specifications, for our demonstrator language and

prove that that this CSE enjoys true bug-finding. We are not aware of a similar proof of function

compositionality for symbolic execution in the literature. We conclude by highlighting the interplay

between abstractions, which can hide information, and symbolic execution, which cannot.

Symbolic Values, Expressions and Assertions. We introduce the symbolic constructs on which

our CSE and correctness results depend, starting from symbolic values, 𝑣 ∈ SVal, which are built

from concrete values and symbolic variables, x̂ ∈ SVar:

𝑣 ∈ SVal ≜ 𝑣 | x̂ | 𝑣 + 𝑣 | 𝑣 − 𝑣 | ... | 𝑣 = 𝑣 | ¬ 𝑣 | 𝑣 ∧ 𝑣 | ... | 𝑣 · 𝑣 | 𝑣 : 𝑣 | ...
Symbolic expressions are defined analogously to logical expressions, with the only difference

being in them having symbolic variables (via symbolic values), instead of logical variables:

ê ∈ SExp ≜ 𝑣 | x | ê + ê | ê − ê | ... | ê = ê | ¬ ê | ê ∧ ê | ... | ê · ê | ê : ê | ...
and symbolic assertions are defined analogously to logical assertions (cf. Def. 4.1).

Definition 6.1 (Symbolic Assertions). Symbolic assertions are defined as follows:

𝜋 ∈ SBAsrt ≜ ê1 = ê2 | ê1 < ê2 | ê ∈ 𝑋 | . . . | ¬𝜋 | 𝜋1 ⇒ 𝜋2

𝑃 ∈ SAsrt ≜ 𝜋 | False | 𝑃1 ⇒ 𝑃2 | ∃𝑥 . 𝑃 | emp | ê1 ↦→ ê2 | ê ↦→ ∅ | 𝑃1 ★ 𝑃2 | �ê1≤𝑥<ê2
𝑃

where ê, ê1, ê2 ∈ SExp, 𝑋 ⊆ Val, and x̂ ∈ SVar.
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Notation. For convenience, we introduce a generic function sv(X), which collects the symbolic

variables of a given construct X (e.g., a symbolic expression or assertion, and later store or memory),

and write X ⊆ 𝜀 to denote sv(X) ⊆ dom(𝜀).
For symbolic assertion satisfiability, we introduce symbolic interpretations, 𝜀 : SVar ⇀fin Val,

which are partial finite mappings from symbolic variables to values, and lift them to symbolic values,

overloading the 𝜀 notation. We also lift symbolic interpretations to a number of other symbolic

constructs, always overloading the 𝜀 notation.

Definition 6.2 (Symbolic Assertion Satisfiability and Models). The symbolic satisfiability relation

is first defined for Boolean symbolic assertions, denoted by 𝜀, 𝑠 |= 𝜋 , and is then lifted to arbitrary

symbolic assertions, denoted by 𝜀, 𝜎 |= 𝑃 , analogously to Def. 4.2. The set of models of a symbolic

assertion 𝑃 is defined in the standard way: M𝑜𝑑 (𝑃) def

= {𝜎 | ∃𝜀. 𝜀, 𝜎 |= 𝑃}, and we use the notation

𝜎 |= 𝑃 to denote 𝜎 ∈ M𝑜𝑑 (𝑃).
Relating Symbolic and Logical Assertions. Observe that symbolic and logical assertions are

isomorphic. We provide a mechanism for straightforwardly moving from logical to symbolic

assertions by introducing symbolic substitutions,
ˆ𝜃 : LVar ⇀fin SVal, which are partial finite

mappings from logical variables to symbolic expressions, and lift them to logical values, expressions,

and assertions in the standard way (the latter two maintain program variables), overloading the
ˆ𝜃

notation, as for interpretations. We write 𝑃 ˆ𝜃 to denote
ˆ𝜃 (𝑃) to keep in line with the common

notation for substitutions. We extend interpretations to symbolic substitutions by interpreting their

co-domain, yielding concrete substitutions: 𝜀 : (LVar ⇀fin SVal) ⇀fin (LVar ⇀fin Val).
Lemma 6.3. The following properties can be proven by induction on 𝐸 and 𝑃 , respectively:

sv( ˆ𝜃 ) ⊆ 𝜀 =⇒ JEK
𝜀 ( ˆ𝜃 ),𝑠 = J ˆ𝜃 (E)K𝜀,𝑠 (1)

𝜀 ( ˆ𝜃 ), 𝜎 |= 𝑃 ⇐⇒ 𝜀, 𝜎 |= 𝑃 ˆ𝜃 (2)

Symbolic States. Symbolic states, 𝜎̂ = (𝑠, ˆℎ, 𝜋), comprise: a symbolic store, 𝑠 : PVar ⇀fin SVal,
mapping program variables to symbolic values; a symbolic heap,

ˆℎ : SVal ⇀fin (SVal ⊎ ∅); and a

path condition, 𝜋 ∈ SVal, capturing constraints imposed on symbolic variables during execution.

We extend interpretations to symbolic stores (by interpreting the co-domain) and to heaps (by

interpreting both the domain and co-domain), requiring the following well-formedness constraints:

Wf 𝜀 (𝑠) ⇐⇒ 𝑠 ⊆ 𝜀 ∧  ∉ 𝜀 (codom(𝑠))
Wf 𝜀 ( ˆℎ) ⇐⇒ ˆℎ ⊆ 𝜀 ∧ 𝜀 (dom( ˆℎ)) ⊂ N ∧ | dom( ˆℎ) | = |𝜀 (dom( ˆℎ)) | ∧  ∉ 𝜀 (codom( ˆℎ))

These constraints expectedly require non-faulting evaluation after interpretation (e.g., disallow-

ing interpretations that assign incorrectly typed values), but also that the interpretation of the heap

domain yields disjoint addresses. We extend well-formedness to symbolic states:

Wf ((𝑠, ˆℎ, 𝜋)) ⇔ 𝜋 SAT ∧ (∀𝜀. 𝑠, ˆℎ ⊆ 𝜀 ∧ 𝜀 (𝜋) = true =⇒ Wf 𝜀 (𝑠) ∧ Wf 𝜀 ( ˆℎ))
requiring store and heap well-formedness for any interpretation that can interpret all of the

components and validates 𝜋 , which also has to be satisfiable. Analogously, we define Wf 𝜋 (𝑠) and
Wf 𝜋 ( ˆℎ). We extend interpretations to well-formed symbolic states as follows:

𝜀 ((𝑠, ˆℎ, 𝜋)) def

=

{
(𝜀 (𝑠), 𝜀 ( ˆℎ)), if Wf 𝜀 (𝑠) ∧Wf 𝜀 ( ˆℎ) ∧ 𝜀 (𝜋) = true
undefined, otherwise

and define symbolic state models and satisfiability between symbolic and concrete states:

M𝑜𝑑 (𝜎̂) def

= {𝜎 | ∃𝜀. 𝜀 (𝜎̂) = 𝜎} 𝜎 |= 𝜎̂ ⇐⇒ 𝜎 ∈ M𝑜𝑑 (𝜎̂)



Exact Separation Logic 21

Assign

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝑠′ = 𝑠 [x ↦→ 𝑣 ]

(𝑠, ˆℎ, 𝜋 ), x := E ⇓Γ ok : (𝑠′, ˆℎ, 𝜋 ′ )

Mutate

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

1

ˆℎ (𝑣𝑙 ) = 𝑣𝑚 𝜋 ′′ = (𝑣𝑙 = 𝑣1 ) ∧ 𝜋 ′

SAT(𝜋 ′′ ) JE2K𝜋̂
′′

𝑠
⇓ 𝑣𝜋̂

′′′
2

ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ 𝑣2 ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′′ )

Free

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
ˆℎ (𝑣𝑙 ) = 𝑣𝑚

𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′

SAT(𝜋 ′′ ) ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ ∅]
(𝑠, ˆℎ, 𝜋 ), free(E) ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′ )

Seq

𝜎̂,𝐶1 ⇓Γ ok : 𝜎̂ ′

𝜎̂ ′,𝐶2 ⇓Γ 𝑜 : 𝜎̂ ′′

𝜎̂,𝐶1;𝐶2 ⇓Γ 𝑜 : 𝜎̂ ′′

Mutate-Err-Val-1

JE1K𝜋̂𝑠 ⇓  𝜋̂ ′
𝑣err = [“ExprEval”, str(E1 ) ]

(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

Mutate-Err-Use-After-Free

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

ˆℎ (𝑣𝑙 ) = ∅
𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′ SAT(𝜋 ′′ )

𝑣err = [“UseAfterFree”, str(E1 ), 𝑣 ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Mutate-Err-Missing

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

1
𝜋 ′′ = 𝑣1 ∈ N ∧ 𝑣1 ∉ dom( ˆℎ) ∧ 𝜋 ′

SAT(𝜋 ′′ ) 𝑣err = [“MissingCell”, str(E1 ), 𝑣1 ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ miss : (𝑠err , ˆℎ, 𝜋 ′′ )

Fig. 9. Symbolic operational semantics, selection of rules, where 𝑠err ≜ 𝑠 [err → 𝑣err ]

as well as three models-based relations, ⊆M , ⊇M , and =M , between symbolic states and assertions:

𝜎̂ ⊆M 𝑃 ⇐⇒∀𝜀, 𝜎 . 𝜎 = 𝜀 (𝜎̂) ⇒ 𝜀, 𝜎 |= 𝑃 (implyingM𝑜𝑑 (𝜎̂) ⊆ M𝑜𝑑 (𝑃))
𝜎̂ ⊇M 𝑃 ⇐⇒∀𝜀, 𝜎 . 𝜎 = 𝜀 (𝜎̂) ⇐ 𝜀, 𝜎 |= 𝑃 (implyingM𝑜𝑑 (𝜎̂) ⊇ M𝑜𝑑 (𝑃))
𝜎̂ =M 𝑃 ⇐⇒ 𝜎̂ ⊆M 𝑃 ∧ 𝜎̂ ⊇M 𝑃 (implyingM𝑜𝑑 (𝜎̂) = M𝑜𝑑 (𝑃))

the second of which, ⊇M is essential for our correctness proof. In particular, it states that the state

satisfying an assertion is uniquely determined by the interpretation. We discuss the ramifications

of this requirement shortly.

Compositional Symbolic Semantics. For our CSE, we assume to have the symbolic expression

evaluation relation, JEK𝜋
𝑠
⇓ 𝑤̂𝜋 ′

, where 𝑤̂ denotes either a symbolic value or  , and the (satisfiable)

output path condition, 𝜋 ′ ⇒ 𝜋 , may extend 𝜋 with additional conditions under which the evaluation

branches (e.g., division branching on denominator equalling zero). We keep symbolic expression

evaluation opaque, as it carries little insight.

We provide a big-step symbolic semantics for the simple demonstrator programming language

used for ESL, with two differences. First, we disallow dynamic memory allocation, as that would

require a more complex representation of symbolic states; instead, we allow only allocation of

concrete size. Second, we do not handle while loops, as that is orthogonal to our goals and would

introduce clutter, and assume that they have been transformed into recursive functions.

The symbolic operational semantics uses judgements of the form 𝜎̂,C ⇓Γ 𝑜 : 𝜎̂ ′
, meaning that,

given specification context Γ and starting from state 𝜎̂ , the execution of command C results in

outcome 𝑜 (ok, err , or miss) and state 𝜎̂ ′
. We present a selection of rules in Figure 9 that illustrate

the main points of the reasoning; the full semantics is given in Appendix G. The function call rule

is introduced separately shortly due to its complexity.

We highlight three of the mutation rules, as they are representative of the single-trace reasoning

that we use for the symbolic execution. In particular, [Mutate] first evaluates E1, obtaining a

symbolic value 𝑣1, and then checks if it is possible for 𝑣1 to equal a non-freed address in the heap, 𝑣𝑙 ,

in which cases it takes that branch by adding the appropriate equality to the path condition,

evaluates E2 to obtain 𝑣2, and updates the value of 𝑣𝑙 in the heap to 𝑣2. Similarly, the [Mutate-Err-

Use-After-Free] captures the branches in which 𝑣1 equals a freed address in the heap, whereas

the [Mutate-Err-Missing] rule covers the branch in which it is not in the heap at all. Note that
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it is not necessary to add 𝑣𝑙 ∈ dom( ˆℎ) to the final path condition in non-missing rules, as that is

guaranteed by the well-formedness of the initial symbolic state.

Treatment of Function Calls. Consider how function specifications are applied in ESL proof

sketches, given the proof rules of §4.3 and the examples of §5. In particular, if we have the command

y := 𝑓 (®E), specification (®x = ®𝑥 ∗ 𝑃) 𝑓 (®x) (ok : 𝑄ok) (assuming no faulting executions for simplicity),

and current (logical) assertion 𝐴, this process can roughly be split into the following steps:

(L1) using logical equivalence
7
to massage𝐴 to match the function pre-condition plus some frame,

that is, into the form (®E = ®𝑥 ∗ 𝑃) ∗ 𝐹 ;
(L2) framing 𝐹 off;

(L3) using the function call rule to replace the matched ®E = ®𝑥 ∗ 𝑃 with 𝑄ok [y/ret]; and
(L4) framing 𝐹 back on.

On the other hand, our approach to performing the same function call in symbolic execution

with current state 𝜎̂ is as follows:

(S1) understand which part of 𝜎̂ corresponds to ®E = ®𝑥 ∗ 𝑃 and consume it, leaving only the part

that corresponds to the frame, 𝜎̂𝐹 ;

(S2) extend 𝜎̂𝐹 with the symbolic state 𝜎̂𝑄 corresponding to 𝑄ok [y/ret], that is, produce 𝜎̂𝑄 in 𝜎̂𝐹 .

These two approaches intuitively correspond to each other; the main difference is that in logic the

frame is removed, while in symbolic execution it is maintained. Onward, as is standard for symbolic

execution tools, we restrict the set of allowed assertions in the specifications to exclude spatial

negation, implication, and iterative separating conjunction. Following the approach of [33], we

assume that pre- and post-conditions do not have explicit existential quantification, treating logical

variables in the pre-condition as universally quantified and logical variables in the post-condition

that are not in the pre-condition as implicitly existentially quantified. Any ESL specification can be

trivially transformed into this format while preserving equivalence.

With these constraints in place, we give the function call rule for our CSE:

J®EK𝜋
𝑠
⇓ ®̂𝑣𝜋 ′

evaluate function parameters(
®x = ®𝑥 ∗ 𝑃

)
𝑓 (®x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
∈ Γ get function specification

ˆ𝜃 = [®𝑥 ↦→ ®̂𝑣] create initial substitution

matchAndConsume(𝑃, ˆ𝜃, (𝑠, ˆℎ, 𝜋 ′)) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠, ˆℎ𝑓 , 𝜋
′′))ok consume pre-condition (step (S1))

𝑟, 𝑟 fresh generate fresh vars for return value

𝑄 ′
ok = 𝑄ok [𝑟/ret] and ˆ𝜃 ′′ = ˆ𝜃 ′′ [𝑟 ↦→ 𝑟 ] set up return value

produce(𝑄 ′
ok,

ˆ𝜃 ′′, (𝑠, ˆℎ𝑓 , 𝜋
′′)) ⇝ ( ˆ𝜃 ′′′, ˆℎ𝑞, (𝑠, ˆℎ′, 𝜋 ′′′))ok produce post-condition (step (S2))

(𝑠, ˆℎ, 𝜋), y := 𝑓 (®E) ⇓Γ ok : (𝑠 [y ↦→ r̂], ˆℎ′, 𝜋 ′′′)

For convenience, we use ESL specifications in the presentation; in general, any UX specification

can be used. This rule uses two auxiliary functions, matchAndConsume (in charge of (S1)) and

produce (in charge of (S2)), which we present axiomatically.
8
In particular, we require that both

matchAndConsume(𝑃, ˆ𝜃, (𝑠, ˆℎ, 𝜋)) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠′, ˆℎ𝑓 , 𝜋
′))𝑜

and

produce(𝑃, ˆ𝜃, (𝑠, ˆℎ𝑓 , 𝜋)) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠′, ˆℎ, 𝜋 ′))𝑜

satisfy the following properties for successful execution (when 𝑜 = ok):

7
Or consequence/backward consequence in SL/ISL, this is the only function-call difference between the three logics.

8
In Gillian, both functions are implemented parametrically on the memory model of the language under analysis, forming a

parametric spatial entailment engine. We believe that their complexity deserves a separate publication.
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(P1) dom( ˆ𝜃 ) ⊆ fv(𝑃) ∧ ˆ𝜃 ′ ≥ ˆ𝜃 ∧ dom( ˆ𝜃 ′) = fv(𝑃): this means that, given the initial bindings

of
ˆ𝜃 , both functions extend

ˆ𝜃 to cover all of the logical variables of 𝑃 ; matchAndConsume
learns them as part of the matching process, and produce generates fresh symbolic variables

for the existentials of 𝑃 , as per (P8) below;

(P2) 𝑠′ = 𝑠: this means that the store cannot be modified by the consumption or production of

assertions, which is expected as we do not treat program variables as resource;

(P3)
ˆℎ = ˆℎ𝑝 ⊎ ˆℎ𝑓 : formatchAndConsume, this means that it syntactically splits the initial heap,

ˆℎ,

into the heap that corresponds to the spatial part of 𝑃 , ˆℎ𝑝 , and the remaining frame,
ˆℎ𝑓 ; for

produce, this means that it syntactically extends the frame,
ˆℎ𝑓 , with the heap corresponding

to the spatial part of 𝑃 , ˆℎ𝑝 , resulting in the final heap,
ˆℎ;

(P4) 𝜋 ′ ⇒ 𝜋 : this means that the path condition may only get strengthened, an expected property

of symbolic execution:matchAndConsume may strengthen it to capture that specific branch

of the matching; and produce may strengthen it with pure assertions that are part of 𝑃 ;

(P5) Wf (𝑠, ˆℎ, 𝜋 ′): this captures that both initial and final states of both functions are well-formed,

relying on (P4) and the monotonicity properties ofWf ; as a consequence, this also means

that 𝜋 ′
is satisfiable;

(P6) (∅, ˆℎ𝑝 , 𝜋
′) ⊇M 𝑃 ˆ𝜃 ′ ★ 𝜋 ′

: this property links the consumed/produced assertion 𝑃 to the

corresponding symbolic state, requiring that the 𝜎̂ covers 𝑃 , in the style of UX backward

consequence. This is a rare point where OX, UX, and EX symbolic execution differ: in

particular, OX verification requires ⊆M , UX true bug-finding requires ⊇M , and EX reasoning

requires =M . As a consequence, we obtain the expected satisfiability between 𝑃 and the

interpretation of its corresponding symbolic state, which holds for all three scenarios:

(P7) ∀𝜀. 𝜀 (𝜋 ′) = true ∧ ˆ𝜃 ′, 𝑠, ˆℎ ⊆ 𝜀 =⇒ 𝜀 ( ˆ𝜃 ′), 𝜀 (𝑠, ˆℎ𝑝 , 𝜋
′) |= 𝑃 .

Finally, for produce, we require in addition that the logical variables of 𝑃 not in the domain of
ˆ𝜃

(that is, the existentials of 𝑃 ) are afterwards mapped to fresh symbolic variables

(P8)
ˆ𝜃 ′ = ˆ𝜃 [®𝑦 ↦→ ®̂𝑦], where {®𝑦} = fv(𝑃) \ dom( ˆ𝜃 ) and ®̂𝑦 fresh.

The symbolic execution also has function call rules that handle erroneous and missing executions.

The erroneous ones that arise due to function parameter evaluation failing or the error post-

condition being produced are standard and are therefore delegated to Appendix G. On the other

hand, the case in which matchAndConsume fails carries additional insight. It means that it is not

possible to apply the given specification in the given state, which could be due to, for example,

the specification being incomplete, the symbolic state not having the required resource, or the

code being incorrect. In all of those cases, there can be no guarantees regarding the behaviour of

the corresponding concrete execution, and there are several approaches to handling this issue. In

program logic, if a function specification cannot be applied, the proof cannot continue; we take

this approach, which amounts to simply not having the rules for matchAndConsume failing in

our CSE. Alternatively, we could instead attempt to symbolically execute the body of the function

in such cases, which would be a sound solution. Finally, we note that there are no error/missing

rules regarding produce because if matchAndConsume succeeds, then produce will also succeed

due to the validity of the used specification.

True Bug-finding of Compositional Symbolic Execution. We prove that our CSE respects

backward completeness, a property corresponding to UX validity in ESL, and therefore, by con-

sequence, preserves true bug-finding.
9
Here, we give a high-level overview of the proof; the full

9
Note that terminology is used inconsistently throughout the literature. What we call completeness is called “correctness”

by de Boer and Bonsangue [12], “soundness” by Godefroid et al. [24], and “completeness” by Baldoni et al.’ [5].
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details can be found in Appendix G.2. To our knowledge, this is the first proof of its kind for

a symbolic execution that can use UX/EX function specifications coming from a compositional

program logic.
10

Theorem 6.4 (Backward completeness: Symbolic execution).

𝜎̂,C ⇓Γ 𝑜 : 𝜎̂ ′∧ |= (𝛾, Γ) ∧ 𝜎 ′ |= 𝜎̂ ′ =⇒ ∃𝜎. 𝜎 |= 𝜎̂ ∧ 𝜎,C ⇓𝛾 𝑜 : 𝜎 ′

The correspondence between backward completeness and UX soundness for ESL is evident:

𝜎̂,C ⇓Γ 𝑜 : 𝜎̂ ′
corresponds to Γ ⊢ (𝑃) C (Q) of Theorem 4.12, |= (𝛾, Γ) to the same part of

Definition 4.11, and the rest to UX validity of Definition 4.5, frame notwithstanding.

Abstractions for True Bug-finding. So far, the constraints placed on the allowed specifications

are standard. However, property (P6) can be broken by existential quantification, disjunction, and

abstractions that are not strictly exact (that is, that hide information). We focus the discussion

on abstractions and illustrate the issue with an example; disjunction is handled analogously and

existential quantification has been taken care of given the already placed constraints.

Consider the list-length specification from §5: (x = 𝑥 ★ list(𝑥, 𝑛)) LLen(x) (list(𝑥, 𝑛) ★ ret = 𝑛),
where the list(𝑥, 𝑛) predicate hides information about the list node addresses and values, and

consider the symbolic state 𝜎̂ = (𝑠, ˆℎ, 𝜋), where 𝑠 ≡ {x ↦→ 𝑥, y ↦→ null}, ˆℎ ≡ {𝑥 ↦→ 42, 𝑥 + 1 ↦→
null}, and 𝜋 ≡ 𝑥 ∈ N, in which there is a linked list at 𝑥 consisting of one node carrying the

value 42. Further consider the command y := LLen(x). Given the structure of 𝜎̂ , one would expect

to be able to apply the given specification, but this is not possible in a way that preserves true

bug-finding. In particular, the (P6) requirement for matchAndConsume amounts to

(∅, {𝑥 ↦→ 42, 𝑥 + 1 ↦→ null}, 𝑥 ∈ N) ⊇M list(𝑥, 1) ★ 𝑥 ∈ N
but this does not hold, as, for example, the concrete state (∅, {0 ↦→ 43, 1 ↦→ null) is in the models

of the right-hand side, but not in the models of the left-hand side, with the discrepancy being in

the node values (42 vs. 43), which is precisely the information hidden by the list predicate.

This means that compositional symbolic execution for true-bug finding may only use specifica-

tions that contain strictly exact abstractions, such as list(𝑥, xs, vs). In particular, for that predicate

and the relevant list-length specification

(x = 𝑥 ★ list(𝑥, xs, vs)) LLen(x) (list(𝑥, xs, vs) ★ ret = |xs |)
the (P6) requirement amounts to:

(∅, {𝑥 ↦→ 42, 𝑥 + 1 ↦→ null}, 𝑥 ∈ N) ⊇M list(𝑥, [𝑥], [42]) ★ 𝑥 ∈ N
and the above-mentioned issue no longer exists. We believe this to be the boundary of sound use

of abstractions for true-bug finding with standard symbolic states.

One way of crossing this boundary would be to have symbolic states of the form (𝜎̂, ˆℎ, Δ̂, 𝜋),
where the new component, Δ̂, contains a list of predicates, and also extend the symbolic execution

with commands for unfolding and folding predicates. This, in particular, allows information hiding

in symbolic states and is both what happens in the implementation of Gillian OX and EX verification

and what is required to potentially model dynamic memory allocation. In this context, the (P6)

requirement would hold for a broader class of symbolic states and assertions. For example, we

would have that:

(∅, ∅, [list(𝑥, 1)], 𝑥 ∈ N) ⊇M list(𝑥, 1) ★ 𝑥 ∈ N
letting us believe that there is room for soundly bringing in more abstraction to symbolic execution

while maintaining true bug-finding. We leave a deeper exploration of this extension for future work.

10
The literature contains examples of symbolic execution with function summaries (e.g. [1, 23, 25, 27, 32, 47]), but those

either come without a soundness proof or use first-order summaries that do not talk about the heap.
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7 CONCLUSIONS AND FURTHERWORK
We have introduced exact reasoning for analysing heap-manipulating programs by presenting an

exact separation logic, ESL. Exact specifications provide a bridge between verification and true bug-

finding, as they can be soundly used for both: they guarantee the absence of bugs for success post-

conditions and, at the same time, all bugs exposed in error post-conditions are true. ESL supports

reasoning about mutually recursive functions and comes with a frame-preserving soundness result

that transfers straightforwardly to UX and OX separation logics, thus demonstrating, for the first

time, functional compositionality for UX reasoning.

We have verified exact specifications for a number of illustrative examples, showing how ESL

can be used to reason about data-structure libraries, language errors, mutual recursion and non-

termination. In particular, we verify exact specifications for list algorithms using familiar inductive

predicates for singly-linked lists, demonstrating that abstraction can be soundly used in exact

and UX reasoning. We emphasise the distinction between hiding information through existential

quantification, which can be used with exact and UX reasoning, and losing information through

forwards consequence that can only be used in OX reasoning. We have adapted the OX verification

of Gillian [33] to exact verification, and have verified the examples presented here. As future work,

we will explore the applicability of Gillian’s exact verification to real-world code: in particular, we

believe that the parts of the AWS codebase that have already been OX-verified by Gillian [33] can

be adapted to exact verification.

To demonstrate overall viability of exact verification for true bug-finding, we have introduced a

compositional symbolic execution semantics that is able to call functions described using exact

specifications, precisely pinpointing when such specifications are applicable (property (P6) of

matchAndConsume and produce introduced §6): for example, the list algorithms require that the

specifications are defined using strictly exact list-predicate assertions. Our ultimate aim is to unify

OX, UX and exact reasoning in Gillian, underpinned by the appropriately parametric and monadic

version of compositional symbolic execution presented here.
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A COMPLETE OPERATIONAL SEMANTICS

𝜎, skip ⇓𝛾 𝜎

JEK𝑠 = 𝑣

(𝑠, ℎ), x := E ⇓𝛾 (𝑠 [x → 𝑣], ℎ)
JEK𝑠 =  𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), x := E ⇓𝛾 err : (𝑠err , ℎ)

𝑛 ∈ N
(𝑠, ℎ), x := nondet ⇓𝛾 (𝑠 [x → 𝑛], ℎ)

JEK𝑠 = 𝑣 𝑣err = [“Error”, 𝑣]
(𝑠, ℎ), error(E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 =  𝑣err = [“ExprEval”, str(E)]
(𝑠, ℎ), error(E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝜎 = true 𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′

𝜎, if (E) 𝐶1 else 𝐶2 ⇓𝛾 𝑜 : 𝜎′

JEK𝜎 = false 𝜎,𝐶2 ⇓𝛾 𝑜 : 𝜎′

𝜎, if (E) 𝐶1 else 𝐶2 ⇓𝛾 𝑜 : 𝜎′
JEK𝑠 =  𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), if (E) 𝐶1 else 𝐶2 ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑣 ∉ B
𝑣err = [“Type”, str(E), 𝑣, “Bool”]

(𝑠, ℎ), if (E) 𝐶1 else 𝐶2 ⇓𝛾 err : (𝑠err , ℎ)
JEK𝜎 = false

𝜎, while (E) 𝐶 ⇓𝛾 𝜎

JEK𝜎 = true 𝜎,𝐶 ⇓𝛾 𝜎′′

𝜎′′, while (E) 𝐶 ⇓𝛾 𝑜 : 𝜎′

𝜎, while (E) 𝐶 ⇓𝛾 𝑜 : 𝜎′

JEK𝑠 =  
𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), while (E) 𝐶 ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑣 ∉ N
𝑣err = [“Type”, str(E), 𝑣, “Bool”]

(𝑠, ℎ), while (E) 𝐶 ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = true 𝜎,𝐶 ⇓𝛾 𝑜 : 𝜎′ 𝑜 ≠ ok

𝜎, while (E) 𝐶 ⇓𝛾 𝑜 : 𝜎′
𝜎,𝐶1 ⇓𝛾 𝜎′′ 𝜎′′,𝐶2 ⇓𝛾 𝑜 : 𝜎′

𝜎,𝐶1;𝐶2 ⇓𝛾 𝜎′
𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′ 𝑜 ≠ ok

𝜎,𝐶1;𝐶2 ⇓𝛾 𝑜 : 𝜎′

𝑓 (®x) {𝐶; return E′ } ∈ 𝛾

J®EK𝑠 = ®𝑣 pv(𝐶) \ {®x} = {®z}
𝑠𝑝 = ∅[®x → ®𝑣] [®z → null]

(𝑠𝑝 , ℎ),𝐶 ⇓𝛾 (𝑠𝑞, ℎ′) JE′K𝑠𝑞 = 𝑣 ′

(𝑠, ℎ), y := 𝑓 (®E) ⇓𝛾 (𝑠 [y → 𝑣 ′], ℎ′)

𝑓 (®x) {𝐶; return E′ } ∈ 𝛾

J®EK𝑠 = ®𝑣 pv(𝐶) \ {®x} = {®z}
𝑠𝑝 = ∅[®x → ®𝑣] [®z → null]

(𝑠𝑝 , ℎ),𝐶 ⇓𝛾 (𝑠𝑞, ℎ′) JE′K𝑠𝑞 =  
𝑣err = [“ExprEval”, str(E′)]

(𝑠, ℎ), y := 𝑓 (®E) ⇓𝛾 err : (𝑠err , ℎ′)

𝑓 (®x) {𝐶; return E′ } ∈ 𝛾

J®EK𝑠 = ®𝑣 pv(𝐶) \ {®x} = {®z}
𝑠𝑝 = ∅[®x → ®𝑣] [®z → null]

(𝑠𝑝 , ℎ),𝐶 ⇓𝛾 𝑜 : (𝑠𝑞, ℎ′) 𝑜 ≠ ok

(𝑠, ℎ), y := 𝑓 (®E) ⇓𝛾 𝑜 : (𝑠 [err → 𝑠𝑞 (err)], ℎ′)

𝑓 (®x) {𝐶; return E′ } ∈ 𝛾

𝑘 ∈ {1, . . . 𝑛} (JE𝑖K𝑠 = 𝑣𝑖 ) |𝑘−1

𝑖=1
JE𝑘K𝑠 =  

𝑣err = [“ExprEval”, str(E𝑘 )]
(𝑠, ℎ), y := 𝑓 (E1, . . . E𝑛) ⇓𝛾 err : (𝑠err , ℎ)

𝑓 ∉ dom(𝛾) 𝑣err = [“NoFunc”, 𝑓 ]
(𝑠, ℎ), x := 𝑓 (®E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑛 ℎ(𝑛) = 𝑣

(𝑠, ℎ), x := [E] ⇓𝛾 (𝑠 [x → 𝑣], ℎ)

JEK𝑠 =  
𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), x := [E] ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑣 ∉ N
𝑣err = [“Type”, str(E), 𝑣, “Nat”]
(𝑠, ℎ), x := [E] ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑛 ∉ dom(ℎ)
𝑣err = [“MissingCell”, str(E), 𝑛]
(𝑠, ℎ), x := [E] ⇓𝛾 miss : (𝑠err , ℎ)

JEK𝑠 = 𝑛 ℎ(𝑛) = ∅
𝑣err = [“UseAfterFree”, str(E), 𝑛]
(𝑠, ℎ), x := [E] ⇓𝛾 err : (𝑠err , ℎ)

JE1K𝑠 = 𝑛 ℎ(𝑛) ∈ Val JE2K𝑠 = 𝑣

(𝑠, ℎ), [E1] := E2 ⇓𝛾 (𝑠, ℎ[𝑛 ↦→ 𝑣])
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JE1K𝑠 =  
𝑣err = [“ExprEval”, str(E1)]

(𝑠, ℎ), [E1] := E2 ⇓𝛾 err : (𝑠err , ℎ)

JE1K𝑠 = 𝑣 ∉ N
𝑣err = [“Type”, str(E1), 𝑣, “Nat”]
(𝑠, ℎ), [E1] := E2 ⇓𝛾 err : (𝑠err , ℎ)

JE1K𝑠 = 𝑛 ∉ dom(ℎ)
𝑣err = [“MissingCell”, str(E1), 𝑛]
(𝑠, ℎ), [E1] := E2 ⇓𝛾 miss : (𝑠err , ℎ)

JE1K𝑠 = 𝑛 ℎ(𝑛) = ∅
𝑣err = [“UseAfterFree”, str(E1), 𝑛]
(𝑠, ℎ), [E1] := E2 ⇓𝛾 err : (𝑠err , ℎ)

JE1K𝑠 = 𝑛 ℎ(𝑛) ∈ Val JE2K𝑠 =  
𝑣err = [“ExprEval”, str(E2)]

(𝑠, ℎ), [E1] := E2 ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑛 (𝑛′ + 𝑖 ∉ dom(ℎ)) |0≤𝑖<𝑛
ℎ′ = ℎ[𝑛′ ↦→ null] · · · [𝑛′ + 𝑛 − 1 ↦→ null]

(𝑠, ℎ), x := new(E) ⇓𝛾 (𝑠 [x → 𝑛′], ℎ′)

JEK𝑠 =  
𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), x := new(E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑣 ∉ N
𝑣err = [“Type”, str(E), 𝑣, “Nat”]

(𝑠, ℎ), x := new(E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑛 ℎ(𝑛) ∈ Val
(𝑠, ℎ), free(E) ⇓𝛾 (𝑠, ℎ[𝑛 ↦→ ∅])

JEK𝑠 =  
𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), free(E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑣 ∉ N
𝑣err = [“Type”, str(E), 𝑣, “Nat”]
(𝑠, ℎ), free(E) ⇓𝛾 err : (𝑠err , ℎ)

JEK𝑠 = 𝑛 ∉ dom(ℎ)
𝑣err = [“MissingCell”, str(E), 𝑛]
(𝑠, ℎ), free(E) ⇓𝛾 miss : (𝑠err , ℎ)

JEK𝑠 = 𝑛 ℎ(𝑛) = ∅
𝑣err = [“UseAfterFree”, str(E), 𝑛]
(𝑠, ℎ), free(E) ⇓𝛾 err : (𝑠err , ℎ)

where 𝑠err ≜ 𝑠 [err → 𝑣err ].
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B EXACT SEPARATION LOGIC
Definition B.1. The satisfiability relation, denoted 𝜃, 𝑠 |= 𝜋 for pure assertions and 𝜃, 𝜎 |= 𝑃 for assertions,

is defined as follows:

𝜃, 𝑠 |=
E1 = E2 ⇔ JE1 = E2K𝜃,𝑠 = true
E1 < E2 ⇔ JE1 < E2K𝜃,𝑠 = true
E ∈ 𝑋 ⇔ JEK𝜃,𝑠 ∈ 𝑋

𝜋1 ⇒ 𝜋2 ⇔ 𝜃, 𝑠 |= 𝜋1 ⇒ 𝜃, 𝑠 |= 𝜋2

¬(E1 = E2) ⇔ JE1 = E2K𝜃,𝑠 = false
¬(E1 < E2) ⇔ JE1 < E2K𝜃,𝑠 = false
¬(E ∈ 𝑋 ) ⇔ JEK𝜃,𝑠 ∉ 𝑋

¬(𝜋1 ⇒ 𝜋2) ⇔ 𝜃, 𝑠 |= 𝜋1 ∧ 𝜃, 𝑠 |= ¬𝜋2

¬¬𝜋 ⇔ 𝜃, 𝑠 |= 𝜋

𝜃, (𝑠, ℎ) |=
𝜋 ⇔ 𝜃, 𝑠 |= 𝜋 ∧ ℎ = ∅
False ⇔ never

𝑃1 ⇒ 𝑃2 ⇔ 𝜃, (𝑠, ℎ) |= 𝑃1 ⇒ 𝜃, (𝑠, ℎ) |= 𝑃2

∃x . 𝑃 ⇔ ∃𝑣 ∈ Val. 𝜃 [x ↦→ 𝑣], (𝑠, ℎ) |= 𝑃

emp ⇔ ℎ = ∅
E1 ↦→ E2 ⇔ ℎ = {JE1K𝜃,𝑠 ↦→ JE2K𝜃,𝑠 }
E1 ↦→ ∅ ⇔ ℎ = {JE1K𝜃,𝑠 ↦→ ∅}
𝑃1 ★ 𝑃2 ⇔ ∃ℎ1, ℎ2 . ℎ = ℎ1 ⊎ ℎ2 ∧

𝜃, (𝑠, ℎ1) |= 𝑃1 ∧ 𝜃, (𝑠, ℎ2) |= 𝑃2

�E1≤𝑥<E2
𝑃 ⇔ (𝑖 < 𝑘 ∧ ∃ℎ𝑖 , . . . , ℎ𝑘−1

. ℎ = ⊎𝑘−1

𝑗=𝑖
ℎ 𝑗 ∧

∀𝑗 . 𝑖 ≤ 𝑗 < 𝑘 ⇒ 𝜃, (𝑠, ℎ 𝑗 ) |= 𝑃 [ 𝑗/𝑥]) ∨
(𝑖 ≥ 𝑘 ∧ ℎ = ∅),where 𝑖 = JE1K𝜃,𝑠 , 𝑘 = JE2K𝜃,𝑠
and 𝑥 is not featured in either E1 or E2 .

The complete rules of ESL are as follows (with 𝑄err = pre ★ err = Eerr ):

skip

Γ ⊢ (emp) skip (emp)

nondet

x ∉ pv(E′)
Γ ⊢ (x = E′) x := nondet (E′ ∈ Val ★ x ∈ N)

assign

x ∉ pv(E′) 𝜃 ≜ [E′/x]
Γ ⊢ (x = E′ ★ E ∈ Val) x := E (E′ ∈ Val ★ x = E𝜃 )

assign-err

Eerr ≜ [”ExprEval”, str(E)]
Γ ⊢ (x = E′ ★ E �∈ Val) x := E (err : 𝑄err )

lookup

x ∉ pv(E′) 𝜃 ≜ [E′/x]
Γ ⊢ (x = E′ ★ E ↦→ E1) x := [E] (E′ ∈ Val ★ x = E1𝜃 ★ E𝜃 ↦→ E1𝜃 )

lookup-err-val

Eerr ≜ [“ExprEval”, str(E)]
Γ ⊢ (x = E′ ★ E �∈ Val) x := [E] (err : 𝑄err )

lookup-err-type

Eerr ≜ [”Type”, str(E), E, ”Nat”]
Γ ⊢ (x = E′ ★ E ∈ Val ★ E �∈ N) x := [E] (err : 𝑄err )

lookup-err-use-after-free

Eerr ≜ [”UseAfterFree”, str(E), E]
Γ ⊢ (x = E′ ★ E ↦→ ∅) x := [E] (err : 𝑄err )

mutate

Γ ⊢ (E1 ↦→ E ★ E2 ∈ Val) [E1] := E2 (E1 ↦→ E2 ★ E ∈ Val)

mutate-err-val-1

Eerr ≜ [”ExprEval”, str(E1)]
Γ ⊢ (E1 �∈ Val) [E1] := E2 (err : 𝑄err )

mutate-err-type

Eerr ≜ [”Type”, str(E1), E1, ”Nat”]
Γ ⊢ (E1 ∈ Val ★ E1 �∈ N) [E1] := E2 (err : 𝑄err )

mutate-err-use-after-free

Eerr ≜ [”UseAfterFree”, str(E1), E1]
Γ ⊢ (E1 ↦→ ∅) [E1] := E2 (err : 𝑄err )
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mutate-err-val-2

Eerr ≜ [”ExprEval”, str(E2)]
Γ ⊢ (E1 ↦→ E ★ E2 �∈ Val) [E1] := E2 (err : 𝑄err )

new

x ∉ pv(E′) 𝜃 ≜ [E′/x]
Γ ⊢ (x = E′ ★ E ∈ N) x := new(E) (𝑜𝑘 : E′ ∈ Val ★�

0≤𝑖<E𝜃 ((x + 𝑖) ↦→ null))

new-err-eval

Eerr ≜ [”ExprEval”, str(E)]
Γ ⊢ (x = E′ ★ E �∈ Val) x := new(E) (err : 𝑄err )

new-err-type

Eerr ≜ [”Type”, str(E), E, ”Nat”]
Γ ⊢ (x = E′ ★ E ∈ Val ★ E �∈ N) x := new(E) (err : 𝑄err )

free

Γ ⊢ (E ↦→ E′) free(E) (𝑜𝑘 : E′ ∈ Val ★ E ↦→ ∅)

free-err-eval

Eerr ≜ [”ExprEval”, str(E)]
Γ ⊢ (E �∈ Val) free(E) (err : 𝑄err )

free-err-type

Eerr ≜ [”Type”, str(E), E, ”Nat”]
Γ ⊢ (E ∈ Val ★ E �∈ N) free(E) (err : 𝑄err )

free-err-use-after-free

Eerr ≜ [”UseAfterFree”, str(E), E]
Γ ⊢ (E ↦→ ∅) free(E) (err : 𝑄err )

error

Eerr ≜ [“Error”, E]
Γ ⊢ (E ∈ Val) error(E) (err : err = Eerr )

error-err

Eerr ≜ [”ExprEval”, str(E)]
Γ ⊢ (E �∈ Val) error(E) (err : 𝑄err )

if-then

Γ ⊢ (𝑃 ∧ E) 𝐶1 (Q)
Γ ⊢ (𝑃 ∧ E) if (E) 𝐶1 else 𝐶2 (Q)

if-else

Γ ⊢ (𝑃 ∧ ¬E) 𝐶2 (Q)
Γ ⊢ (𝑃 ∧ ¬E) if (E) 𝐶1 else 𝐶2 (Q)

if-err-val

Eerr ≜ [”ExprEval”, str(E)]
Γ ⊢ (𝑃 ★ E �∈ Val) if (E) 𝐶1 else 𝐶2 (err : 𝑄err )

if-err-type

Eerr ≜ [”Type”, str(E), E, ”Bool”]
Γ ⊢ (𝑃 ★ E ∈ Val ★ E �∈ B) if (E) 𝐶1 else 𝐶2 (err : 𝑄err )

seq

Γ ⊢ (𝑃) 𝐶1 (ok : 𝑅) (err : 𝑄1

err )
Γ ⊢ (𝑅) 𝐶2 (ok : 𝑄ok) (err : 𝑄2

err )
Γ ⊢ (𝑃) 𝐶1; 𝐶2 (ok : 𝑄ok) (err : 𝑄1

err ∨𝑄2

err )

while-iterate

∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B 𝑃∞ ≜ False
∀𝑖 ∈ N. Γ ⊢

(
𝑃𝑖 ∧ E

)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
𝑚 ≜ min({𝑖 ∈ N ⊎ {∞} | |= 𝑃𝑖 ⇒ ¬E})

Γ ⊢
(
𝑃0

)
while (E) 𝐶

(
ok : 𝑃𝑚

) (
err : ∃𝑛 < 𝑚.𝑄𝑛

)
while-iterate-err-val

∃𝑚 ∈ N. (∀𝑖 ∈ N<𝑚 . |= 𝑃𝑖 ⇒ E) ∧ |= 𝑃𝑚 ⇒ E ∉ Val
∀𝑖 ∈ N<𝑚 . Γ ⊢

(
𝑃𝑖
)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
Eerr ≜ [”ExprEval”, str(E)]

Γ ⊢ (𝑃0) while (E) 𝐶 (err : (∃𝑛 < 𝑚.𝑄𝑛) ∨ (𝑃𝑚 ★ err = Eerr ))

while-iterate-err-type

∃𝑚 ∈ N. (∀𝑖 ∈ N<𝑚 . |= 𝑃𝑖 ⇒ E) ∧ |= 𝑃𝑚 ⇒ E ∈ Val \ B
∀𝑖 ∈ N<𝑚 . Γ ⊢

(
𝑃𝑖
)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
Eerr ≜ [”Type”, str(E), E, ”Bool”]

Γ ⊢ (𝑃0) while (E) 𝐶 (err : (∃𝑛 < 𝑚.𝑄𝑛) ∨ (𝑃𝑚 ★ err = Eerr )))
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eqiv

Γ ⊢
(
𝑃 ′
)
𝐶

(
ok : 𝑄 ′

ok
) (

err : 𝑄 ′
err

)
|= 𝑃 ′, 𝑄′

ok, 𝑄
′
err ⇔ 𝑃,𝑄ok, 𝑄err

Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
frame

Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
mod(𝐶) ∩ fv(𝑅) = ∅

Γ ⊢
(
𝑃 ★ 𝑅

)
𝐶

(
ok : 𝑄ok ★ 𝑅

) (
err : 𝑄err ★ 𝑅

) exists

Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
Γ ⊢

(
∃𝑥 . 𝑃

)
𝐶

(
ok : ∃𝑥 .𝑄ok

) (
err : ∃𝑥 .𝑄err

)
disj

Γ ⊢ (𝑃1) 𝐶 (ok : 𝑄1

ok) (err : 𝑄1

err ) Γ ⊢ (𝑃2) 𝐶 (ok : 𝑄2

ok) (err : 𝑄2

err )
Γ ⊢ (𝑃1 ∨ 𝑃2) 𝐶 (ok : 𝑄1

ok ∨𝑄2

ok) (err : 𝑄1

err ∨𝑄2

err )

fcall

(®x = ®𝑥 ★ 𝑃) (𝑄ok) (𝑄err ) ∈ Γ(𝑓 ) y ∉ pv(E𝑦) 𝜃
def

= [E𝑦/y]
Γ ⊢ (y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃) y := 𝑓 (®E) (ok : ®E𝜃 = ®𝑥 ★𝑄ok [y/ret]) (err : y = E𝑦 ★ ®E = ®𝑥 ★𝑄err )

fcall-err-fct-nofunc

𝑓 ∉ dom(Γ) Eerr ≜ [”NoFunc”, 𝑓 ]
Γ ⊢ (y = E𝑦 ★ ®E = ®𝑥) y := 𝑓 (®E) (err : 𝑄err )

env-empty

⊢ (∅, ∅)

env-extend

⊢ (𝛾, Γ) 𝐼 = {1, . . . , 𝑛} ∀𝑖 ∈ 𝐼 . 𝑓𝑖 ∉ dom(𝛾) 𝛾 ′ = 𝛾 [𝑓𝑖 ↦→ (®x𝑖 ,𝐶𝑖 , E𝑖 )]𝑖∈𝐼
Γ(𝛼) = Γ [𝑓𝑖 ↦→ {(𝑃𝑖 (𝛽)) (𝑜𝑘 : 𝑄𝑖

ok (𝛽)) (𝑒𝑟𝑟 : 𝑄𝑖
err (𝛽)) | 𝛽 < 𝛼} ∪ {(𝑃𝑖∞ (𝛽)) (False) | 𝛽 ≤ 𝛼}]𝑖∈𝐼

∀𝑖 ∈ 𝐼 , 𝛼 . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖

(
(𝑃𝑖 (𝛼)) (𝑜𝑘 : 𝑄𝑖

ok (𝛼)) (𝑒𝑟𝑟 : 𝑄𝑖
err (𝛼))

)
. Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡

∀𝑖 ∈ 𝐼 , 𝛼 . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖 ((𝑃
𝑖
∞ (𝛼)) (False)). Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡

𝑃𝑖 ≜ ∃𝛼. 𝑃𝑖 (𝛼) ★ 𝛼 ∈ O 𝑃𝑖∞ ≜ ∃𝛼. 𝑃𝑖∞ (𝛼) ★ 𝛼 ∈ O
𝑄𝑖
ok ≜ ∃𝛼.𝑄𝑖

ok (𝛼) ★ 𝛼 ∈ O 𝑄𝑖
err ≜ ∃𝛼.𝑄𝑖

err (𝛼) ★ 𝛼 ∈ O
Γ′′ := Γ [𝑓𝑖 ↦→ {(𝑃𝑖 ) (𝑜𝑘 : 𝑄𝑖

ok) (𝑒𝑟𝑟 : 𝑄𝑖
err ), (𝑃𝑖∞) (False)}]𝑖∈𝐼

⊢ (𝛾 ′, Γ′′)
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C PROOF OF SOUNDNESS: ESL
In order to prove the soundness result of theorem 4.12, we require three auxiliary lemmas regarding envi-

ronment validity. Their proofs are straightforward and will therefore be omitted. For legacy reasons, this

Appendix and the following Appendices may use an alternative notation for satisfiability: 𝜃, 𝑠, ℎ |= 𝑃 instead

of 𝜃, (𝑠, ℎ) |= 𝑃 , where 𝜃 (referred to as the substitution) is of type: LVar ⇀fin Val.

Lemma C.1 (Auxiliary properties). The following properties hold:
(1) ∀𝜃, 𝑠, 𝑠′, ℎ, 𝑃 . 𝜃, 𝑠, ℎ |= 𝑃 ∧ 𝑠 |pv(𝑃 ) = 𝑠′ |pv(𝑃 ) ⇒ 𝜃, 𝑠′, ℎ |= 𝑃

(2) ∀𝜃, 𝑠, 𝑠′, ℎ, ℎ′, 𝑜,𝐶,𝛾 . (𝑠, ℎ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′) =⇒ ∀𝑥 ∈ dom(𝑠) \ mod(𝐶). 𝑠 (𝑥) = 𝑠′ (𝑥)
(3) ∀E, 𝜃, 𝑠, 𝑠′, y. 𝑠 |pv(E)\{y} = 𝑠′ |pv(E)\{y} ⇒ JE[𝑠′ (y)/y]K𝜃,𝑠 = JEK𝜃,𝑠′

Proof of Theorem 4.12. By induction on the derivation Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
. We prove a

representative selection of rules; the proofs for the remaining ones are analogous.

Function Call. We first prove the successfully terminating case of under-approximation. Our hypotheses are:

(H1) |= (𝛾, Γ),
(H2) 𝜃, 𝑠′, ℎ′ |= ®E[E𝑦/y] = ®𝑥 ★𝑄ok [y/ret],
(H3) ℎ′ ♯ ℎ𝑓 ,
(H5) y ∉ fv(E𝑦),
(H6) (®x = ®𝑥 ★ 𝑃) (𝑜𝑘 : 𝑄ok) (𝑒𝑟𝑟 : 𝑄err ) ∈ Γ(𝑓 )

Our goal is to show that:

∃𝑠, ℎ. 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®x) ⇓𝛾 𝑜𝑘 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )
• From (H6) and (H1), we obtain 𝐶 and E, such that (H7) 𝑓 (®x){𝐶; return E} ∈ 𝛾 .

• From (H2), we obtain that (H2a) 𝜃, 𝑠′ |= ®E[E𝑦/y] = ®𝑥 , and (H2b) 𝜃, 𝑠′, ℎ′ |= 𝑄ok [y/ret].
• From (H1), (H6) and (H7), we obtain that there exists a specification

(®x = ®𝑥 ★ 𝑃 ★ ®z = null) (𝑄 ′
ok) (𝑄

′
err ) ∈ Int𝛾,𝑓 ((®x = ®𝑥 ★ 𝑃) (𝑄ok) (𝑄err ))

such that (H8) 𝛾 |=
(
®x = ®𝑥 ★ 𝑃 ★ ®z = null

)
𝐶

(
ok : 𝑄 ′

ok

) (
err : 𝑄 ′

err
)
, where, from the definition of

the internalisation function, we know that (H9a) 𝑄ok ⇔ ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ ret = E[ ®𝑝/®p], where ®z =

pv(𝐶)\{®x} and ®p = {®x} ⊎ {®z} = pv(𝐶).
• Given (H2b) and (H9a), we derive the following:

𝜃, 𝑠′, ℎ′ |= (∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ ret = E[ ®𝑝/®p]) [y/ret]

⇒ 𝜃, 𝑠′, ℎ′ |= ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ y = E[ ®𝑝/®p]

from which we obtain that there exist values ®𝑤 , such that:

⇒ 𝜃 [ ®𝑝 → ®𝑤], 𝑠′, ℎ′ |= 𝑄 ′
ok [ ®𝑝/®p] ★ y = E[ ®𝑝/®p]

⇒ 𝜃 [ ®𝑝 → ®𝑤], 𝑠′, ℎ′ |= 𝑄 ′
ok [ ®𝑤/®p] ★ y = E[ ®𝑤/®p]

⇒ 𝜃 [ ®𝑝 → ®𝑤], 𝑠′ [®p → ®𝑤], ℎ′ |= 𝑄 ′
ok ★ y = E

⇒ 𝜃, 𝑠′ [®p → ®𝑤], ℎ′ |= 𝑄 ′
ok ★ y = E (H10a)

⇒ 𝜃, 𝑠′ [®p → ®𝑤], ℎ′ |= 𝑄 ′
ok (H10b)

• Instantiating (H8) with (H10b) and (H3), we obtain that there exist 𝑠 and ℎ, such that (H11) 𝜃, 𝑠, ℎ |=
®x = ®𝑥 ★ 𝑃 ★ ®z = null and (H12) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜𝑘 : (𝑠′ [®p → ®𝑤], ℎ′ ⊎ ℎ𝑓 ).

• Let ®𝑣 = 𝜃 ( ®𝑥). Then, since pv(𝑃) = ∅ and given Lemma C.1(1), taking 𝑠′′ := ∅[®x → ®𝑣] [®z → null], we
obtain that (H13) 𝜃, 𝑠′′, ℎ |= ®x = ®𝑥 ★ 𝑃 ★ ®z = null and also that (H14) (𝑠′′, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜𝑘 : (𝑠′ [®p →
®𝑤], ℎ′ ⊎ ℎ𝑓 ).

• Let 𝑣 ′ = JEK𝑠′ [®p→ ®𝑤 ] = JE[ ®𝑤/®p]K𝜃,𝑠′ , 𝑣𝑦 = JE𝑦K𝜃,𝑠′ and (H15) 𝑠 = 𝑠′ [y → 𝑣𝑦]. Therefore, we also have

that (H16) 𝑠′ = 𝑠 [y → 𝑣 ′].
• We now need to prove that (𝑠, ℎ ⊎ℎ𝑓 ), y := 𝑓 (®E) ⇓𝛾 𝑜𝑘 : (𝑠 [y → 𝑣 ′], ℎ′ ⊎ℎ𝑓 ). For this, we already have:

𝑓 (®x) {𝐶 ; return E } ∈ 𝛾 , pv(𝐶) \ {®x} = {®z}, 𝑠′′ = ∅[®x → ®𝑣] [®z → null], (𝑠′′, ℎ ⊎ℎ𝑓 ),𝐶 ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ′
𝑓
)

and JEK𝑠′ [®p→ ®𝑤 ] = 𝑣 ′, and we still need J ®𝐸K𝑠 = ®𝑣 . Rewriting (H2a) given (H16), we get 𝜃, 𝑠 [y → 𝑣 ′] |=
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®E[E𝑦/y] = ®𝑥 , that is, (H17) J®E[E𝑦/y]K𝜃,𝑠 [y→𝑣′ ] = ®𝑣 . From (H17), the definition of 𝑠 , and Lemma C.1(3),

we then obtain that J ®𝐸K𝜃,𝑠 = ®𝑣 , and from there, as ®E are program expressions, we obtain the desired

J ®𝐸K𝑠 = ®𝑣 .
• Finally, we need to prove that 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃 . For the first “starjunct”, we need to show

JyK𝜃,𝑠 = JE𝑦K𝜃,𝑠 :

JyK𝜃,𝑠 = 𝑠 (y) (H15)

= (𝑠′ [y → 𝑣𝑦]) (y) = 𝑣𝑦 = JE𝑦K𝜃,𝑠′
(H16)

= JE𝑦K𝜃,𝑠 [y→𝑣′ ]
(H5)

= JE𝑦K𝜃,𝑠
For the second starjunct we do:

J®𝑥K𝜃,𝑠 = 𝜃 ( ®𝑥) = J®𝑥K𝜃,𝑠′
(H2a)

= J®E[E𝑦/y]K𝜃,𝑠′
(H15)

𝐶.1.3 =J®EK𝜃,𝑠
The third starjunct follows from (H13), given that 𝑃 has no logical variables by construction.

Next, we prove the erroneously terminating case of under-approximation. Our hypotheses are:

(H1) |= (𝛾, Γ),
(H2) 𝜃, 𝑠′, ℎ′ |= y = E𝑦 ★ ®E = ®𝑥 ★𝑄err ,

(H3) ℎ′ ♯ ℎ𝑓 ,
(H4) y ∉ fv(E𝑦),
(H5) (®x = ®𝑥 ★ 𝑃) (𝑄ok) (𝑄err ) ∈ Γ(𝑓 ).
Our goal is to show that:

∃𝑠, ℎ. 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®x) ⇓𝛾 𝑒𝑟𝑟 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )
• From (H5) and (H1), we obtain 𝐶 and E, such that (H7) 𝑓 (®x){𝐶; return E} ∈ 𝛾 .

• From (H2), we obtain that (H2a) 𝜃, 𝑠′ |= ®E = ®𝑥 , (H2b) 𝜃, 𝑠′, ℎ′ |= 𝑄err and (H2c) 𝜃, 𝑠′ |= y = E𝑦 .
• From (H1), (H5) and (H7), we obtain that there exists a specification

(®x = ®𝑥 ★ 𝑃 ★ ®z = null) (𝑄 ′
ok) (𝑄

′
err ) ∈ Int𝛾,𝑓 ((®x = ®𝑥 ★ 𝑃) (𝑄ok) (𝑄err ))

such that (H8) 𝛾 |=
(
®x = ®𝑥 ★ 𝑃 ★ ®z = null

)
𝐶

(
ok : 𝑄 ′

ok

) (
err : 𝑄 ′

err
)
, where, from the definition of

the internalisation function, we know that (H9a) 𝑄err ⇔ ∃®𝑝.𝑄 ′
err [ ®𝑝/®p] with ®z = pv(𝐶)\{®x} and

®p = {®x} ⊎ {®z}.
• Given (H2b) and (H9a), analogous to the previous case we obtain:

𝜃, 𝑠′, ℎ′ |= (∃®𝑝.𝑄 ′
err [ ®𝑝/®p]) =⇒ ∃®𝑤. 𝜃, 𝑠′p, ℎ

′ |= 𝑄 ′
err (H10)

where 𝑠′p = 𝑠′ [®p ↦→ ®𝑤]
• Instantiating (H8) with (H1), (H10), and (H3), we obtain that there exist 𝑠 and ℎ, such that (H11) 𝜃, 𝑠, ℎ |=
®x = ®𝑥 ★ 𝑃 ★ ®z = null and (H12) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑒𝑟𝑟 : (𝑠′p, ℎ′ ⊎ ℎ𝑓 ).

• Let ®𝑣 = 𝜃 ( ®𝑥). Then, since pv(𝑃) = ∅ and given Lemma C.1(1), taking 𝑠′′ := ∅[®x → ®𝑣] [®z → null],
we obtain that (H13) 𝜃, 𝑠′′, ℎ |= ®x = ®𝑥 ★ 𝑃 ★ ®z = null and also that (H14) (𝑠′′, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑒𝑟𝑟 :

(𝑠′p, ℎ′ ⊎ ℎ𝑓 ).
• Let 𝑣𝑒𝑟𝑟 = JerrK𝜃,𝑠′ and (H15) 𝑠 = 𝑠′\err. Therefore, we also have that (H16) 𝑠′ = 𝑠 [err → 𝑣𝑒𝑟𝑟 ].
• We now need to prove that (𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®E) ⇓𝛾 𝑒𝑟𝑟 : (𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′ ⊎ ℎ𝑓 ). For this, we already
have: 𝑓 (®x) {𝐶; return E } ∈ 𝛾 , pv(𝐶) \ {®x} = {®z}, 𝑠′′ = ∅[®x → ®𝑣] [®z → null] and (𝑠′′, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾
𝑒𝑟𝑟 : (𝑠′, ℎ′ ⊎ ℎ′

𝑓
), and we still need J ®𝐸K𝑠 = ®𝑣 . Rewriting (H2a) given (H16), we get 𝜃, 𝑠′ |= ®E = ®𝑥 , that is,

(H17) J®EK𝜃,𝑠′ = ®𝑣 . From (H16) and (H17), we then obtain that J ®𝐸K𝜃,𝑠 = ®𝑣 , which yields J ®𝐸K𝑠 = ®𝑣 since E
is a program expression.

• Finally, we need to prove that 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃 . The first starjunct is proven as follows:

JyK𝜃,𝑠 = 𝑠 (y) (H16)

= 𝑠′ (y) = JE𝑦K𝜃,𝑠′
(H16)

= JE𝑦K𝜃,𝑠
For the second starjunct we do:

J®𝑥K𝜃,𝑠 = 𝜃 ( ®𝑥) = J®𝑥K𝜃,𝑠′
(H2a)

= J®EK𝜃,𝑠′
(H15)

= J®EK𝜃,𝑠
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The third starjunct follows from (H13), given that 𝑃 has no logical variables by construction.

We move on to proving the successfully terminating over-approximation soundness. Our hypotheses are:

(H1) |= (𝛾, Γ)
(H2) 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃

(H3) ℎ ♯ ℎ𝑓
(H4) y ∉ fv(E𝑦)
(H5) (®x = ®𝑥 ★ 𝑃) (𝑜𝑘 : 𝑄ok) (𝑒𝑟𝑟 : 𝑄𝑒𝑟𝑟 ) ∈ Γ(𝑓 ).
Our goal is to show that:

∀𝑠′, ℎ′′ . (𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®x) ⇓𝛾 𝑜𝑘 : (𝑠′, ℎ′′)
⇒ (𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= ®E[E𝑦/y] = ®𝑥 ★𝑄ok [y/ret])

• From (H1) and (H5), we obtain 𝐶 and E such that (H6) 𝑓 (®x){𝐶, return E} ∈ 𝛾 .

• We define ®𝑣 := 𝜃 ( ®𝑥) and obtain from (H2) that (H2a) 𝜃, 𝑠 |= ®E = ®𝑥 and 𝜃, 𝑠, ℎ |= 𝑃 , and hence

(H2b) 𝜃, 𝑠 [®x → ®𝑣], ℎ |= ®x = ®𝑥 ★ 𝑃 .

• Since pv(𝑃) = ∅ we obtain from (H2b) with Lemma 1 that 𝜃, ∅[®x → ®𝑣], ℎ |= ®x = ®𝑥 ★ 𝑃 and hence

(H7) 𝜃, ∅[®x → ®𝑣] [®z → null], ℎ |= ®x = ®𝑥 ★ 𝑃 ★ ®z = null.
• (H1), (H5) and (H6) imply the existence of a specification (®x = ®𝑥 ★ 𝑃 ★ ®z = null) (𝑜𝑘 : 𝑄 ′

ok) (𝑒𝑟𝑟 :

𝑄 ′
err ) ∈ Int𝛾,𝑓 ((®x = ®𝑥 ★ 𝑃) (𝑜𝑘 : 𝑄ok) (𝑒𝑟𝑟 : 𝑄err )) such that

(H9) 𝛾 |=
(
®x = ®𝑥 ★ 𝑃 ★ ®z = null

)
𝐶

(
ok : 𝑄 ′

ok

) (
err : 𝑄 ′

err
)

• Instantiating (H9) with (H1), (H7) and (H3) yields

(H11)
∀𝑠′, ℎ′′ . (𝑠′′, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜𝑘 : (𝑠′, ℎ′′)

⇒ (𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄 ′
ok)

• Defining 𝑣 ′ := JEK𝜃,𝑠′ , we apply the operation semantics of the successfully termination function call,

which yields

(𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®E) ⇓𝛾 (𝑠 [y → 𝑣 ′], ℎ′′)

• To conclude the proof, it remains to show that 𝜃, 𝑠 [y → 𝑣 ′], ℎ′ |= ®E[E𝑦/y] = ®𝑥 ★ 𝑄ok [y/ret]. (H11)
implies 𝜃, 𝑠′, ℎ′ |= 𝑄 ′

ok . Defining ®p := pv(𝑄 ′
ok) and ®𝑣 := 𝑠′ (®p), we obtain 𝜃 [ ®𝑝 → ®𝑣],−, ℎ′ |= 𝑄 ′

ok [ ®𝑝/®p]
where − may denote any variable store, since the assertion does not hold any program variables.

Therefore, 𝜃 [ ®𝑝 → ®𝑣], 𝑠, ℎ′ |= 𝑄 ′
ok [ ®𝑝/®p] and hence (H12) 𝜃, 𝑠 [y → 𝑣 ′], ℎ′ |= ∃®𝑝.𝑄 ′

ok [ ®𝑝/®p] ★ y = 𝑣 ′ hold.
• From the definitions of 𝑣 ′, ®p and ®𝑝 we obtain 𝑣 ′ := JEK𝜃,𝑠′ = JE[ ®𝑝/®p]K𝜃,− and therefore 𝜃, 𝑠 [y →
𝑣 ′], ℎ′ |= ∃®𝑝.𝑄 ′

ok [ ®𝑝/®p] ★ y = E[ ®𝑝/®p]. Hence 𝜃, 𝑠 [y → 𝑣 ′], ℎ′ |= 𝑄ok [y/ret].
• From (H2a) and Lemma 3 , we obtain 𝜃, 𝑠 [y → 𝑣 ′] |= ®E[E𝑦/y] = ®𝑥 and therefore 𝜃, 𝑠 [y → 𝑣 ′], ℎ′ |=
®E[E𝑦/y] = ®𝑥 ★𝑄ok [y/ret], which concludes this case of the proof.

Finally, we prove the erroneously terminating over-approximation soundness. Our hypotheses are:

(H1) |= (𝛾, Γ)
(H2) 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃

(H3) ℎ ♯ ℎ𝑓
(H4) y ∉ fv(E𝑦)
(H5) (®x = ®𝑥 ★ 𝑃) (𝑜𝑘 : 𝑄ok) (𝑒𝑟𝑟 : 𝑄err ) ∈ Γ(𝑓 ).
Our goal is to show that:

∀𝑠′, ℎ′′ . (𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®x) ⇓𝛾 𝑒𝑟𝑟 : (𝑠′, ℎ′′)
⇒ (𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= y = E𝑦 ★ ®E = ®𝑥 ★𝑄err )

• From (H1) and (H5), we obtain 𝐶 and E such that (H6) 𝑓 (®x){𝐶, return E} ∈ 𝛾 .

• We define ®𝑣 := 𝜃 ( ®𝑥) and obtain from (H2), that (H2a) 𝜃, 𝑠 |= ®E = ®𝑥 and 𝜃, 𝑠, ℎ |= 𝑃 , and hence

(H2b) 𝜃, 𝑠 [®x → ®𝑣], ℎ |= ®x = ®𝑥 ★ 𝑃 .
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• Since pv(𝑃) = ∅ we obtain from (H2b) with Lemma 1 that 𝜃, ∅[®x → ®𝑣], ℎ |= ®x = ®𝑥 ★ 𝑃 and (H7) 𝜃, ∅[®x →
®𝑣] [®z → null], ℎ |= ®x = ®𝑥 ★ 𝑃 ★ ®z = null.

• (H1), (H5) and (H6) imply the existence of a specification (®x = ®𝑥 ★ 𝑃 ★ ®z = null) (𝑜𝑘 : 𝑄 ′
ok) (𝑒𝑟𝑟 :

𝑄 ′
err ) ∈ Int𝛾,𝑓 ((®x = ®𝑥 ★ 𝑃) (𝑄ok) (𝑄err )) such that

(H9) 𝛾 |=
(
®x = ®𝑥 ★ 𝑃 ★ ®z = null

)
𝐶

(
ok : 𝑄 ′

ok

) (
err : 𝑄 ′

err
)

• Instantiating (H9) with (H1), (H7) and (H3) yields

(H11)
∀𝑠′, ℎ′′ . (𝑠′′, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑒𝑟𝑟 : (𝑠′, ℎ′′)

⇒ (𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄 ′
err )

• Defining 𝑣𝑒𝑟𝑟 := JerrK𝑠′ , we apply the operation semantics of the erroneously termination function call,

which yields

(𝑠, ℎ ⊎ ℎ𝑓 ), y := 𝑓 (®E) ⇓𝛾 (𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′′)
• To conclude the proof, it remains to show that 𝜃, 𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑄err .

𝜃, 𝑠′ |= y = E𝑦 holds trivially and (H11) implies 𝜃, 𝑠′, ℎ′ |= 𝑄 ′
err . Defining ®p := pv(𝑄 ′

err ) and ®𝑣 := 𝑠′ (®p),
we obtain 𝜃 [ ®𝑝 → ®𝑣],−, ℎ′ |= 𝑄 ′

err [ ®𝑝/®p] where − may denote any variable store, since the assertion

does not hold any program variables. Therefore, 𝜃 [ ®𝑝 → ®𝑣], 𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′ |= 𝑄 ′
err [ ®𝑝/®p] and hence

𝜃, 𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′ |= ∃®𝑝.𝑄 ′
err [ ®𝑝/®p] and (H12) 𝜃, 𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′ |= 𝑄err holds.

• (H2) implies 𝜃 ( ®𝑥) = J®EK𝜃,𝑠 = J®EK𝜃,𝑠 [err→𝑣𝑒𝑟𝑟 ] and hence 𝜃, 𝑠 [err ↦→ 𝑣𝑒𝑟𝑟 ] |= ®E = ®𝑥 . Therefore, we obtain
𝜃, 𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′ |= y = E𝑦 ★ ®E = ®𝑥 ★𝑄err , which concludes the proof.

While. The iterative while rule is:

while-iterate

∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B ∀𝑖 ∈ N. Γ ⊢
(
𝑃𝑖 ∧ E

)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
𝑃∞ ≜ False 𝑚 ≜ min({𝑖 ∈ N ⊎ {∞} | |= 𝑃𝑖 ⇒ ¬E})

Γ ⊢
(
𝑃0

)
while (E) 𝐶

(
ok : 𝑃𝑚

) (
err : ∃𝑛 < 𝑚.𝑄𝑛

)
We prove the under-approximation case for successful termination; the faulting case is proven analogously.

Our hypotheses are as follows:

(H1) |= (𝛾, Γ);
(H2a) ∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B
(H2b) ∀𝑖 ∈ N. Γ ⊢

(
𝑃𝑖 ∧ E

)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
;

(H3) 𝑃∞ ≜ False;
(H4) 𝑚 ≜ min({𝑖 ∈ N ⊎ {∞} | |= 𝑃𝑖 ⇒ ¬E});
(H5) 𝜃, 𝑠′, ℎ′ |= 𝑃𝑚 ;

(H6) ℎ′ ♯ ℎ𝑓 .
Our goal is to show that:

∃𝑠, ℎ. 𝜃, 𝑠, ℎ |= 𝑃0 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ), while (E) 𝐶 ⇓𝛾 𝑜𝑘 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )
• From (H5), we have that (H7)𝑚 ≠ ∞;

• If 𝑚 = 0, we have from (H4) and (H5) that 𝜃, 𝑠′, ℎ′ |= 𝑃0 ∧ ¬E. Taking 𝑠 = 𝑠′ and ℎ = ℎ′, we have

JEK𝑠 = false, and the operational semantics yields the required (𝑠, ℎ⊎ℎ𝑓 ), while (E) 𝐶 ⇓𝛾 (𝑠′, ℎ′⊎ℎ𝑓 );
• Otherwise, we have that𝑚 > 0, and (H4) and (H5) imply that (H8) 𝜃, 𝑠′, ℎ′ |= 𝑃𝑚 . Then, by iterative

application of (H2a), (H2b), and the induction hypothesis, we obtain the existence of a state 𝑠, ℎ such

that (H9) (𝜃, 𝑠, ℎ |= 𝑃0 ∧ E) and (H10) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶𝑚 ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 ). From (H9), it also follows that

𝜃, 𝑠, ℎ |= 𝑃0. Finally, given (H4), (H10), and the operational semantics of the while loop, we also have

that while (E) 𝐶 ⇓𝛾 𝑜𝑘 : (𝑠′, ℎ′ ⊎ ℎ𝑓 ).
Second, we prove the over-approximating case. Our hypotheses are as follows:

(H1) |= (𝛾, Γ);
(H2a) ∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B
(H2b) ∀𝑖 ∈ N. Γ ⊢

(
𝑃𝑖 ∧ E

)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
;
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(H3) 𝑃∞ ≜ False;
(H4) 𝑚 ≜ min({𝑖 ∈ N ⊎ {∞} | |= 𝑃𝑖 ⇒ ¬E});
(H5) 𝜃, 𝑠, ℎ |= 𝑃0 ★ E ∈ B,
(H6) ℎ′ ♯ ℎ𝑓 .

and our goal is to show that:

∀𝑜, 𝑠′, ℎ′′ . (𝑠, ℎ ⊎ ℎ𝑓 ), while (E) 𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′′) =⇒
∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ ((𝑜 = ok ∧ 𝜃, 𝑠′, ℎ′ |= 𝑃𝑚) ∨ (𝑜 = err ∧ 𝜃, 𝑠′, ℎ′ |= ∃𝑛 < 𝑚. 𝑄𝑛))

Taking (H7) (𝑠, ℎ ⊎ ℎ𝑓 ), while (E) 𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′′), we have the following:
• If𝑚 = 0, then 𝜃, 𝑠, ℎ |= 𝑃0 ∧ ¬E, meaning that JEK𝑠 = false, and from there, the operational semantics

yields (𝑠, ℎ ⊎ ℎ𝑓 ), while (E) 𝐶 ⇓𝛾 (𝑠, ℎ ⊎ ℎ𝑓 ) and, trivially, it also holds that 𝜃, 𝑠, ℎ |= 𝑃𝑚 .

• If (H8)𝑚 = ∞, then given (H7) we can prove by contradiction that 𝑜 = err . Then, let 𝑘 > 0 be the

number of times the while unrolling rule has been applied in the derivation of (H7) (such a 𝑘 exists due

to the design of the operational semantics). Then, given (H2), (H4), (H8), the inductive hypothesis, and

the semantics of sequencing, we have that

(H9a) ∀𝑜, 𝑠′, ℎ′′ . (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶𝑘 ⇓𝛾 𝑜 : (𝑠′, ℎ′′) =⇒
∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ ((𝑜 = ok ∧ 𝜃, 𝑠′, ℎ′ |= 𝑃𝑘 ) ∨ (𝑜 = err ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄𝑘−1

))

and since the final states (𝑠′, ℎ′′) coincide for (H9a) and (H7) given the operational semantics of the

while loop, we have the desired goal for 𝑛 = 𝑘 − 1 < 𝑚 = ∞.

• Otherwise, we have that 0 < 𝑚 < ∞. Then, given (H2a), (H2b), (H4), (H8), the inductive hypothesis,

and the semantics of sequencing, we have that

(H9b)
∀𝑜, 𝑠′, ℎ′′ . (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶𝑚 ⇓𝛾 𝑜 : (𝑠′, ℎ′′) =⇒

∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ ((𝑜 = ok ∧ 𝜃, 𝑠′, ℎ′ |= 𝑃𝑚) ∨ (𝑜 = err ∧ 𝜃, 𝑠′, ℎ′ |= ∨𝑚−1

𝑖=0
𝑄𝑖 ))

and since the final states (𝑠′, ℎ′′) coincide for (H9b) and (H7) given the operational semantics of the

while loop, we have the desired goal, where 𝑛 < 𝑚 is guaranteed by the bounds of the disjunction.

Frame. The frame rule is:

frame

Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
mod(𝐶) ∩ fv(𝑅) = ∅

Γ ⊢
(
𝑃 ★ 𝑅

)
𝐶

(
ok : 𝑄ok ★ 𝑅

) (
err : 𝑄err ★ 𝑅

)
To prove the soundness of this rule, our hypotheses are that for arbitrary 𝛾 :

(H1) |= (𝛾, Γ)
(H2) Γ ⊢

(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
(H3) mod(𝐶) ∩ fv(𝑅) = ∅
From the inductive hypothesis and (H2), it follows that Γ |=

(
𝑃
)
𝐶
(
ok : 𝑄ok

) (
err : 𝑄err

)
(H4). It then suffices to

show that Γ |=
(
𝑃 ★ 𝑅

)
𝐶
(
ok : 𝑄ok ★ 𝑅

) (
err : 𝑄err ★ 𝑅

)
holds. We start off by showing the over-approximating

case. For this we assume that for some 𝜃, 𝑠, ℎ, ℎ𝑓 , 𝑜, 𝑠
′, ℎ′′:

(H5) 𝜃, 𝑠, ℎ |= 𝑃 ★ 𝑅

(H6) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
From the definition of the satisfiability relation and (H5), it follows that there exists some heaps,

¯ℎ and
¯ℎ𝑟 ,

such that:

(H7) ℎ = ¯ℎ ⊎ ¯ℎ𝑟
(H8) 𝜃, 𝑠, ¯ℎ |= 𝑃

(H9) 𝜃, 𝑠, ¯ℎ𝑟 |= 𝑅

Letting
¯ℎ𝑓 = ¯ℎ𝑟 ⊎ ℎ𝑓 , from (H6) and the associativity of ⊎, it follows that (𝑠, ¯ℎ ⊎ ¯ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′′) (H10).

From (H4), (H1), (H8) and (H10), it follows that:

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ¯ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜
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By applying item 2 and item 1 to (H9), we can infer that 𝜃, 𝑠′, ¯ℎ𝑟 |= 𝑅. Then letting
¯ℎ′ = ℎ′ ⊎ ¯ℎ𝑟 , given the

definition of the satisfiability relation, it follows that 𝜃, 𝑠′, ¯ℎ′ |= 𝑄𝑜 ★ 𝑅. We can then infer that:

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ¯ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜 ★ 𝑅

as required. We now show the under-approximating case. For this we assume that for some 𝜃, 𝑠′, ℎ′, ℎ𝑓 , 𝑜 :

(H11) 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜 ★ 𝑅

(H12) ℎ𝑓 ♯ ℎ′

From the definition of the satisfiability relation and (H11), it follows that there exists some heaps,
¯ℎ′ and ¯ℎ′𝑟

such that:

(H13) ℎ′ = ¯ℎ′ ⊎ ¯ℎ′𝑟
(H14) 𝜃, 𝑠′, ¯ℎ′ |= 𝑄𝑜

(H15) 𝜃, 𝑠′, ¯ℎ′𝑟 |= 𝑅

Letting
¯ℎ𝑓 = ℎ𝑓 ⊎ ¯ℎ′𝑟 , from (H12) and (H13), it follows that ¯ℎ𝑓 ♯ ¯ℎ′ (H16). From (H4), applying (H1), (H14)

and (H16), it follows that:

∃𝑠, ¯ℎ. 𝜃, 𝑠, ¯ℎ |= 𝑃 ∧ (𝑠, ¯ℎ ⊎ ¯ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ¯ℎ′ ⊎ ¯ℎ𝑓 )

By applying item 2 and item 1 to (H15), it follows that 𝜃, 𝑠, ¯ℎ′𝑟 |= 𝑅. Letting ℎ = ¯ℎ ⊎ ¯ℎ′𝑟 , by the definition of the

satisfiability relation, it follows that:

∃𝑠, ¯ℎ. 𝜃, 𝑠, ℎ |= 𝑃 ★ 𝑅 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )
as required.

Equivalence. The equivalence rule is

eqiv

Γ ⊢
(
𝑃 ′
)
𝐶

(
ok : 𝑄 ′

ok
) (

err : 𝑄 ′
err

)
|= 𝑃 ′, 𝑄′

ok, 𝑄
′
err ⇔ 𝑃,𝑄ok, 𝑄err

Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
Our hypotheses for OX-soundness are

(H1) |= (𝛾, Γ)
(H2) Γ |=

(
𝑃 ′
)
𝐶

(
ok : 𝑄 ′

ok

) (
err : 𝑄 ′

err
)

(H3) |= 𝑃 ′, 𝑄′
ok, 𝑄

′
err ⇔ 𝑃,𝑄ok, 𝑄err

(H4) 𝜃, 𝑠, ℎ |= 𝑃

(H5) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 (𝑠′, ℎ′′)
and we aim to show that

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜

(H3) and (H4) implies 𝜃, 𝑠, ℎ |= 𝑃 ′ and with (H2) and (H5) then implies (H6) 𝑜 ≠ miss ∧ ∃ℎ′ . ℎ = ℎ′ ⊎ ℎ𝑓 ∧
𝜃, 𝑠′, ℎ′ |= 𝑄 ′

𝑜 . (H2) then implies the desired result.

For the UX-soundness, the hypotheses are

(H1) |= (𝛾, Γ)
(H2) Γ |=

(
𝑃 ′
)
𝐶

(
ok : 𝑄 ′

ok

) (
err : 𝑄 ′

err
)

(H3) |= 𝑃 ′, 𝑄′
ok, 𝑄

′
err ⇔ 𝑃,𝑄ok, 𝑄err

(H4) 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜

(H5) ℎ′ ♯ ℎ𝑓
(H2) and (H4) implies 𝜃, 𝑠′, ℎ′ |= 𝑄 ′

𝑜 . (H2) and (H5) implies ∃𝑠, ℎ. 𝜃, 𝑠, ℎ |= 𝑃 ′ ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 ).
(H3) then implies the desired result.

Existentials. The existential rule is:

exists

Γ ⊢
(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
Γ ⊢

(
∃𝑥 . 𝑃

)
𝐶

(
ok : ∃𝑥 .𝑄ok

) (
err : ∃𝑥 .𝑄err

)
To prove the soundness of this rule, our hypotheses are that for arbitrary 𝛾 :
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(H1) |= (𝛾, Γ)
(H2) Γ ⊢

(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
Using the inductive hypothesis and (H2), it follows that (H3) Γ |=

(
𝑃
)
𝐶

(
ok : 𝑄ok

) (
err : 𝑄err

)
. It then suffices

to show that Γ |=
(
∃𝑥 . 𝑃

)
𝐶

(
ok : ∃𝑥 .𝑄ok

) (
err : ∃𝑥 .𝑄err

)
. We start off by showing the over-approximating

case. To do so, we assume that for some 𝜃, 𝑠, ℎ, ℎ𝑓 , 𝑜, 𝑠
′, ℎ′′:

(H4) 𝜃, 𝑠, ℎ |= ∃𝑥 . 𝑃
(H5) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )
From (H4) and the definition of the satisfiability relation, it follows that, for some 𝑣 , (H6) 𝜃 [𝑥 ↦→ 𝑣], 𝑠, ℎ |= 𝑃

holds. From (H3), (H1), (H6) and (H5), it follows that:

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃 [𝑥 ↦→ 𝑣], 𝑠′, ℎ′ |= 𝑄𝑜

This trivially entails:

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= ∃𝑥 .𝑄𝑜

as required. We now show the under-approximating case. To do so, we assume that for some 𝜃, 𝑠′, ℎ′, ℎ𝑓 , 𝑜 :

(H7) 𝜃, 𝑠′, ℎ′ |= ∃𝑥 𝑄𝑜

(H8) ℎ𝑓 ♯ ℎ′

From (H7) and the definition of the satisfiability relation, it follows that, for some 𝑣 , (H9) 𝜃 [𝑥 ↦→ 𝑣], 𝑠′, ℎ′ |= 𝑄𝑜 .

From (H3), (H1), (H9) and (H8), it follows that:

∃𝑠, ℎ. 𝜃 [𝑥 ↦→ 𝑣], 𝑠, ℎ |= 𝑃 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )

and consequently:

∃𝑠, ℎ. 𝜃, 𝑠, ℎ |= ∃𝑥 . 𝑃 ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )
as required.

Disjunction. The disjunction rule is

disj

Γ ⊢ (𝑃1) 𝐶 (ok : 𝑄1

ok) (err : 𝑄1

err ) Γ ⊢ (𝑃2) 𝐶 (ok : 𝑄2

ok) (err : 𝑄2

err )
Γ ⊢ (𝑃1 ∨ 𝑃2) 𝐶 (ok : 𝑄1

ok ∨𝑄2

ok) (err : 𝑄1

err ∨𝑄2

err )

Our hypotheses for OX-soundness are

(H1) |= (𝛾, Γ)
(H2) Γ |= (𝑃1) 𝐶 (ok : 𝑄1

ok) (err : 𝑄1

err )
(H3) Γ |= (𝑃2) 𝐶 (ok : 𝑄2

ok) (err : 𝑄2

err )
(H4) 𝜃, 𝑠, ℎ |= 𝑃1 ∨ 𝑃2

(H5) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
(H4) implies that (𝜃, 𝑠, ℎ |= 𝑃1) ∨ (𝜃, 𝑠, ℎ |= 𝑃2). If the first case of the disjunct holds, (H2) implies (H6a) 𝑜 ≠

miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄1

𝑜 . Otherwise, the second case holds and (H3) yields (H6b) 𝑜 ≠

miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄2

𝑜 . The disjunction of (H6a) and (H6b) yields the desired result.

For the UX-soundness, our hypotheses are

(H1) |= (𝛾, Γ)
(H2) Γ |= (𝑃1) 𝐶 (ok : 𝑄1

ok) (err : 𝑄1

err )
(H3) Γ |= (𝑃2) 𝐶 (ok : 𝑄2

ok) (err : 𝑄2

err )
(H4) 𝜃, 𝑠′, ℎ′ |= 𝑄1

𝑜 ∨𝑄2

𝑜

(H5) ℎ′ ♯ ℎ𝑓
(H4) implies (𝜃, 𝑠′, ℎ′ |= 𝑄1

𝑜 )∨(𝜃, 𝑠′, ℎ′ |= 𝑄2

𝑜 ). If the first case of the disjunct holds, (H2) yields (H6a) ∃𝑠, ℎ(𝑠, ℎ⊎
ℎ𝑓 ),𝐶 ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 ) ∧ 𝜃, 𝑠, ℎ |= 𝑃1. Otherwise, the second case of the disjunction holds and (H3) implies

(H6b) ∃𝑠, ℎ(𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 ) ∧ 𝜃, 𝑠, ℎ |= 𝑃2. The disjunction of (H6a) and (H6b) yields the desired

result.
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Lookup. The Lookup rule is

lookup

x ∉ pv(E′) 𝜃 ≜ [E′/x]
Γ ⊢ (x = E′ ★ E ↦→ E1) x := [E] (E′ ∈ Val ★ x = E1𝜃 ★ E𝜃 ↦→ E1𝜃 )

To prove its OX-soundness, the hypotheses are:

(H1) |= (𝛾, Γ)
(H2) x ∉ pv(E′)
(H4) 𝜃, 𝑠, ℎ |= x = E′ ★ E ↦→ E1

(H5) (𝑠, ℎ ⊎ ℎ𝑓 ), x := [E] ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
and we aim to show

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= E′ ∈ Val ★ x = E1 [E′/x] ★ E[E′/x] ↦→ E1 [E′/x]

(H5) yields (H6) 𝑜 ≠ miss, (H7) JEK𝑠 = 𝑣 and (H8) 𝑠′ = 𝑠 [x → 𝑣] and (H9) ℎ′′ = ℎ ⊎ ℎ𝑓 . Chosing (10)ℎ′ = ℎ,

(H4) and (H8) yield (H11) 𝜃, 𝑠′ |= E′ ∈ Val. (H4), (H9), (H10) and (H11) imply the desired result.

For UX-soundness, our hypotheses are:

(H1) |= (𝛾, Γ)
(H2) x ∉ pv(E′)
(H3) 𝜃, 𝑠′, ℎ′ |= E′ ∈ Val ★ x = E1 [E′/x] ★ E[E′/x] ↦→ E1 [E′/x]
(H4) ℎ′ ♯ ℎ𝑓
and we aim to show:

∃𝑠, ℎ. (𝑠, ℎ ⊎ ℎ𝑓 ), x := [E] ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 ) ∧ 𝜃, 𝑠, ℎ |= x = E′ ★ E ↦→ E1

Letting 𝑣 = JE′K𝜃,𝑠′ , 𝑠 = 𝑠′ [x ↦→ 𝑣] and ℎ = ℎ′, then:

(𝑠, ℎ ⊎ ℎ𝑓 ), x := [E] ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 )

holds. Then given (H2), by applying item 3, it is clear that 𝑣 = JE′K𝜃,𝑠 , and therefore 𝜃, 𝑠 |= x = E′. Finally,
similarly, 𝜃, 𝑠, ℎ |= E ↦→ E1, from which we can reach our goal by the definition of the satisfiability relation.

Lookup-err-val. The Lookup-err-val rule is

lookup-err-val

Eerr ≜ [“ExprEval”, str(E)]
Γ ⊢ (x = E′ ★ E �∈ Val) x := [E] (err : 𝑄err )

where 𝑄err = x = E′ ★ E �∈ Val ★ err = Eerr . To prove OX-soundness, the hypothese are:

(H1) |= (𝛾, Γ)
(H2) 𝜃, 𝑠, ℎ |= x = E′ ★ E �∈ Val
(H3) (𝑠, ℎ ⊎ ℎ𝑓 ), x := [E] ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
It then suffices to show that 𝜃, 𝑠′, ℎ′′ |= x = E′ ★ E�∈Val ★ err = Eerr . Given (H2) and the definition satisfiability

relation, it follows that JEK𝑠,ℎ ∉ Val, and therefore JEK𝑠,ℎ =  . From this we can infer that the only rule from

the big-step operational semantics that can apply is:

J𝐸K𝑠 =  
𝑣err = [“ExprEval”, str(E)]

(𝑠, ℎ), x := [𝐸] ⇓𝛾 err : (𝑠err , ℎ)

From this, we can infer that ℎ′′ = ℎ and 𝑠′ = 𝑠 [err ↦→ 𝑣err ]. From (H2) and the definition of the satisfiability

relation, it then follows that 𝜃, 𝑠′, ℎ′′ |= 𝑄err as required.

For UX-soundness, our hypotheses are:

(H1) |= (𝛾, Γ)
(H2) 𝜃, 𝑠′, ℎ′ |= 𝑄err
(H3) ℎ𝑓 ♯ ℎ′
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It then suffices to show that for some 𝑠, ℎ:

𝜃, 𝑠, ℎ |= x = E′ ★ E �∈ Val ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )))

Letting 𝑠 = 𝑠′ \ {err} and ℎ = ℎ′, from (H2) and the definition of the satisfiability relation, it follows that

𝜃, 𝑠, ℎ |= x = E′ ★ E �∈ Val and by applying the same big-step semantics rule as in the OX case, we derive the

second starjunct of our goal as required.

Lookup-err-use-after-free. The Lookup-err-use-after-free rule is

lookup-err-use-after-free

Eerr ≜ [“UseAfterFree”, str(E), E]
Γ ⊢ (x = E′ ★ E ↦→ ∅) x := [E] (err : 𝑄err )

where 𝑄err = x = E′ ★ E ↦→ ∅ ★ err = Eerr . To prove OX-soundness, the hypothese are:

(H1) |= (𝛾, Γ)
(H2) 𝜃, 𝑠, ℎ |= x = E′ ★ E ↦→ ∅
(H3) (𝑠, ℎ ⊎ ℎ𝑓 ), x := [E] ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
It then suffices to show that 𝜃, 𝑠′, ℎ′′ |= x = E′ ★ E ↦→ ∅ ★ err = Eerr . Given (H2), we can infer that

ℎ(JEK𝑠,ℎ) = ∅. From this we can infer that the only rule from the big-step operational semantics that can

apply is:

J𝐸K𝑠 = 𝑛 ℎ(𝑛) = ∅
𝑣err = [“UseAfterFree”, str(E), 𝑛]
(𝑠, ℎ), x := [𝐸] ⇓𝛾 err : (𝑠err , ℎ)

From this, we can infer that ℎ′′ = ℎ and 𝑠′ = 𝑠 [err ↦→ 𝑣err ]. From (H2) and the definition of the satisfiability

relation, it then follows that 𝜃, 𝑠′, ℎ′′ |= 𝑄err as required. For UX-soundness, our hypotheses are:

(H1) |= (𝛾, Γ)
(H2) 𝜃, 𝑠′, ℎ′ |= 𝑄err
(H3) ℎ𝑓 ♯ ℎ′

It then suffices to show that for some 𝑠, ℎ:

𝜃, 𝑠, ℎ |= x = E′ ★ E ↦→ ∅ ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′ ⊎ ℎ𝑓 )))

Letting 𝑠 = 𝑠′ \ {err} and ℎ = ℎ′, from (H2) and the definition of the satisfiability relation, it follows that

𝜃, 𝑠, ℎ |= x = E′ ★ E ↦→ ∅ and by applying the same big-step semantics rule as in the OX case, we derive the

second conjunct of our goal as required.

New. The New rule is

new

x ∉ pv(E′) 𝜃 ≜ [E′/x]
Γ ⊢ (x = E′ ★ E ∈ N) x := new(E) (𝑜𝑘 : E′ ∈ Val ★�

0≤𝑖<E𝜃 ((x + 𝑖) ↦→ null))
For the OX-soundness, our hypotheses are

(H1) |= (𝛾, Γ)
(H2) x ∉ pv(E′)
(H3) Γ ⊢ (x = E′ ★ E ∈ N) x := new(E) (𝑜𝑘 : E′ ∈ Val ★�

0≤𝑖<E[E′/x] ((x + 𝑖) ↦→ null))
(H4) 𝜃, 𝑠, ℎ |= x = E′ ★ E ∈ N
(H5) (𝑠, ℎ ⊎ ℎ𝑓 ), x := new(E) ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
(H5) implies:

(H6) 𝑜 ≠ miss
(H7) JEK𝑠 = 𝑛

(H8) ∀𝑖 ∈ {0, ..., 𝑛 − 1}. 𝑛′ + 𝑖 ∉ dom(ℎ ⊎ ℎ𝑓 )
(H9) 𝑠′ = 𝑠 [x → 𝑛′]
(H10) ℎ′′ = (ℎ ⊎ ℎ𝑓 ) [𝑛′ ↦→ null] . . . [𝑛′ + 𝑛 − 1 ↦→ null]
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Defining (H11) ℎ′ = ℎ[𝑛′ ↦→ null] . . . [𝑛′ + 𝑛 − 1 ↦→ null] yields with (H10) that (H12) ℎ′′ = ℎ′ ⊎ ℎ𝑓 .

(H2), (H4) and (H9) implies (H13) 𝜃, 𝑠′ |= E′ ∈ Val ★ x = 𝑛′ and (H11) then implies 𝜃, 𝑠′, ℎ′ |= E′ ∈ Val ★
�

0≤𝑖<E[E′/x] (x + 𝑖) ↦→ null, which is the desired result.

For the UX direction, the hypotheses are

(H1) |= (𝛾, Γ)
(H2) x ∉ pv(E′)
(H3) Γ ⊢ (x = E′ ★ E ∈ N) x := new(E) (𝑜𝑘 : E′ ∈ Val ★�

0≤𝑖<E[E′/x] ((x + 𝑖) ↦→ null))
(H4) 𝜃, 𝑠′, ℎ′ |= E′ ∈ Val ★�

0≤𝑖<E[E′/x] ((x + 𝑖) ↦→ null)
(H5) ℎ′ ♯ ℎ𝑓
(H4) implies that (H5) x ∈ dom(𝑠′) and we define

(H6) 𝑛′ = 𝑠′ (x)
(H7) 𝑛 = JE[E′/x]K𝜃,𝑠′
(H8) ℎ = ℎ′ |𝑑 , where 𝑑 = dom(ℎ′)\{𝑠 (x), . . . , 𝑠 (x + 𝑛)}
(H9) 𝑠 = 𝑠′ [x → 𝑣] where 𝑣 = JE′K𝜃,𝑠′
(H5) and (H8) impliy that (H10) 𝑛′ + 𝑖 ∉ dom(ℎ ⊎ ℎ𝑓 )∀𝑖 ∈ {0, ..., 𝑛 − 1} and (H11) ℎ′ ⊎ ℎ𝑓 = (ℎ ⊎ ℎ𝑓 ) [𝑛′ ↦→
null] . . . [𝑛′+𝑛−1 ↦→ null] and (H9) implies (H12) 𝑠′ = 𝑠 [x → 𝑛′]. (H2), (H7) and (H9) imply (H13) JEK𝜃,𝑠 = 𝑛.

(H10),(H11),(H12) and (H13)imply

(𝑠, ℎ ⊎ ℎ𝑓 ), x := new(E) ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
(H2) and (H9) imply JEK𝑠 = 𝑣 , which with (H7) and (H13) implies 𝜃, 𝑠 |= x = E′ ★ E ∈ N.

(H9), (H10), (H11) and (H13) imply the desired result.

Free. The free rule is

free

Γ ⊢ (E ↦→ E′) free(E) (𝑜𝑘 : E′ ∈ Val ★ E ↦→ ∅)
For OX-Soundness, the hypotheses are

(H1) |= (𝛾, Γ)
(H2) Γ ⊢ (E ↦→ E′) free(E) (𝑜𝑘 : E′ ∈ Val ★ E ↦→ ∅)
(H3) 𝜃, 𝑠, ℎ |= E ↦→ E′

(H4) (𝑠, ℎ ⊎ ℎ𝑓 ), free(E) ⇓𝛾 (𝑠′, ℎ′′)
(H4) implies

(H5) JEK𝑠 = 𝑛

(H6) (ℎ ⊎ ℎ𝑓 ) (𝑛) ∈ Val
(H7) 𝑠 = 𝑠′

(H8) ℎ′′ = (ℎ ⊎ ℎ𝑓 ) [𝑛 ↦→ ∅]
(H4) and (H5) impliy that 𝑛 ∈ dom(ℎ), which with (H8) implies that ℎ′′ = ℎ[𝑛 ↦→ ∅] ⊎ ℎ𝑓 . (H3) and

(H7) imply 𝜃, 𝑠′ |= E′ ∈ Val. (H5) and (H7) imply JEK𝑠′ = 𝑛 and defining ℎ′ = ℎ[𝑛 ↦→ ∅], we obtain

𝜃, 𝑠′, ℎ′ |= E′ ∈ Val ★ E ↦→ ∅, which is the desired result.

For the UX direction, our hypotheses are

(H1) |= (𝛾, Γ)
(H2) Γ ⊢ (E ↦→ E′) free(E) (𝑜𝑘 : E′ ∈ Val ★ E ↦→ ∅)
(H3) 𝜃, 𝑠′, ℎ′ |= E′ ∈ Val ★ E ↦→ ∅
(H4) ℎ′ ♯ ℎ𝑓
Defining 𝑠 = 𝑠′, (H3) yields that 𝑛 = JEK𝜃,𝑠′ = JEK𝜃,𝑠 for some 𝑛 ∈ N. Defining ℎ = ℎ′ [𝑛 ↦→ 𝑣] for

𝑣 = JE′K𝜃,𝑠′ = JE′K𝜃,𝑠 , we obtain ℎ′ = ℎ[𝑛 ↦→ ∅] and therefore ℎ′ ⊎ ℎ𝑓 = (ℎ ⊎ ℎ𝑓 ) [𝑛 ↦→ ∅]. The operational
semantics of free then yields

(𝑠, ℎ ⊎ ℎ𝑓 ), free(E) ⇓𝛾 (𝑠′, ℎ′ ⊎ ℎ𝑓 )
and also obtain 𝜃, 𝑠, ℎ |= E ↦→ E′, which is the desired result.

□
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D BASICS OF SCOTT INDUCTION
The second soundness statement that needs to be proven for ESL is that well-formed environments are valid.

This requires reasoning about the use of function specifications in the context of the environment extension

rule.

In particular, the use of specifications of non-recursive functions is trivially sound. For recursive functions

that always terminate, soundness can be proven by transfinite induction, while establishing a measure on the

function pre-conditions and allowing recursive use of specifications only if they have a strictly lower measure.

Without this requirement, we could prove an unsound specification (emp) f() (𝑜𝑘 : ret = 42) for the function
f(){x := f(); return x}, which does not hold since f never terminates and the (satisfiable) post-condition

ret = 42 implies the existence of at least one terminating execution. This soundness issue does not arise in

over-approximating logics, since, due to the meaning of triples, a satisfiable post-condition does not imply the

existence of terminating traces. In these logics, it is always sound to apply a specification to prove itself.

However, for recursive functions with non-terminating branches due to infinite recursion, we also have

to be able to allow recursive use of specifications whose measure does not decrease, and the tool to handle

such use is a form of fixpoint induction called Scott induction [45], which would normally be the tool for also

proving soundness of well-formed environments in over-approximating logics. However, we were not able to

find a corresponding soundness proof in the literature.

In the following, we give the relevant Scott-induction-related definitions (from [45]), together with an

instantiation that will be applied to prove soundness of well-formed environments in Appendix E.

Definition D.1 (Domain). A partially ordered set (𝐷, ⊑) is a domain, iff
(D1) ∃⊥ ∈ 𝐷.∀𝑑 ∈ 𝐷.⊥ ⊑ 𝑑 (least element)

(D2) ∀(𝑑𝑛)𝑛∈N ⊆ 𝐷. (∀𝑖 ∈ N. 𝑑𝑖 ⊑ 𝑑𝑖+1) =⇒ ⊔
𝑛∈N

𝑑𝑛 ∈ 𝐷 (chain-closedness)

where ⊔𝑛∈N𝑑𝑛 denotes the least upper bound or the supremum of the set {𝑑𝑛 | 𝑛 ∈ N} with respect to ⊑.

Definition D.2 (Admissible Subset). Given a domain (𝐷, ⊑) with least element ⊥, a subset 𝑠 ⊆ 𝐷 is called

admissible, iff

(S1) ⊥ ∈ 𝑠 (least element)

(S2) ∀(𝑠𝑛)𝑛∈N ⊆ 𝑠 . (∀𝑖 ∈ N. 𝑠𝑖 ⊑ 𝑠𝑖+1) =⇒ ⊔
𝑛∈N

𝑠𝑛 ∈ 𝑠 (chain-closedness)

Definition D.3 (Continuity on Domains). Assuming two domains (𝐷, ⊑𝐷 ) and (E, ⊑E), a function 𝑔 : 𝐷 −→ E
is continuous, iff
(C1) ∀𝑑, 𝑑′ ∈ 𝐷.𝑑 ⊑𝐷 𝑑′ =⇒ 𝑔(𝑑) ⊑E 𝑔(𝑑′) (monotonicity)

(C2) ∀(𝑑𝑛)𝑛∈N . (∀𝑖 ∈ N. 𝑑𝑖 ⊑ 𝑑𝑖+1) ⇒ ⊔
𝑛∈N

𝑔(𝑑𝑛) = 𝑔(⊔𝑛∈N 𝑑𝑛) (supremum-preservation)

Theorem D.4 (Least fixpoint). Given a domain 𝐷 and a continuous function 𝑔 : 𝐷 −→ 𝐷 , the least fixpoint
of 𝑔, denoted by lfp(𝑔), has the identity

lfp(𝑔) =
⊔
𝑛∈N

𝑔𝑛 (⊥),

where ⊥ denotes the least element of 𝐷 and 𝑔𝑛 denotes the 𝑛-times application of 𝑔.

TheoremD.5 (Scott Induction Principle). Given a domain𝐷 , an admissible subset 𝑠 ⊆ 𝐷 , and a continuous
function 𝑔 : 𝐷 −→ 𝐷 , it holds that

𝑔(𝑠) ⊆ 𝑠 =⇒ lfp(𝑔) ∈ 𝑠

Before presenting the instantiation of the Scott induction, we require a pseudo-command scope which

models the function call, and pseudo-commands for non-deterministic choice.

Definition D.6 (The scope pseudo-command). We define a pseudo-command which closely models the

behaviour of a function call:

scope((®x, ®E), 𝐶, (y, E′))
whose arguments are
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• a pair (®x, ®E) consisting of a list of distinct program variables and a list of expressions, such that both

are of the same length,

• a command 𝐶 which is to be executed within the "scope",

• a tuple (y, E′) of a program variable and an expression,

and whose semantics (eliding expression-evaluation fault cases) is given by

J ®𝐸K𝑠 = ®𝑣 pv(𝐶) \ {®x} = {®z}
𝑠𝑝 = ∅[®x → ®𝑣] [®z → null] (𝑠𝑝 , ℎ),𝐶 ⇓𝛾 (𝑠𝑞, ℎ′) JE′K𝑠𝑞 = 𝑣 ′

(𝑠, ℎ), scope((®x, ®E), 𝐶, (y, E′)) ⇓𝛾 (𝑠 [y → 𝑣 ′], ℎ′)

J ®𝐸K𝑠 = ®𝑣 pv(𝐶) \ {®x} = {®z}
𝑠𝑝 = ∅[®x → ®𝑣] [®z → null] (𝑠𝑝 , ℎ),𝐶 ⇓𝛾 𝑒𝑟𝑟 : (𝑠𝑞, ℎ′) JerrK𝑠𝑞 = 𝑣𝑒𝑟𝑟

(𝑠, ℎ), scope((®x, ®E), 𝐶, (y, E′)) ⇓𝛾 𝑒𝑟𝑟 : (𝑠 [err → 𝑣𝑒𝑟𝑟 ], ℎ′)

Definition D.7 (Non-Deterministic Choice (pseudo-commands)). We furthermore add pseudo-commands that

arbitrarily pick a command form a given set and executes it:

𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′ ∨ 𝜎,𝐶2 ⇓𝛾 𝑜 : 𝜎′

𝜎,𝐶1 ⊔𝐶2 ⇓𝛾 𝑜 : 𝜎′
∃𝑚 ∈ N. 𝜎,𝐶𝑚 ⇓𝛾 𝑜 : 𝜎′

𝜎,
⊔(𝐶𝑛 | 𝑛 ∈ N) ⇓𝛾 𝑜 : 𝜎′

We will now give some general definitions and lemmas, which will later on be instantiated to prove the

soundness of the environment extension via Theorem D.5.

Definition D.8 (Greatest-Fixpoint Closure of Cmd). We define the greatest-fixpoint closure of the set of

commands and pseudo-commands, Cmd ∪ {scope,⊔,⊔}, as the closure of that set under infinite applications
of the command constructors, and denote that closure by C.

Definition D.9 (Behavioural Equivalence on C). Given an arbitrary function implementation context 𝛾 , we

define the equivalence relation ≃𝛾 on C as

𝐶1 ≃𝛾 𝐶2 ⇐⇒ {(𝜎, 𝜎′) ∈ State2 | ∃𝑜. 𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′} = {(𝜎, 𝜎′) ∈ State2 | ∃𝑜. 𝜎,𝐶2 ⇓𝛾 𝑜 : 𝜎′}
where 𝐶1,𝐶2 ∈ C, effectively meaning that ≃𝛾 relates commands that exhibit the same set of behaviours. We

denote the resulting quotient space as C𝛾 and the corresponding equivalence class of a command 𝐶 by [𝐶].
This relation yields a partial order, denoted by ⊑𝛾 and defined as:

𝐶1 ⊑𝛾 𝐶2 ⇐⇒ {(𝜎, 𝜎′) ∈ State2 | ∃𝑜. 𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′} ⊆ {(𝜎, 𝜎′) ∈ State2 | ∃𝑜. 𝜎,𝐶2 ⇓𝛾 𝑜 : 𝜎′}
Furthermore, we define the join operator on commands in C𝛾 , ⊔𝛾 , as the non-deterministic choice, lift it to

quotient space, overloading notation:

[𝐶1] ⊔ [𝐶2] = [𝐶1 ⊔𝐶2]
and generalise it to countably infinitely many commands/equivalence classes in the standard way.

The relation ≃𝛾 is an equivalence relation as it inherits reflexivity, symmetry and transitivity from the

equality relation on sets, and ⊑𝛾 is a partial order on C𝛾 as it inherits transitivity and reflexivity from set

inclusion, while ≃𝛾 ensures anti-symmetry.

Furthermore, note that, by design of the language, we do not have to bring the outcome𝑜 into the equivalence

relation, as faulting states can be distinguished from successful ones by having the dedicated program variable

err in the store, and language errors can be distinguished from the missing resource errors by the value that

err holds.

Lemma D.10 (Domain Property). For any function implementation context 𝛾 , (C𝛾 , ⊑𝛾 ) is a domain.

Proof. Since we have already argued the partial order property, there are only remaining two properties

to show:

Chain-Closedness. For any chain ( [𝐶𝑛])𝑛∈N ⊆ C𝛾 , its supremum is defined as [⊔(𝐶𝑛 |𝑛∈N)]. Per definition
of C we have ⊔(𝐶𝑛 |𝑛∈N) ∈ C which implies [⊔(𝐶𝑛 |𝑛∈N)] ∈ C𝛾 .
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Least Element. The least element of C𝛾 , denoted by ⊥𝛾 , is the equivalence class of commands which,

given the function implementation context 𝛾 , do not terminate on any state. One such representative is the

command 𝐶 = while (true) skip. Since {(𝜎, 𝜎′) ∈ State2 | 𝜎, while (true) skip ⇓𝛾 𝜎′} = ∅, we trivially
obtain ⊥𝛾 ⊑𝛾 [𝐶], for all [𝐶] ∈ C𝛾 . □

Lemma D.11 (Scope and Function Call Eqivalence). Given a function implementation context 𝛾 and a
function 𝑓 such that 𝛾 (𝑓 ) = (®x,𝐶𝑓 , E

′), it holds that

scope((®x, ®E), 𝐶𝑓 , (y, E′)) ≃𝛾 y := 𝑓 (®E)

Proof. We show in detail the case of successful execution; the faulting cases are analogous. Let 𝛾 (𝑓 ) =
(®x,𝐶𝑓 , E

′) and (𝑠, ℎ), (𝑠′, ℎ′) ∈ State, such that

(𝑠, ℎ), scope((®x, ®E), 𝐶𝑓 , (y, E′)) ⇓𝛾 (𝑠′, ℎ′) .

The operational semantics of scope implies:

• 𝑠′ = 𝑠 [y → 𝑣 ′]
• J®EK𝑠 = ®𝑣
• JE′K𝑠𝑞 = 𝑣 ′

• 𝑠𝑝 = ∅[®x → ®𝑣] [®z → null]
• (𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 (𝑠𝑞, ℎ′)

Due to the assumption 𝛾 (𝑓 ) = (®x,𝐶𝑓 , E
′), we fulfil all conditions in the antecedent of the operational

semantics of the function call, and therefore obtain (𝑠, ℎ), y := 𝑓 (®E) ⇓𝛾 (𝑠′, ℎ′).
Now, let (𝑠, ℎ), (𝑠′, ℎ′) ∈ State such that (𝑠, ℎ), y := 𝑓 (®E) ⇓𝛾 (𝑠′, ℎ′). The operational semantics of the function

call implies:

• 𝑠′ = 𝑠 [y → 𝑣 ′]
• J®EK𝑠 = ®𝑣
• JE′K𝑠𝑞 = 𝑣 ′

• 𝑠𝑝 = ∅[®x → ®𝑣] [®z → null]
• (𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 (𝑠𝑞, ℎ′)
• 𝛾 (𝑓 ) = (®x,𝐶𝑓 , E

′)
Therefore, we fulfil all conditions in the antecedent of the operational semantics of scope, and therefore

obtain

(𝑠, ℎ), scope((®x, ®E), 𝐶𝑓 , (y, E′)) ⇓𝛾 (𝑠′, ℎ′). □

In the following, let𝐶𝑖 denote the implementation of the function 𝑓𝑖 , and𝐶
𝑖
denote the 𝑖-th component of a

vector 𝐶 .

Definition D.12 (Function Call Substitution). Given a command 𝐶 ∈ Cmd, a vector of 𝑛 commands 𝐶 =

(𝐶1, . . . ,𝐶𝑛) ∈ C𝑛 , a vector of 𝑛 functions 𝐹 = (𝑓1, . . . , 𝑓𝑛) and a function implementation context 𝛾 , such

that 𝐹 ⊆ dom(𝛾), we define a function call substitution 𝐶 [𝐶,𝛾, 𝐹 ] recursively on the structure of 𝐶 , with

𝛾 (𝑓𝑖 ) = (®x𝑖 ,−, E𝑖 ):
• (if (𝐵) 𝐶1 else 𝐶2) [𝐶,𝛾, 𝐹 ] := if (𝐵) {𝐶1 [𝐶,𝛾, 𝐹 ]} else {𝐶2 [𝐶,𝛾, 𝐹 ]}
• (while (𝐵) 𝐶) [𝐶,𝛾, 𝐹 ] := while (𝐵) {𝐶 [𝐶,𝛾, 𝐹 ]}
• (𝐶1;𝐶2) [𝐶,𝛾, 𝐹 ] := 𝐶1 [𝐶,𝛾, 𝐹 ];𝐶2 [𝐶,𝛾, 𝐹 ]

• (y := g(®E)) [𝐶,𝛾, 𝐹 ] :=

{
scope((®x𝑖 , ®E), 𝐶𝑖 , (y, E𝑖 )) if 𝑓𝑖 = g

y := g(®E) otherwise,

• 𝐶 [𝐶,𝛾, 𝐹 ] := 𝐶 , for all other 𝐶 .

Lemma D.13 (Substitution Preserves ≃𝛾 ). Given 𝐼 = {1, ..., 𝑛}, 𝐹 = (𝑓1, ..., 𝑓𝑛), and 𝛾 such that ∀𝑖 ∈
𝐼 . 𝛾 (𝑓𝑖 ) = (−,𝐶𝑖 ,−), 𝐶 = (𝐶1, ...,𝐶𝑛), and 𝑖 ∈ 𝐼 , it holds that

𝐶𝑖 ≃𝛾 𝐶𝑖 [𝐶,𝛾, 𝐹 ]
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Proof. We prove the statement by structural induction on 𝐶𝑖 . Per definition of function implementation

contexts, 𝐶𝑖 ∈ Cmd and is therefore finite. The only non-trivial cases are the structural commands and the

function call on 𝑓𝑖 , as the substitution is the identity otherwise.

If-Else. 𝐶𝑖 = if (E) 𝐶t else 𝐶f. Let 𝜎, 𝜎
′ ∈ State such that 𝜎, if (E) 𝐶t else 𝐶f ⇓𝛾 𝜎′, and let 𝜎 = (𝑠, ℎ).

Then, the operational semantics implies(
JEK𝑠 = true ∧ (𝑠, ℎ),𝐶t ⇓𝛾 𝜎′

)
∨
(
JEK𝑠 = false ∧ (𝑠, ℎ),𝐶f ⇓𝛾 𝜎′

)
(IH)

⇔
(
JEK𝑠 = true ∧ (𝑠, ℎ),𝐶t [𝐶,𝛾, 𝐹 ] ⇓𝛾 𝜎′

)
∨
(
JEK𝑠 = false ∧ (𝑠, ℎ),𝐶f [𝐶,𝛾, 𝐹 ] ⇓𝛾 𝜎′

)
which is equivalent to (𝑠, ℎ), if (E) 𝐶t [𝐶,𝛾, 𝐹 ] else𝐶f [𝐶,𝛾, 𝐹 ] ⇓𝛾 𝜎′. The faulting case is proven analogously

to the successful case, and the while loop and the sequencing are proven analogously to if-else.

Function Call. We have to show that

(y := 𝑓𝑖 (®E)) ≃𝛾 scope((®x𝑖 , ®E), 𝐶𝑖 , (y, E𝑖 ))

where 𝛾 (𝑓 𝑖) = (®x𝑖 ,𝐶𝑖 , E𝑖 ), but this holds directly due to Lemma D.11. □

Before moving on to the Scott instantiation, we define a notion of (recursion) depth, which keeps track of

the maximum number of nested function calls during the execution of commands.

Definition D.14 (Depth). Given a command 𝐶 ∈ Cmd, a vector of functions 𝐹 = (𝑓1, ..., 𝑓𝑛) and a derivation

𝜎,𝐶 ⇓𝛾 𝑜 : 𝜎′, we define depth𝐹 (𝜎,𝐶 ⇓𝛾 𝑜 : 𝜎′) inductively on the structure of big-step derivations of 𝐶 as

follows, noting that we extend the notion of a maximal element to the empty set by defining it to be zero:

If-Else.
depth𝐹 ((𝑠, ℎ), if (E) 𝐶t else 𝐶f ⇓𝛾 𝑜 : 𝜎′) ≜

max

(
max{depth𝐹 ((𝑠, ℎ),𝐶t ⇓𝛾 𝑜 : 𝜎′) | JEK𝑠 = true},
max{depth𝐹 ((𝑠, ℎ),𝐶f ⇓𝛾 𝑜 : 𝜎′) | JEK𝑠 = false}

)

Sequence.

depth𝐹 (𝜎,𝐶1;𝐶2 ⇓𝛾 𝑜 : 𝜎′) ≜

max
©­«

max{depth𝐹 (𝜎,𝐶1 ⇓𝛾 𝜎), depth𝐹 (𝜎,𝐶2 ⇓𝛾 𝑜 : 𝜎′) |
𝜎,𝐶1 ⇓𝛾 𝜎 ∧ 𝜎,𝐶2 ⇓𝛾 𝑜 : 𝜎′},

max{depth𝐹 (𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′) | 𝑜 = err/miss ∧ 𝜎,𝐶1 ⇓𝛾 𝑜 : 𝜎′}
ª®¬

While.

depth𝐹 ((𝑠, ℎ), while (E) 𝐶 ⇓𝛾 𝑜 : 𝜎′) ≜

max
©­«

max{depth𝐹 (𝜎,𝐶 ⇓𝛾 𝜎), depth𝐹 (𝜎, while (E) 𝐶 ⇓𝛾 𝑜 : 𝜎′) |
JEK𝑠 = true ∧ 𝜎,𝐶 ⇓𝛾 𝜎 ∧ 𝜎, while (E) 𝐶 ⇓𝛾 𝑜 : 𝜎′},

max{depth𝐹 (𝜎,𝐶 ⇓𝛾 𝑜 : 𝜎′) | 𝑜 = err/miss ∧ JEK𝑠 = true ∧ 𝜎,𝐶 ⇓𝛾 𝑜 : 𝜎′}
ª®¬

Function Call. depth𝐹 ((𝑠, ℎ), y := g(®E), ⇓𝛾 𝑜 : (𝑠′, ℎ′)) ≜ 0, if ∀𝑖 ∈ 𝐼 . g ≠ 𝑓𝑖

depth𝐹 ((𝑠, ℎ), y := 𝑓𝑖 (®E), ⇓𝛾 𝑜 : (𝑠′, ℎ′)) ≜

max

©­­­­­­­­«

max{1 + depth𝐹 ((𝑠𝑝 , ℎ),𝐶𝑖 ⇓𝛾 (𝑠𝑞, ℎ′)) |
𝑜 = ok, J®EK𝑠 = ®𝑣, (𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 (𝑠𝑞, ℎ′), JE𝑖K𝑠𝑞 = 𝑣 ′},

max{1 + depth𝐹 ((𝑠𝑝 , ℎ),𝐶𝑖 ⇓𝛾 𝑜 : (𝑠𝑞, ℎ′)) |
𝑜 = err/miss, J®EK𝑠 = ®𝑣, (𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 𝑜 : (𝑠𝑞, ℎ′)},

max{1 + depth𝐹 ((𝑠𝑝 , ℎ),𝐶𝑖 ⇓𝛾 𝑜 : (𝑠𝑞, ℎ′)) |
𝑜 = err, J®EK𝑠 = ®𝑣, (𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 (𝑠𝑞, ℎ′), JE𝑖K𝑠𝑞 =  },

ª®®®®®®®®¬
where 𝛾 (𝑓𝑖 ) = (®x𝑖 ,𝐶𝑖 , E𝑖 ), and 𝑠𝑝 and 𝑠′ are defined as in the operational semantics of the function call.

Remaining Commands. depth𝐹 (𝜎,𝐶 ⇓𝛾 𝑜 : 𝜎′) ≜ 0.
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D.1 1-dimensional Scott Instantiation
The env-extend rule allows us to add a set of 𝑛 functions to a given valid environment. Soundness of this

rule is proven in Appendix E through transfinite induction. In each of the cases (zero, successor ordinal, limit

ordinal), a Scott induction is required. In Appendix D.2, we present and prove the Scott induction required to

show soundness of the env-extend rule. Here, we present the Scott induction as required for the case where

only one function is added to a given environment at a time.

The general proof, as presented in Appendix D.2 evolves naturally from and relies heavily on this simpler

case, while introducing heavier notation. To minimize clutter in later definitions, we introduce the over-

approximation quadruple

{
𝑃
}
𝐶
{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
and define its notion of validity.

Definition D.15 (OX-Validity). Given an OX-quadruple

{
𝑃
}
𝐶

{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
and a function we

define for an arbitrary implementation context 𝛾

𝛾 |=
{
𝑃
}
𝐶
{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
⇐⇒

∀𝜃, 𝑠, ℎ, 𝑜, 𝑠′, ℎ′′, ℎ𝑓 . 𝜃, 𝑠, ℎ |= 𝑃

=⇒ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
=⇒ 𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜

and for an arbitrary specification context Γ

Γ |=
{
𝑃
}
𝐶
{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
⇐⇒

∀𝛾 . |= (𝛾, Γ) =⇒ 𝛾 |=
{
𝑃
}
𝐶
{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
In the following, we will also write

{
𝑃
}
𝐶
{
Q
}
as a shorthand for

{
𝑃
}
𝐶
{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
. Onward,

we assume the following:

(A1) a valid environment, |= (𝛾, Γ);
(A2) a function 𝑓 (®x){𝐶𝑓 ; return E′} that is not in the domain of 𝛾 ;

(A3) an arbitrary element 𝛼 ∈ O;

(A4) a set of terminating (external) specifications for 𝑓 , {(𝑃 (𝛽)) (Q(𝛽)) | 𝛽 < 𝛼};
(A5) a set of non-terminating (external) specifications for 𝑓 , {(𝑃∞ (𝛽)) (False) | 𝛽 ≤ 𝛼};
(A6) an extension of 𝛾 with 𝑓 : 𝛾 ′ ≜ 𝛾 [𝑓 ↦→ (®x,𝐶𝑓 , E

′)]; and
(A7) an extension of Γ with the given specifications of 𝑓 :

Γ(𝛼) ≜ Γ [𝑓 ↦→ {(𝑃 (𝛽)) (Q(𝛽)) | 𝛽 < 𝛼} ∪ {((𝑃∞ (𝛽)) (False) | 𝛽 ≤ 𝛼}]

We next define the function 𝑔 : C𝛾 ′ −→ C𝛾 ′ , to be used in the upcoming Scott induction, as follows:

𝑔( [𝐶]) def

= [ℎ(𝐶)]

where ℎ : C −→ C is defined as ℎ(𝐶) := 𝐶𝑓 [𝐶,𝛾 ′, 𝑓 ].
Intuitively, ℎ takes an arbitrary command 𝐶 from C as an argument and substitutes it for any function call

on 𝑓 in function body 𝐶𝑓 . The function 𝑔 then lifts this operation to the quotient space C𝛾 ′ . The definitions of

ℎ and 𝑔 trivially yield the following identities for arbitrary 𝐶 ∈ C and (𝐶𝑛)𝑛∈N ⊆ C:
(G1)

⊔
𝛾 ′

𝑛∈N
𝑔( [𝐶𝑛]) = [⊔𝛾 ′

𝑛∈N
ℎ(𝐶𝑛)]

(G2)

⊔
𝛾 ′

𝑛∈N
𝑔𝑛 ( [𝐶]) = [⊔𝛾 ′

𝑛∈N
ℎ𝑛 (𝐶)]

Lemma D.16. The function 𝑔 is continuous.

Proof. We begin by proving monotonicity.

Monotonicity. We prove the monotonicity of ℎ. We need to show that for all 𝐶1,𝐶2 ∈ C, it holds that

𝐶1 ⊑𝛾 ′ 𝐶2 ⇒ 𝐶𝑓 [𝐶1, 𝛾
′, 𝑓 ] ⊑𝛾 ′ 𝐶𝑓 [𝐶2, 𝛾

′, 𝑓 ]

Let 𝜎, 𝜎′ ∈ State such that 𝜎,𝐶𝑓 [𝐶1, 𝛾
′, 𝑓 ] ⇓𝛾 ′ 𝑜 : 𝜎′. We need to show that

𝜎,𝐶𝑓 [𝐶2, 𝛾
′, 𝑓 ] ⇓𝛾 ′ 𝑜 : 𝜎′
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and we do so by structural induction on 𝐶𝑓 . The only non-trivial cases are the compound commands and the

function call, as the substitution is the identity for all other cases.

If-Else. 𝐶𝑓 = if (E) 𝐶t else 𝐶f. Let (𝑠, ℎ), 𝜎′ ∈ State such that

(𝑠, ℎ), if (E) 𝐶t [𝐶1, 𝛾
′, 𝑓 ] else 𝐶f [𝐶1, 𝛾

′, 𝑓 ] ⇓𝛾 ′ 𝑜 : 𝜎′

The operational semantics yields (for an appropriate 𝜎err ):(
JEK𝑠 = true ∧ (𝑠, ℎ),𝐶t [𝐶1, 𝛾

′, 𝑓 ] ⇓𝛾 𝑜 : 𝜎′
)
∨(

JEK𝑠 = false ∧ (𝑠, ℎ),𝐶f [𝐶1, 𝛾
′, 𝑓 ] ⇓𝛾 𝑜 : 𝜎′

)
∨(

JEK𝑠 =  ∧ 𝜎′ = 𝜎err
)

(IH)

⇒
(
JEK𝑠 = true ∧ (𝑠, ℎ),𝐶t [𝐶2, 𝛾

′, 𝑓 ] ⇓𝛾 𝑜 : 𝜎′
)
∨(

JEK𝑠 = false ∧ (𝑠, ℎ),𝐶f [𝐶2, 𝛾
′, 𝑓 ] ⇓𝛾 𝑜 : 𝜎′

)
∨(

JEK𝑠 =  ∧ 𝜎′ = 𝜎err
)

which implies the desired

(𝑠, ℎ), if (E) 𝐶t [𝐶2, 𝛾
′, 𝑓 ] else 𝐶f [𝐶2, 𝛾

′, 𝑓 ] ⇓𝛾 ′ 𝑜 : 𝜎′

The while loop and the sequencing cases are proven analogously.

Function Call. 𝐶𝑓 = y := 𝑓 (®E). Using Lemma D.11 and considering the successful case only as the faulting

cases are proven analogously, let 𝜎, 𝜎′ ∈ State such that

𝜎, scope((x, ®E), 𝐶1, (y, E′)) ⇓𝛾 ′ 𝜎′

Letting 𝜎 = (𝑠, ℎ) and 𝜎′ = (𝑠′, ℎ′), the operational semantics for scope then implies

𝑠′ = 𝑠 [y → 𝑣 ′] ∧ J®EK𝑠 = ®𝑣 ∧ JE′K𝑠𝑞 = 𝑣 ′ ∧ pv(𝐶) \ {®x} = ®z
∧ 𝑠𝑝 = ∅[®x → ®𝑣] [®z → null] ∧ (𝑠𝑝 , ℎ),𝐶1 ⇓𝛾 (𝑠𝑞, ℎ′)

𝐶1⊑𝛾 ′𝐶2

=⇒ 𝑠′ = 𝑠 [y → 𝑣 ′] ∧ J®EK𝑠 = ®𝑣 ∧ JE′K𝑠𝑞 = 𝑣 ′ ∧ pv(𝐶) \ {®x} = ®z
∧ 𝑠𝑝 = ∅[®x → ®𝑣] [®z → null] ∧ (𝑠𝑝 , ℎ),𝐶2 ⇓𝛾 (𝑠𝑞, ℎ′)

which implies the desired

𝜎, scope((x, ®E), 𝐶2, (y, E′)) ⇓𝛾 ′ 𝜎′

The monotonicity of 𝑔 follows straightforwardly from the monotonicity of ℎ.

Supremum-Preservation. Assume a chain (𝐶𝑛)𝑛∈N in C. First, we show that

⊔
𝑛∈N

ℎ(𝐶𝑛) ⊑𝛾 ′ ℎ
( ⊔
𝑛∈N

𝐶𝑛
)
:

𝜎,
⊔

𝑛∈N
ℎ(𝐶𝑛) ⇓𝛾 ′ 𝑜 : 𝜎′

⇒ ∃𝑚 ∈ N. 𝜎, ℎ(𝐶𝑚) ⇓𝛾 ′ 𝑜 : 𝜎′

⇒ ∃𝑚 ∈ N. 𝜎,𝐶𝑓 [𝐶𝑚, 𝛾 ′, 𝑓 ] ⇓𝛾 ′ 𝑜 : 𝜎′

⇒ 𝜎,𝐶𝑓 [
⊔

𝑛∈N
𝐶𝑛, 𝛾

′, 𝑓 ] ⇓𝛾 ′ 𝑜 : 𝜎′

⇒ 𝜎,ℎ
( ⊔
𝑛∈N

𝐶𝑛
)
⇓𝛾 ′ 𝑜 : 𝜎′

Next, we show that ℎ
( ⊔
𝑛∈N

𝐶𝑛
)
⊑𝛾 ′

⊔
𝑛∈N

ℎ(𝐶𝑛). Let 𝜎,ℎ
( ⊔
𝑛∈N

𝐶𝑛
)
⇓𝛾 ′ 𝜎′, i.e. 𝜎,𝐶𝑓 [

⊔
𝑛∈N

𝐶𝑛, 𝛾
′, 𝑓 ] ⇓𝛾 ′ 𝜎′.

Then, since 𝐶𝑓 ∈ Cmd, it is a finite command and hence has a finite number 𝑡 of function calls on 𝑓 . At each

function call substitution site, the execution will execute some command 𝐶𝑛 . Assume 𝑘1, ..., 𝑘𝑡 ∈ N such that

at the 𝑖-th execution site, the command 𝐶𝑘𝑖 is executed, and let 𝑘 ≜ max (𝑘1, ..., 𝑘𝑡 ). Since (𝐶𝑛)𝑛∈N is a chain,

we have that 𝐶𝑘𝑖 ⊑𝛾 ′ 𝐶𝑘 for all 𝑖 ∈ {1, ..., 𝑡} and therefore:

𝜎,𝐶𝑓 [𝐶𝑘 , 𝛾 ′, 𝑓 ] ⇓𝛾 ′ 𝜎′

⇒ 𝜎,
⊔

𝑛∈N
𝐶𝑓 [𝐶𝑛, 𝛾 ′, 𝑓 ] ⇓𝛾 ′ 𝜎′

⇒ 𝜎,
⊔

𝑛∈N
ℎ(𝐶𝑛) ⇓𝛾 ′ 𝑜 : 𝜎′

The supremum preservation of 𝑔 follows trivially from the supremum preservation of ℎ. □
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Next, we introduce the admissible set we will use in this instantiation of the Scott induction.

Lemma D.17 (Admissible Subset 𝑆𝛼 ). The set 𝑆𝛼 , defined as

𝑆𝛼 := {[𝐶] ∈ C𝛾 ′ | ∃𝐶 ∈ [𝐶] .∀𝑡 ∈ (Γ(𝛼)) (𝑓 ) . ∃(𝑃 ′) (Q′) ∈ Int𝛾 ′,𝑓 (𝑡). Γ |=
{
𝑃 ′
}
𝐶
{
Q′}}

is an admissible subset of (C𝛾 ′ , ⊑𝛾 ′ ).

Proof. Least Element. We know that ⊥𝛾 ′ = [while (true) skip] and that this commands trivially seman-

tically satisfies any OX-quadruple. Therefore, ⊥𝛾 ′ ∈ 𝑆𝛼 .

Chain-Closure. We need to show that given an arbitrary chain ( [𝐶′
𝑛])𝑛∈N ⊆ 𝑆𝛼 , it holds that

⊔( [𝐶′
𝑛] | 𝑛 ∈

N) ∈ 𝑆𝛼 . Onwards, we will use the following notation:

• (𝑃) (Q) ≜ (𝑃) (𝑜𝑘 : 𝑄ok) (𝑒𝑟𝑟 : 𝑄err )
• (𝑃𝑛) (Q𝑛) ≜ (𝑃𝑛) (𝑜𝑘 : 𝑄𝑛

ok) (𝑒𝑟𝑟 : 𝑄𝑛
err )

The definition of 𝑆𝛼 yields the existence of a chain (𝐶𝑛)𝑛∈N ⊆ C such that for all 𝑛 ∈ N, it holds that𝐶𝑛 ∈ [𝐶′
𝑛]

and

∀𝑛 ∈ N, (𝑃) (Q) ∈ ((Γ(𝛼)) (𝑓 ). ∃(𝑃𝑛) (Q𝑛) ∈ Int𝛾 ′,𝑓 ((𝑃) (Q)). Γ |=
{
𝑃𝑛

}
𝐶𝑛

{
Q𝑛

}
Per definition of Int, we know that 𝑃𝑛 = 𝑃 ★ ®z = null for all 𝑛 ∈ N. Together with the definition of choice, we

obtain that

Γ |=
{
𝑃 ★ ®z = null

} ⊔
(𝐶𝑛 |𝑛 ∈ N)

{
𝑜𝑘 :

∨
𝑛∈N𝑄

𝑛
ok
} {

𝑒𝑟𝑟 :

∨
𝑛∈N𝑄

𝑛
err

}
It remains to show that (𝑃 ★ ®z = null) (∨𝑛∈N Q𝑛) is an internalisation of (𝑃) (Q). Since (𝑃 ★ ®z = null) (Q𝑛)
are internalisations of (𝑃) (Q), we obtain

∀𝑛 ∈ N. (𝑄ok ⇔ ∃®𝑝.𝑄𝑛
ok [ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p]) ∧ (𝑄err ⇔ ∃®𝑝.𝑄𝑛

err [ ®𝑝/®p])
This implies

𝑄ok ⇔ ∨
𝑛∈N

(
∃®𝑝.𝑄𝑛

ok [ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p]
)

⇔ ∃®𝑝.∨𝑛∈N
(
𝑄𝑛
ok [ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p]

)
⇔ ∃®𝑝.

( ∨
𝑛∈N𝑄

𝑛
ok [ ®𝑝/®p]

)
★ ret = E′ [ ®𝑝/®p]

⇔ ∃®𝑝.
( ∨

𝑛∈N𝑄
𝑛
ok
)
[ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p]

and analogously

𝑄err ⇔ ∨
𝑛∈N

(
∃®𝑝.𝑄𝑛

err [ ®𝑝/®p]
)

⇔ ∃®𝑝.∨𝑛∈N
(
𝑄𝑛
err [ ®𝑝/®p]

)
⇔ ∃®𝑝.

( ∨
𝑛∈N𝑄

𝑛
err

)
[ ®𝑝/®p]

Therefore, [⊔(𝐶𝑛 |𝑛 ∈ N)] ∈ 𝑆𝛼 , which yields ⊔([𝐶𝑛] |𝑛 ∈ N) ∈ 𝑆𝛼 and finally ⊔([𝐶′
𝑛] |𝑛 ∈ N) ∈ 𝑆𝛼 . □

This concludes the set-up for Scott induction, which allows us to prove the inductive step.

Lemma D.18 (Scott Condition). Under the assumptions (A1)-(A7) and additionally assuming

∀𝑡 ∈ (Γ(𝛼)) (𝑓 ) . ∃𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡). Γ(𝛼) ⊢ 𝐶𝑓 : 𝑡 ′ (1)

and
∃𝑡 ′ ∈ Int𝛾 ′,𝑓 ((𝑃 (𝛼)) (Q(𝛼))) . Γ(𝛼) ⊢ 𝐶𝑓 : 𝑡 ′ (2)

it holds that 𝑔(𝑆𝛼 ) ⊆ 𝑆𝛼 .

Proof. Let [𝐶] ∈ 𝑆𝛼 . Therefore, there exists a 𝐶′ ∈ [𝐶] such that for all 𝑡 ∈ (Γ(𝛼)) (𝑓 ) exists a (𝑃) (Q) ∈
Int𝛾 ′,𝑓 (𝑡) such that (H) Γ |=

{
𝑃
}
𝐶′ {

Q
}
. This implies that 𝐶′

does not call on 𝑓 , because Γ holds no

specifications for 𝑓 . Hence, 𝐶𝑓 [𝐶′, 𝛾 ′, 𝑓 ] does not call on 𝑓 either. We prove the statement by showing the

more general claim

Γ(𝛼) ⊢ (𝑃) 𝐶𝑓 (Q) =⇒ Γ |=
{
𝑃
}
𝐶𝑓 [𝐶′, 𝛾 ′, 𝑓 ]

{
Q
}

for arbitrary precondition 𝑃 and postcondition Q by induction over the structure of 𝐶𝑓 .

Base Commands and Function Calls on 𝑔 ≠ 𝑓 . In this case, 𝐶𝑓 [𝐶′, 𝛾 ′, 𝑓 ] = 𝐶𝑓 and 𝐶𝑓 does not call on 𝑓 .

Therefore, the proof tree of Γ(𝛼) ⊢ (𝑃) 𝐶𝑓 (Q) uses no specifications on 𝑓 , which implies that Γ ⊢ (𝑃) 𝐶𝑓 (Q).
From (A1) |= (𝛾, Γ), we obtain Γ |= (𝑃) 𝐶𝑓 (Q), which implies Γ |=

{
𝑃
}
𝐶𝑓

{
Q
}
.
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Compound Command Rules: if-then, if-else, sequence. If-then, if-else and sequence are proven directly,

using the IH.

Compound Command Rules: while-iterate. Given the while rule

while-iterate

∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B 𝑃∞ ≜ False
∀𝑖 ∈ N. Γ ⊢

(
𝑃𝑖 ∧ E

)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
𝑚 ≜ min({𝑖 ∈ N ⊎ {∞} | |= 𝑃𝑖 ⇒ ¬E})

Γ ⊢
(
𝑃0

)
while (E) 𝐶

(
ok : 𝑃𝑚

) (
err : ∃𝑛 < 𝑚.𝑄𝑛

)
we assume

(W1) 𝜃, 𝑠, ℎ |= 𝑃0

(W2) (𝑠, ℎ ⊎ ℎ𝑓 ), while (E) 𝐶 [𝐶′, 𝛾 ′, 𝑓 ] ⇓𝛾 (𝑠′, ℎ′′)
(W3) ∀𝑖 ∈ N. |= 𝑃𝑖 ⇒ E ∈ B
(W4) 𝑃∞ ≜ False
(W5) ∀𝑖 ∈ N. Γ(𝛼) ⊢

(
𝑃𝑖 ∧ E

)
𝐶

(
ok : 𝑃𝑖+1

) (
err : 𝑄𝑖

)
(W6) 𝑚 ≜ min({𝑖 ∈ N ⊎ {∞} | |= 𝑃𝑖 ⇒ ¬E})
Noting that (while (E) 𝐶) [𝐶′, 𝛾 ′, 𝑓 ] = while (E) 𝐶 [𝐶′, 𝛾 ′, 𝑓 ], (W2) implies that

(W7) (JEK𝑠,ℎ⊎ℎ𝑓
= false ∧ (𝑠, ℎ ⊎ ℎ𝑓 ) = (𝑠′, ℎ′′))

∨ (JEK𝑠,ℎ⊎ℎ𝑓
= true ∧ (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 [𝐶′, 𝛾 ′, 𝑓 ] ⇓𝛾 ′ 𝜎 ∧ 𝜎, while (E) 𝐶 [𝐶′, 𝛾 ′, 𝑓 ] ⇓𝛾 ′ (𝑠′, ℎ′′))

and (W5) and the inductive hypothesis imply

(W8) ∀𝑖 ∈ N. Γ |=
{
𝑃𝑖 ∧ E

}
𝐶 [𝐶′, 𝛾 ′, 𝑓 ]

{
𝑜𝑘 : 𝑃𝑖+1

} {
𝑒𝑟𝑟 : 𝑄𝑖

}
We know that𝑚 ≠ ∞, as otherwise the loop would be non-terminating, contradicting (W2). If𝑚 = 0, then

JEK𝜃,𝑠 = false, and (W7) trivially yields the desired result.

Otherwise, we have that𝑚 > 0. Then, (W8) yields

Γ |=
{
𝑃𝑖−1 ∧ E

}
𝐶 [𝐶′, 𝛾 ′, 𝑓 ]

{
𝑜𝑘 : 𝑃𝑖

} {
𝑒𝑟𝑟 : 𝑄𝑖−1

}
for all 0 < 𝑖 ≤ 𝑚 and (W6) yields Γ |=

{
𝑃𝑚

}
while (E) 𝐶 [𝐶′, 𝛾 ′, 𝑓 ]

{
𝑃𝑚

}
. From here, applying the operational

semantics of while𝑚 times, similarly to the proof in RHL [13], we obtain the desired

Γ |=
{
𝑃0

}
while (E) 𝐶 [𝐶′, 𝛾 ′, 𝑓 ]

{
𝑜𝑘 : 𝑃𝑚

} {
𝑒𝑟𝑟 : ∃𝑛 < 𝑚.𝑄𝑛

}
Structural rules. All four structural rules (equiv, exists, frame, and disj) are proven trivially, using the

inductive hypothesis. We give the proof for the equivalence rule:

eqiv

|= 𝑃 ⇔ 𝑃 ′ Γ(𝛼) ⊢
(
𝑃 ′
)
𝐶𝑓

(
ok : 𝑄 ′

ok
) (

err : 𝑄 ′
err

)
|= 𝑄 ′

ok ⇔ 𝑄ok |= 𝑄 ′
err ⇔ 𝑄err

Γ(𝛼) ⊢
(
𝑃
)
𝐶𝑓

(
ok : 𝑄ok

) (
err : 𝑄err

)
where the IH gives us Γ |=

{
𝑃 ′
}
𝐶𝑓 [𝐶′, 𝛾 ′, 𝑓 ]

{
𝑜𝑘 : 𝑄 ′

ok
} {

𝑒𝑟𝑟 : 𝑄 ′
err

}
, from which the desired claim is obtained

trivially.

Function call on 𝑓 . (y := f(®E)) [𝐶′, 𝛾 ′, 𝑓 ] = scope((®x, ®E), 𝐶′, (y, E′)), where 𝛾 ′ (𝑓 ) = (®x,𝐶𝑓 , E
′). Therefore,

we need to show that

Γ |=
{
𝑃
}
scope((®x, ®E), 𝐶′, (y, E′))

{
Q
}

The assumption Γ(𝛼) ⊢ (𝑃) y := f(®E) (Q) implies via the fcall rule that 𝑃 = (y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃∗), where
𝑃∗ is the program-variable-free part either the pre-condition 𝑃∞ of the non-terminating or the pre-condition 𝑃

of the (partially) terminating specification, and that (®x = ®𝑥 ★ 𝑃∗) (Q) ∈ (Γ(𝛼)) (𝑓 ). We assume the following:

(F0) an arbitrary 𝛾 such that |= (𝛾, Γ(𝛼))
(F1) 𝜃, 𝑠, ℎ |= y = E𝑦 ★ ®E = ®𝑥 ★ 𝑃∗

(F2) arbitrary ℎ𝑓 and ℎ′′ such that (𝑠, ℎ ⊎ ℎ𝑓 ), scope((®x, ®E), 𝐶′, (y, E′)) ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
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We need to show that

(𝑜 ≠ miss) ∧
(
∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ ((𝑜 = 𝑜𝑘 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄ok) ∨ (𝑜 = 𝑒𝑟𝑟 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄err ))

)
Defining

(F3) ®𝑣 := J®EK𝑠
(F4) ®z := pv(𝐶′)\{®x}.
(F5) 𝑠𝑝 := ∅[®x → ®𝑣] [®z → null],
the operational semantics of scope and (F2) imply

(F6) (𝑠𝑝 , ℎ ⊎ ℎ𝑓 ),𝐶′ ⇓𝛾 𝑜 : (𝑠𝑞, ℎ′′)
(F7a) 𝑜 = 𝑜𝑘 ⇒ (𝑠′ = 𝑠 [y → JE′K𝑠𝑞 ])
(F7b) 𝑜 = 𝑒𝑟𝑟 ⇒ (𝑠′ = 𝑠 [err → JerrK𝑠𝑞 ])

The definition of 𝑆𝛼 implies existence of a (𝑃 ′) (𝑜𝑘 : 𝑄 ′
ok) (𝑒𝑟𝑟 : 𝑄 ′

err ) ∈ Int𝛾,𝑓 ((𝑃∗) (Q)) such that

(H8a) Γ |=
{
𝑃 ′
}
𝐶′ {Q′}

. (A1) and (F0) imply |= (𝛾, Γ), which yields with (H8a) that (H8b) 𝛾 |=
{
𝑃 ′
}
𝐶′ {Q′}

Per definition of the internalisation, we know that 𝑃 ′ = ®x = ®𝑥 ★ 𝑃∗ ★ ®z = null, which implies with (F3)-(F5)

that (H9) 𝜃, 𝑠𝑝 , ℎ |= 𝑃 ′. Then, (F6), (F8b) and (F9) imply

(H10) (𝑜 ≠ miss) ∧
(
∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ ((𝑜 = 𝑜𝑘 ∧ 𝜃, 𝑠𝑞, ℎ

′ |= 𝑄 ′
ok) ∨ (𝑜 = 𝑒𝑟𝑟 ∧ 𝜃, 𝑠𝑞, ℎ

′ |= 𝑄 ′
err ))

)
This yields 𝜃, 𝑠′, ℎ′ |= 𝑄𝑜 as 𝑄 ′

ok and 𝑄 ′
err are internalisations of 𝑄ok and 𝑄err respectively, which in turn

implies the desired result, i.e.

Γ |=
{
𝑃
}
scope(((®x, ®E)), 𝐶′, (y, E′))

{
Q
}

This concludes the proof of the general statement. Instantiating it with the existentially quantified 𝑡 ′ from
(1) and (2) then yields the desired result

[𝐶] ∈ 𝑆𝛼 =⇒ [ℎ(𝐶)] ∈ 𝑆𝛼

i.e., the Scott condition 𝑔(𝑆𝛼 ) ⊆ 𝑆𝛼 .

□

Finally, we need to show that the function body 𝐶𝑓 of 𝑓 is indeed equivalent to the least fixpoint of 𝑔,

denoted by lfp(𝑔).

Lemma D.19 (Scott’s last step). The function body 𝐶𝑓 is in the least fixpoint of 𝑔, i.e.

𝐶𝑓 ∈ lfp(𝑔)

Again, we prove a slightly different statement first, and then apply it to prove the lemma. Onward, we

write ⊥𝛾 ′ to denote the least element of C𝛾 ′ (and also of 𝑆𝛼 ). Onwards, we will use wts as a shorthand for the

command while (true) skip. Keep in mind that ⊥𝛾 ′ = [wts].

Lemma D.20. For all 𝑛 ∈ N, it holds that
∀𝜎, 𝜎′ ∈ State. 𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′ ∧ depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) ≤ 𝑛 ⇐⇒ 𝜎,ℎ𝑛+1 (wts) ⇓𝛾 𝜎′

where do not explicitly include the outcome statement 𝑜 to avoid clutter.

Proof. By induction on 𝑛.

Base Case: 𝑛 = 0.

"⇒": Let 𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′ ∧ depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) = 0. Since 𝐶𝑓 ∈ Cmd, it cannot include the scope command.

Since the depth is zero, the execution path does not reach a function call on 𝑓 . Hence, this call may be replaced

by any other command, including wts, i.e.

𝜎,𝐶𝑓 [wts, 𝛾 ′, 𝑓 ] ⇓𝛾 ′ 𝜎′

⇔ 𝜎,ℎ(wts) ⇓𝛾 ′ 𝜎′

"⇐": Assuming 𝜎,ℎ(𝑤𝑡𝑠) ⇓𝛾 ′ 𝜎′, we obtain 𝜎,𝐶𝑓 [wts, 𝛾 ′, 𝑓 ] ⇓𝛾 ′ 𝜎′. Since wts does not terminate on any state,

this implies that the execution does not reach the command wts, that is, it does not reach any function call

site of 𝑓 and, therefore, we obtain 𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′ and depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) = 0.
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Inductive Step. Assume that the equivalence holds for some 𝑛 ∈ N, and the goal is then to prove that it holds

for 𝑛 + 1.

"⇒": Let 𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′ ∧ depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) ≤ 𝑛 + 1. If depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) < 𝑛 + 1, the inductive

hypothesis yields 𝜎,ℎ𝑛+1 (wts) ⇓𝛾 𝜎′, Since ℎ𝑛+1 (wts) implies that the execution terminates and therefore

does not reach any instance of the command wts, we may substitute wts for any other command, including

ℎ(wts). This yields 𝜎,ℎ𝑛+2 (wts) ⇓𝛾 𝜎′.
Finally, let depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) = 𝑛 + 1 and let y := 𝑓 (®x) be an arbitrary function call on 𝑓 reached by the

execution. That means that there exist states 𝜎1 and 𝜎2, such that the execution of the initial part of 𝐶𝑓 from

𝜎 up to that function call yields 𝜎1, that 𝜎1, y := 𝑓 (®x) ⇓𝛾 ′ 𝜎2, and that the execution of the remaining part of

𝐶𝑓 on 𝜎2 yields 𝜎′. By instantiating the operational semantics of the function call with 𝜎1 and 𝜎2, we obtain

(𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 ′ (𝑠𝑞, ℎ′), where, per definition of the depth function, depth𝐹 ((𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 ′ (𝑠𝑞, ℎ′)) = 𝑛. The

inductive hypothesis then implies (𝑠𝑝 , ℎ), ℎ𝑛+1 (wts) ⇓𝛾 (𝑠𝑞, ℎ′). Therefore, 𝜎,𝐶𝑓 [ℎ𝑛+1 (wts), 𝛾 ′,
𝑓 𝑖𝑑] ⇓𝛾 ′ 𝜎′ and since this command does not call on 𝑓 and given the definition of ℎ, we obtain 𝜎,ℎ𝑛+2 (wts) ⇓𝛾
𝜎′.

"⇐": Assume 𝜎,ℎ𝑛+2 (wts) ⇓𝛾 𝜎′: that is, 𝜎,𝐶𝑓 [ℎ𝑛+1 (wts), 𝛾 ′, 𝑓 ] ⇓𝛾 𝜎′. If there are no substitution sites in

𝐶𝑓 , the desired goal is obtained trivially, as the substitution is vacuous and the considered depth is zero by

definition. Otherwise, consider an arbitrary substitution site in 𝐶𝑓 reached by the execution starting from 𝜎 ,

and let the state before the substitution site be some 𝜎1. By instantiating the operational semantics of scope, we
obtain 𝑠𝑝 , 𝑠𝑞 , ℎ

′
and 𝜎2, such that (𝑠𝑝 , ℎ), ℎ𝑛+1 (wts) ⇓𝛾 (𝑠𝑞, ℎ′) and the remaining part of𝐶𝑓 [ℎ𝑛+1 (wts), 𝛾 ′, 𝑓 ]

executed on 𝜎2 terminates in 𝜎′. Per the inductive hypothesis, we have that (𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 ′ (𝑠𝑞, ℎ′) and
depth𝐹 ((𝑠𝑝 , ℎ),𝐶𝑓 ⇓𝛾 ′ (𝑠𝑞, ℎ′)) ≤ 𝑛. This implies, given the operational semantics of function call and the

definition of depth, that 𝜎,𝐶𝑓 ⇓𝛾 ′ (𝑠𝑞, ℎ′) and depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) ≤ 𝑛 + 1, which concludes the proof. □

With this in place, we can prove Lemma D.19, concluding the overall proof:

Proof of Lemma D.19. We know that the least fixpoint of 𝑔 obeys the following identity:

lfp(𝑔) =
⊔
𝑛∈N

𝑔𝑛 (⊥𝛾 ′ ) = [
⊔
𝑛∈N

ℎ𝑛 (wts)] (3)

To prove the statement of the lemma, we will show that⊔
𝑛∈N

ℎ𝑛 (wts) ≃𝛾 ′ 𝐶𝑓

"⇒": Assume 𝜎, 𝜎′ ∈ State such that 𝜎,
⊔

𝑛∈N
ℎ𝑛 (wts) ⇓𝛾 ′ 𝜎′. Therefore, there exists an 𝑛 ∈ N such that

𝜎,ℎ𝑛 (wts) ⇓𝛾 ′ 𝜎′. Since the command wts does not terminate on any state and since ℎ0 (wts) = wts, 𝑛 must

be strictly positive. Lemma D.20 then implies that 𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′, which concludes the proof.

"⇐": Assuming 𝜎, 𝜎′ ∈ State such that 𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′, we know that 𝐶𝑓 terminates when executed on 𝜎 , and

therefore has a finite execution depth: that is, depth𝐹 (𝜎,𝐶𝑓 ⇓𝛾 ′ 𝜎′) = 𝑛 holds for some 𝑛 ∈ N. Lemma D.20

then implies 𝜎,ℎ𝑛+1 (wts) ⇓𝛾 𝜎′, and therefore 𝜎,
⊔

𝑛∈N
ℎ𝑛 (wts) ⇓𝛾 𝜎′.

This yields 𝐶𝑓 ∈ lfp(𝑔). □

Theorem D.5 and Lemmas D.18 and D.19 finally fnimply that [𝐶𝑓 ] ∈ 𝑆𝛼 .

D.2 n-dimensional Scott Instantiation
The instantiation presented so far suffices to prove soundness for recursive functions which potentially

have both terminating and non-terminating specifications. However, we wish to allow clusters of mutually
recursive functions, and hence require a more general instantiation of the Scott induction. In particular, given

an environment (𝛾, Γ), we add on a mutually recursive cluster 𝐹 := (𝑓1, ..., 𝑓𝑛) of 𝑛 functions.

We assume the following:

(B1) a valid environment, |= (𝛾, Γ);
(B2) a set of 𝑛 functions 𝑓𝑖 (®x𝑖 ){𝐶𝑖 ; return E𝑖 } with 𝑖 ∈ 𝐼 ≜ {1, ..., 𝑛} that is not in the domain of 𝛾 ;



Exact Separation Logic 53

(B3) an arbitrary element 𝛼 ∈ O;

(B4) a set of terminating (external) specifications for each 𝑓𝑖 , {(𝑃𝑖 (𝛽)) (Q𝑖 (𝛽)) | 𝛽 < 𝛼};
(B5) a set of non-terminating (external) specifications for each 𝑓𝑖 , {(𝑃𝑖∞ (𝛽)) (False) | 𝛽 ≤ 𝛼};
(B6) an extension of 𝛾 : 𝛾 ′ ≜ 𝛾 [𝑓𝑖 ↦→ (®x𝑖 ,𝐶𝑖 , E𝑖 )]𝑖∈𝐼 ; and
(B7) an extension of Γ with the given specifications:

Γ(𝛼) ≜ Γ [𝑓𝑖 ↦→ {(𝑃𝑖 (𝛽)) (Q𝑖 (𝛽)) | 𝛽 < 𝛼} ∪ {((𝑃𝑖∞ (𝛽)) (False) | 𝛽 ≤ 𝛼}]𝑖∈𝐼

Note on Notation. As most elements we will be using in this section are 𝑛-tuples of commands, or chains of

such 𝑛-tuples, we use the following notation:

• 𝐶𝑖 : a subscript 𝑖 denotes that the commands 𝐶𝑖 is the implementation of the function 𝑓𝑖 , as recorded in

the associated function implementation context 𝛾 ′,
• 𝐶𝑖

: a superscript 𝑖 denotes the 𝑖-th component of an 𝑛-tuple 𝐶 ∈ C𝑛 ,
• 𝐶 (𝑖): an index 𝑖 denotes the 𝑖-th element of a chain (monotonically increasing sequence)

(
𝐶 (𝑚)

)
𝑚∈N.

Lemma D.21 (n-Dimensional Domain). Given the domain (C𝛾 ′ , ⊑𝛾 ′ ), we lift the equivalence relation, partial
order, and the join operator of C𝛾 ′ to elements of C𝑛

𝛾 ′ as follows:

𝐶 ≃𝑛 𝐶 ⇐⇒ ∀𝑖 ∈ 𝐼 .𝐶𝑖 ≃𝛾 ′ 𝐶𝑖

𝐶 ⊑𝑛 𝐶 ⇐⇒ ∀𝑖 ∈ 𝐼 .𝐶𝑖 ⊑𝛾 ′ 𝐶𝑖

𝐶 ⊔𝑛 𝐶 :=
©­­«

𝐶1 ⊔𝛾 ′ 𝐶1

.

.

.

𝐶𝑛 ⊔𝛾 ′ 𝐶𝑛

ª®®¬
The proof that these satisfy the appropriate properties is trivial with the least element 𝑛𝑙𝑒 being the

equivalence class of the 𝑛-tuple which holds while (true) skip in every component.

Lemma D.22 (n-Dimensional Continuous G). The function 𝐺 : C𝑛
𝛾 ′ −→ C𝑛𝛾 ′ , defined as

𝐺 ( [𝐶]) := [𝐻 (𝐶)]

where

𝐻 (𝐶) :=
©­­«

ℎ1 (𝐶)
.
.
.

ℎ𝑛 (𝐶)

ª®®¬
and

ℎ𝑖 : C𝑛 −→ C, ℎ𝑖 (𝐶) := 𝐶𝑖 [𝐶,𝛾 ′, 𝐹 ],
is continuous.

Proof. Again, what needs to be proven is monotonicity and supremum-preservation.

Monotonicity. Analogously to the one-dimensional case, it is proven that ℎ𝑖 is monotonic for all 𝑖 ∈ 𝐼 . This

implies that 𝐻 and, therefore, 𝐺 is monotonic as well.

Supremum-Preservation. Given a chain

(
𝐶 (𝑚)

)
𝑚∈N, we need to prove:⊔

𝑚∈N
𝐺 ( [𝐶 (𝑚)]) = 𝐺

( ⊔
𝑚∈N

[𝐶 (𝑚)]
)

Due to the definition of 𝐺 , we obtain for the left-hand side⊔
𝑚∈N

𝐺 ( [𝐶 (𝑚)]) = [
⊔
𝑚∈N

𝐻 (𝐶 (𝑚))]

and for the right-hand side

𝐺
( ⊔
𝑚∈N

[𝐶 (𝑚)]
)
= [𝐻 (

⊔
𝑚∈N

𝐶 (𝑚))]
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It therefore suffices to show the equivalence of

⊔
𝑚∈N

𝐻 (𝐶 (𝑚)) and 𝐻 ( ⊔
𝑚∈N

𝐶 (𝑚)), i.e. for all 𝑖 ∈ 𝐼 :⊔
𝑚∈N

𝐶𝑖 [𝐶 (𝑚), 𝛾 ′, 𝐹 ] ≃𝛾 ′ 𝐶𝑖 [ ⊔(𝐶 (𝑚) |𝑚 ∈ N), 𝛾 ′, 𝐹 ]

This is proven analogously to the continuity in lemma D.16. □

Lemma D.23 (Admissible Set). Defining 𝑆𝛼
𝑖
analogous to lemma D.17 as

𝑆𝛼
𝑖

:= {[𝐶] ∈ C𝛾 ′ | ∃𝐶 ∈ [𝐶] .∀𝑡 ∈ (Γ(𝛼)) (𝑓𝑖 ) . ∃(𝑃) (Q) ∈ Int𝛾 ′,𝑓𝑖 (𝑡) . Γ |=
{
𝑃
}
𝐶
{
Q
}
}

then the set S𝛼 , defined as

S𝛼
:=

∏
𝑖∈𝐼

𝑆𝛼𝑖

is an admissible subset of (C𝑛
𝛾 ′ , ⊑𝑛).

Proof. Least Element. The one-dimensional least element ⊥𝛾 ′ , which is equivalent to the command

while (true) skip, trivially semantically satisfies any over-approximating quadruple. We therefore have

⊥𝑛 ∈ S𝛼
.

Chain-Closure. Assume a chain

(
[𝐶] (𝑚)

)
𝑚∈N ⊆ S𝛼

. Then,

(
[𝐶𝑖 ] (𝑚)

)
𝑚∈N is a chain in 𝑆𝛼

𝑖
for all 𝑖 ∈ 𝐼 . Since

𝑆𝛼
𝑖
is chain-closed (Lemma D.17), we have

⊔(
(
[𝐶𝑖 ] (𝑚)

)
𝑚∈N |𝑚 ∈ N) ∈ 𝑆𝛼

𝑖
. The desired result is then obtained

by applying the definition of

⊔
. □

Lemma D.24 (n-Scott Condition). Under the assumption that for all 𝑖 ∈ 𝐼 :

∀𝑡 ∈ (Γ(𝛼)) (𝑓𝑖 ). ∃𝑡 ′ ∈ Int𝛾 ′,𝑓𝑖 (𝑡). Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡 ′

and
∃𝑡 ′ ∈ Int𝛾 ′,𝑓𝑖 ((𝑃

𝑖 (𝛼)) (Q𝑖 (𝛼))) . Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡 ′

it holds that
𝐺 (S𝛼 ) ⊆ S𝛼

Proof. Assume [𝐶] ∈ S𝛼
, i.e. [𝐶𝑖 ] ∈ 𝑆𝛼

𝑖
, then for all 𝑖 ∈ 𝐼 there exists a 𝐶𝑖 ∈ [𝐶𝑖 ] such that

∀𝑡 ∈ (Γ(𝛼)) (𝑓𝑖 ) . ∃(𝑃) (Q) ∈ Int𝛾 ′,𝑓𝑖 (𝑡) . Γ |=
{
𝑃
}
𝐶𝑖

{
Q
}

We aim to show [𝐻 (𝐶)] ∈ S𝛼
, i.e. for all 𝑖 ∈ 𝐼

[ℎ𝑖 (𝐶)] ∈ 𝑆𝛼𝑖

where 𝐶 := (𝐶1, ...,𝐶𝑛). What we prove is the general claim

Γ(𝛼) ⊢ (𝑃) 𝐶𝑖 (Q) =⇒ Γ |=
{
𝑃
}
𝐶𝑖 [𝐶,𝛾 ′, 𝐹 ]

{
Q
}

which is shown by induction over the structure of𝐶𝑖 analogously to the proof of Lemma D.18. Then, instantia-

tion with the existentially quantified 𝑡 ′ yields the desired result. □

Lemma D.25 (Auxiliary lemma). For all𝑚 ∈ N, 𝑖 ∈ 𝐼 and 𝜎, 𝜎′ ∈ State it holds that

depth𝐹 (𝜎,𝐶𝑖 ⇓𝛾 ′ 𝜎′) ≤ 𝑚 ∧ 𝜎,𝐶𝑖 ⇓𝛾 ′ 𝜎′ ⇐⇒ 𝜎,𝐶𝑖 [𝐻𝑚 (𝐶), 𝛾 ′, 𝐹 ] ⇓𝛾 ′ 𝜎′

This lemma is proven analogously to lemma D.20. We now proceed to the last step of the proof:

Lemma D.26 (n-Dimensional Last Step). It holds that

©­­«
𝐶1

.

.

.

𝐶𝑛

ª®®¬ ∈ lfp(𝐺)
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Proof. Given the known identities about least fixpoints and the definitions of 𝐺 and 𝐻 , we obtain:

lfp(𝐺) =
⊔
𝑚∈N

𝐺𝑚 (⊥𝑛) =
⊔
𝑚∈N

[𝐻𝑚 (wts𝑛)] = [
⊔
𝑚∈N

𝐻𝑚 (wts𝑛)],

where wts𝑛 denotes the 𝑛-tuple whose every component is while (true) skip. For this proof, given a vector

𝑣 , we write (𝑣)𝑖 to denote its 𝑖-th component. Assume 𝑖 ∈ 𝐼 and 𝜎, 𝜎′ ∈ State such that 𝜎,𝐶𝑖 ⇓𝛾 ′ 𝜎′. This
implies that the execution terminates and therefore there exists𝑚 > 0 such that depth𝐹 (𝜎,𝐶𝑖 ⇓𝛾 ′ 𝜎′) ≤ 𝑚.

Lemma D.25 then yields

𝜎,𝐶𝑖 [𝐻𝑚−1 (wts𝑛)] ⇓𝛾 𝜎′

⇒ 𝜎, (𝐻𝑚 (wts𝑛))𝑖 ⇓𝛾 𝜎′

⇒ 𝜎,
⊔

𝑚∈N
(𝐻𝑚 (wts𝑛))𝑖 ⇓𝛾 𝜎′

⇒ 𝜎,
( ⊔
𝑚∈N

𝐻𝑚 (wts𝑛)
)
𝑖 ⇓𝛾 𝜎′

which concludes the proof. □

Theorem D.5 and Lemmas D.24 and D.26 then imply for all 𝑖 ∈ 𝐼 that [𝐶𝑖 ] ∈ 𝑆𝛼
𝑖
.
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E SOUNDNESS: ENVIRONMENT FORMATION
To prove Theorem 4.13, we first prove the following, slightly weaker, lemma:

Lemma E.1. Assume an environment (𝛾, Γ), a finite set of indices 𝐼 = {1, ..., 𝑛} and let 𝛾 ′ = 𝛾 [𝑓𝑖 ↦→
( ®x𝑖 ,𝐶𝑖 , E𝑖 ) |𝑖 ∈ 𝐼 ], with 𝑓𝑖 ∉ dom(𝛾) for all 𝑖 ∈ 𝐼 . Then, for any ordinal 𝛼 , defining

Γ(𝛼) = Γ [𝑓𝑖 ↦→ {(𝑃𝑖 (𝛽)) (Q𝑖 (𝛽)) | 𝛽 < 𝛼} ∪ {(𝑃𝑖∞ (𝛽)) (False) | 𝛽 ≤ 𝛼} | 𝑖 ∈ 𝐼 ],
and assuming that

∀𝑖 ∈ 𝐼 , 𝛼 . ∃𝑡 ′ ∈ Int𝛾 ′,𝑓𝑖 ((𝑃
𝑖 (𝛼)) (Q𝑖 (𝛼))) . Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡 ′ (4)

and
∀𝑖 ∈ 𝐼 , 𝛼 . ∃𝑡 ′ ∈ Int𝛾 ′,𝑓𝑖 ((𝑃

𝑖
∞ (𝛼)) (False)). Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡 ′ (5)

it holds that
|= (𝛾, Γ) =⇒ (∀𝛼. |= (𝛾 ′, Γ(𝛼))) .

Proof. By transfinite induction on the ordinal 𝛼 , reasoning about the zero, successor and limit-ordinal

cases.

Zero case. When 𝛼 = 0, by definition we have Γ(0) = Γ [𝑓𝑖 ↦→ {(𝑃𝑖∞) (False)}|𝑖 ∈ 𝐼 ]. Let 𝑓 ∈ dom(𝛾 ′): then, if
𝑓 ≠ 𝑓𝑖 ,∀𝑖 ∈ 𝐼 and for any 𝑡 ∈ (Γ(0)) (𝑓 ), it holds that 𝑡 ∈ Γ(𝑓 ) and from |= (𝛾, Γ) we obtain the existence of a

𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡) such that |= 𝐶 : 𝑡 ′.
Otherwise, 𝑓 = 𝑓𝑖 for some 𝑖 ∈ 𝐼 , in which case (Γ(0)) (𝑓 ) is a singleton set only holding the specification

𝑡 = (𝑃𝑖∞ (0)) (False). We instantiate the 𝑛-dimensional Scott induction of

stoD.2 with 𝛼 = 0, which yields

∀𝑖 ∈ 𝐼 . [𝐶𝑖 ] ∈ 𝑆𝛼𝑖

that is, there exists a 𝐶 ∈ [𝐶𝑖 ] such that

Γ |= (𝑃𝑖∞ (0)) 𝐶 (False)
The assumption |= (𝛾, Γ) implies 𝛾 |= (𝑃𝑖∞ (0)) 𝐶 (False). Therefore, 𝐶 only calls on functions from dom(𝛾),
allowing us to arbitrarily extend the domain of 𝛾 , yielding 𝛾 ′ |= (𝑃𝑖∞ (0)) 𝐶 (False), that is:

∀𝜃, 𝑠, ℎ, ℎ𝑓 , 𝑜, 𝑠′, ℎ′′ . 𝜃, 𝑠, ℎ |= 𝑃𝑖∞ (0) ★ ®z = null =⇒
(𝑠, ℎ ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 ′ 𝑜 : (𝑠′, ℎ′′) =⇒
𝑜 ≠ miss ∧ (∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= False)

As 𝐶 and 𝐶𝑖 are behaviourally equivalent, we trivially obtain the same statement for 𝐶𝑖 , i.e.

𝛾 ′ |= (𝑃𝑖∞ (0)) 𝐶𝑖 (False)
which concludes this case of the proof.

Successor case. In the successor case, we assume the inductive hypothesis (IH) |= (𝛾 ′, Γ(𝛼)) for an arbitrary

ordinal 𝛼 , and we need to prove that |= (𝛾 ′, Γ(𝛼 + 1)). By definition, (H1) dom(Γ(𝛼)) = dom(Γ(𝛼 + 1)) and
(H2) (Γ(𝛼)) (𝑓 ) ⊂ (Γ(𝛼 + 1)) (𝑓 ) holds for all 𝑓 . Now, let 𝑓 be in dom(Γ(𝛼 + 1)). From the definition, we obtain

that

(Γ(𝛼 + 1)) (𝑓 ) =


Γ(𝑓 ), for 𝑓 ≠ 𝑓𝑖 ,∀𝑖 ∈ 𝐼

(Γ(𝛼)) (𝑓𝑖 ) ∪ {(𝑃𝑖 (𝛼)) (Q𝑖 (𝛼))}, for 𝑓 = 𝑓𝑖 , for some 𝑖 ∈ 𝐼

∪ {(𝑃𝑖∞ (𝛼 + 1)) (False)}
We prove the various cases separately. First, if 𝑓 ≠ 𝑓𝑖 ∀𝑖 ∈ 𝐼 , then the inductive hypothesis |= (𝛾 ′, Γ(𝛼)) implies

that

∀𝑓 ∈ dom (Γ(𝛼)), 𝑡 ∈ (Γ(𝛼)) (𝑓 ). 𝑓 (®x){𝐶; return E} ∈ 𝛾 ′ ⇒ ∃𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡) . 𝛾 ′ |= 𝐶 : 𝑡 ′

Since in this case (Γ(𝛼 + 1)) (𝑓 ) = Γ(𝑓 ) = (Γ(𝛼)) (𝑓 ) and 𝛾 (𝑓 ) = 𝛾 ′ (𝑓 ) since the domains of 𝛾 and Γ coincide,

we immediately obtain the desired

∀𝑡 ∈ (Γ(𝛼 + 1)) (𝑓 ). ∃𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡) . 𝛾 ′ |= 𝐶 : 𝑡 ′ .

Next, let 𝑓 = 𝑓𝑖 for some 𝑖 ∈ 𝐼 and let 𝑡 ∈ (Γ(𝛼)) (𝑓𝑖 ). Then, the inductive hypothesis |= (𝛾 ′, Γ(𝛼))
immediately implies the existence of a 𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡) such that 𝛾 ′ |= 𝐶𝑖 : 𝑡 ′.
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Next, let 𝑡 = (𝑃𝑖 (𝛼)) (Q𝑖 (𝛼)). From (4), we know that there exists a 𝑡 ′ ∈ Int𝛾 ′,𝑓𝑖 (𝑡) such that 𝛾 ′ ⊢ 𝐶𝑖 : 𝑡 ′.
From there, given Theorem 4.12 and the inductive hypothesis |= (𝛾 ′, Γ(𝛼)), we obtain that 𝛾 ′ |= 𝐶𝑖 : 𝑡 ′.

Finally, let 𝑡 = (𝑃𝑖∞ (𝛼 + 1)) (False). Per definition, we have Int𝛾 ′,𝑓𝑖 (𝑡) = {(𝑃𝑖∞ (𝛼 + 1) ★ ®z = null) (False)},
where ®z = pv(𝐶𝑖 )\{®x𝑖 }. We instantiate the 𝑛-dimensional Scott induction from Appendix D.2 with 𝛼 + 1 and

obtain

[𝐶𝑖 ] ∈ 𝑠𝛼+1

𝑖

Analogously to the argumentation in the zero case, we obtain the desired

𝛾 ′ |= (𝑃𝑖∞ (𝛼 + 1)) 𝐶𝑖 (False)
concluding the successor case.

Limit Ordinal Case. Given an arbitrary limit ordinal 𝛼 , we assume the inductive hypothesis (IH) ∀𝜆 < 𝛼. |=
(𝛾 ′, Γ(𝜆)), and our goal is to prove that |= (𝛾 ′, Γ(𝛼)).

Let 𝑓 be an arbitrary element from dom(Γ(𝛼)). First, if 𝑓 ≠ 𝑓𝑖 ,∀𝑖 ∈ 𝐼 , then we have (Γ(𝛼)) (𝑓 ) = Γ(𝑓 ) and
𝛾 ′ (𝑓 ) = 𝛾 (𝑓 ). The reasoning for this case is the same as for the first part of the successor case. Otherwise, we

have that 𝑓 = 𝑓𝑖 for some 𝑖 ∈ 𝐼 . For this case, we first prove that the following two sets are equal:

𝐴 = {(𝑃𝑖 (𝛽)) (Q𝑖 (𝛽)) | 𝛽 < 𝛼} ∪ {(𝑃𝑖∞ (𝛽)) (False) | 𝛽 ≤ 𝛼} and
𝐵 =

( ⋃
𝛽<𝛼

(Γ(𝛽)) (𝑓𝑖 )
)
∪ {(𝑃𝑖∞ (𝛼)) (False)}.

For the left-to-right inclusion, let 𝑡 ∈ 𝐴.

Case 1. 𝑡 = (𝑃𝑖 (𝜆)) (Q𝑖 (𝜆)) for some 𝜆 < 𝛼 . As 𝛼 is a limit ordinal, there exists another ordinal 𝛽 such that

𝜆 < 𝛽 < 𝛼 . By construction it holds that 𝑡 ∈ (Γ(𝛽)) (𝑓𝑖 ) and hence 𝑡 ∈ 𝐵.

Case 2. 𝑡 = (𝑃𝑖∞ (𝜆)) (False) for some 𝜆 < 𝛼 . Per construction, we have 𝑡 ∈ (Γ(𝜆)) (𝑓𝑖 ) and therefore 𝑡 ∈ 𝐵.

Case 3. 𝑡 = (𝑃𝑖∞ (𝛼)) (False). Trivially, we have 𝑡 ∈ 𝐵.

For the right-to-left inclusion, let 𝑡 ∈ 𝐵.

Case 1. 𝑡 ∈ (Γ(𝜆)) (𝑓𝑖 ) for some 𝜆 < 𝛼 . Then, per construction, 𝑡 ∈ 𝐴.

Case 2. 𝑡 = (𝑃𝑖∞ (𝛼)) (False). Again, per construction, 𝑡 ∈ 𝐴.

This yields the equality of 𝐴 and 𝐵, which gives us that

(Γ(𝛼)) (𝑓𝑖 ) =
( ⋃
𝛽<𝛼

(Γ(𝛽)) (𝑓𝑖 )
)
∪ {(𝑃𝑖∞ (𝛼)) (False)}.

Now, let 𝑡 ∈ (Γ(𝛼)) (𝑓𝑖 ), and consider the following two cases:

Case 1. 𝑡 ∈ (Γ(𝜆)) (𝑓𝑖 ) for some 𝜆 < 𝛼 . The inductive hypothesis implies |= (𝛾 ′, Γ(𝜆)) and therefore that

𝛾 ′ |= 𝐶𝑖 : 𝑡 ′ for some 𝑡 ′ ∈ Int𝛾 ′,𝑓𝑖 (𝑡).

Case 2. 𝑡 = (𝑃𝑖∞ (𝛼)) (False). This is proven by instantiating the 𝑛-dimensional Scott induction from Appendix

D.2 with 𝛼 , which analogously to the zero case, yields 𝛾 ′ |= (𝑃𝑖∞ (𝛼)) 𝐶𝑖 (False), which conludes the proof. □

Before the final soundness proof, we require one further lemma:

Lemma E.2 (Existentialisation). Let |= (𝛾, Γ), 𝛾 (𝑓 ) = (®x,𝐶𝑓 , E
′), and let 𝑋 = {(𝑃 (𝑥)) (𝑜𝑘 : 𝑄ok (𝑥)) (𝑒𝑟𝑟 :

𝑄err (𝑥)) | 𝑥 ∈ O}. Then, if 𝑋 ⊆ Γ(𝑓 ), it holds that |= (𝛾, Γ̄), where
Γ̄ = Γ [𝑓 ↦→ (Γ(𝑓 )

∪{(∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O) (𝑜𝑘 : ∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O)(𝑒𝑟𝑟 : ∃𝑥 .𝑄err (𝑥) ★ 𝑥 ∈ O)} \ 𝑋 ]

Proof. We need to prove that

∃𝑡 ∈ Int𝛾,𝑓 ((∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O) (𝑜𝑘 : ∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O)(𝑒𝑟𝑟 : ∃𝑥 .𝑄err (𝑥) ★ 𝑥 ∈ O)) . 𝛾 |= 𝐶𝑓 : 𝑡

Over-approximation. Per construction, we know that the pre-condition of any internalisation of (∃𝑥 . 𝑃 (𝑥) ★
𝑥 ∈ O) (𝑜𝑘 : ∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O)(𝑒𝑟𝑟 : ∃𝑥 .𝑄err (𝑥) ★ 𝑥 ∈ O) equals (∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O) ★ ®z = null,
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where ®z = pv(𝐶)\pv(∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O), which is equivalent to ∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O ★ ®z = null. We assume

𝜃, 𝑠, ℎ, 𝑠′, ℎ′′, ℎ𝑓 , 𝑜 such that

(O1) 𝜃, 𝑠, ℎ |= ∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O ★ ®z = null
(O2) (𝑠, ℎ ⊎ ℎ𝑓 ),𝐶𝑓 ⇓𝛾 𝑜 : (𝑠′, ℎ′′)
and aim to show:

𝑜 ≠ miss ∧ ∃ℎ′ . ℎ′′ = ℎ′ ⊎ ℎ𝑓 ∧ 𝜃, 𝑠′, ℎ′ |= 𝑄𝜖

where 𝑄𝜖 is an internal postcondition of (∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O) (𝑜𝑘 : ∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O)(𝑒𝑟𝑟 : ∃𝑥 .𝑄err (𝑥) ★
𝑥 ∈ O).

• (O1) implies that ∃𝑣 ∈ O . 𝜃 [𝑥 → 𝑣], 𝑠, ℎ |= 𝑃 (𝑥) ★ ®z = null.
• The assumptions of the lemma then imply that (O3) 𝑜 ≠ miss∧∃ℎ′ . ℎ′′ = ℎ′⊎ℎ𝑓 ∧𝜃 [𝑥 → 𝑣], 𝑠′, ℎ′ |= 𝑄 ′

𝑜

for some 𝑄 ′
𝑜 that is an internal post-condition of (𝑃 (𝑥)) (𝑜𝑘 : 𝑄ok (𝑥)) (𝑒𝑟𝑟 : 𝑄err (𝑥)), where 𝑥 ∈ O, i.e.

we have either

(O4a) (𝑜 = 𝑜𝑘) ∧ (𝑄ok (𝑥) ⇔ ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p])

(O4b) (𝑜 = 𝑒𝑟𝑟 ) ∧ (𝑄err (𝑥) ⇔ ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p])

where, without loss of generality, we may assume that 𝑥 ∉ ®𝑝 .
• (O3) implies that 𝜃, 𝑠′, ℎ′ |= ∃𝑥 .𝑄 ′

𝑜 ★ 𝑥 ∈ O.

• To conclude the OX direction of the proof, we show that ∃𝑥 .𝑄 ′
𝑜 ★ 𝑥 ∈ O is an internal post-condition

of (∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O) (𝑜𝑘 : ∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O)(𝑒𝑟𝑟 : ∃𝑥 .𝑄err (𝑥) ★ 𝑥 ∈ O) which is implied by (O4a)

in case of successful, and by (O4b) in case of erroneous termination:

∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O ⇔ ∃𝑥 . ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p] ★ 𝑥 ∈ O

⇔ ∃®𝑝. ∃𝑥 .𝑄 ′
ok [ ®𝑝/®p] ★ 𝑥 ∈ O ★ ret = E′ [ ®𝑝/®p]

⇔ ∃®𝑝. (∃𝑥 .𝑄 ′
ok [ ®𝑝/®p] ★ 𝑥 ∈ O) ★ ret = E′ [ ®𝑝/®p])

⇔ ∃®𝑝. (∃𝑥 .𝑄 ′
ok ★ 𝑥 ∈ O)[ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p]

∃𝑥 .𝑄err (𝑥) ★ 𝑥 ∈ O ⇔ ∃𝑥 . ∃®𝑝.𝑄 ′
err [ ®𝑝/®p] ★ 𝑥 ∈ O

⇔ ∃®𝑝. ∃𝑥 .𝑄 ′
err [ ®𝑝/®p] ★ 𝑥 ∈ O

⇔ ∃®𝑝. (∃𝑥 .𝑄 ′
err ★ 𝑥 ∈ O)[ ®𝑝/®p]

This concludes the OX direction.

Under-approximation. We assume 𝜃, 𝑠′, ℎ′, ℎ𝑓 , 𝑜 such that ℎ′♯ℎ𝑓 and 𝜃, 𝑠′, ℎ′ |= ∃𝑥 .𝑄 ′
𝑜 ★ 𝑥 ∈ O, where 𝑄 ′

𝑜

is obtained from the OX case. This implies the existence of a 𝑣 ∈ O such that

𝜃 [𝑥 → 𝑣], 𝑠′, ℎ′ |= 𝑄 ′
𝑜

From the assumptions, we obtain the existence of 𝑠, ℎ such that 𝜃 [𝑥 → 𝑣], 𝑠, ℎ |= 𝑃 (𝑥) ★ ®z = null, which
implies

𝜃, 𝑠, ℎ |= ∃𝑥 . 𝑃 (𝑥) ★ ®z = null ★ 𝑥 ∈ O
This concludes the proof as the last assertion is the (only) internal pre-condition of of (∃𝑥 . 𝑃 (𝑥) ★ 𝑥 ∈ O) (𝑜𝑘 :

∃𝑥 .𝑄ok (𝑥) ★ 𝑥 ∈ O)(𝑒𝑟𝑟 : ∃𝑥 .𝑄err (𝑥) ★ 𝑥 ∈ O).
□

With these lemmas, we can now easily prove theorem 4.13:

Theorem 4.13. Any well-formed environment is valid:

∀𝛾, Γ. ⊢ (𝛾, Γ) =⇒ |= (𝛾, Γ)
Proof of Theorem 4.13. By induction on ⊢ (𝛾, Γ). When the last rule applied was the base rule for envi-

ronments, we have that (𝛾, Γ) = (∅, ∅), meaning that dom(Γ) is empty, and the statement to prove is trivially

true. Otherwise, we assume the following hypotheses and inductive hypothesis:
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(H1) ⊢ (𝛾, Γ)
(H2) 𝛾 ′ = 𝛾 [𝑓𝑖 ↦→ ( ®x𝑖 ,𝐶𝑖 , E𝑖 ) |𝑖 ∈ 𝐼 ], with 𝑓𝑖 ∉ dom(𝛾) for all 𝑖 ∈ 𝐼

(H3) Γ(𝛼) = Γ [𝑓𝑖 ↦→ {(𝑃𝑖 (𝛽)) (𝑜𝑘 : 𝑄𝑖
ok (𝛽)) (𝑒𝑟𝑟 : 𝑄𝑖

err (𝛽)) | 𝛽 < 𝛼} ∪ {(𝑃𝑖∞ (𝛽)) (False) | 𝛽 ≤ 𝛼}]𝑖∈𝐼
(H4) ∀𝑖 ∈ 𝐼 , 𝛼 ∈ O . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖

(
(𝑃𝑖 (𝛼)) (𝑜𝑘 : 𝑄𝑖

ok (𝛼)) (𝑒𝑟𝑟 : 𝑄𝑖
err (𝛼))

)
. Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡

(H5) ∀𝑖 ∈ 𝐼 , 𝛼 ∈ O . ∃𝑡 ∈ Int𝛾 ′,𝑓𝑖 ((𝑃𝑖∞ (𝛼)) (False)) . Γ(𝛼) ⊢ 𝐶𝑖 : 𝑡

(IH) |= (𝛾, Γ)
We will first prove that |= (𝛾 ′,∪𝛼Γ(𝛼)), that is,

dom(∪𝛼Γ(𝛼)) ⊆ dom(𝛾 ′) ∧ ∀𝑓 , ®x,𝐶, E. 𝑓 (®x){𝐶; return E} ∈ 𝛾 ′

⇒ (∀𝑡 . 𝑡 ∈ (∪𝛼Γ(𝛼)) (𝑓 )
⇒ ∃𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡) . 𝛾 ′ |= 𝐶 : 𝑡 ′)

where the notation ∪𝛼Γ(𝛼) denotes the function which maps 𝑓 to the set ∪𝛼 ((Γ(𝛼)) (𝑓 )). The fist conjunct
holds since Lemma E.1 implies that dom(Γ(𝛼)) ⊆ 𝛾 ′ for all 𝛼 . Now, assume 𝑓 , ®x,𝐶, E, 𝑡 such that

(H6) 𝑓 (®x){𝐶; return E} ∈ 𝛾 ′

(H7) 𝑡 ∈ (∪𝛼Γ(𝛼)) (𝑓 )
By (H7), we have that there exists 𝛼 ′ ∈ O such that (H8) 𝑡 ∈ (Γ(𝛼 ′)) (𝑓 ). Then, from Lemma E.1 applied to (IH),

(H2), (H4), and (H5), we obtain (H9) |= (𝛾 ′, Γ(𝛼 ′)). By construction, we know that dom(∪𝛼Γ(𝛼)) = dom(Γ(𝛼 ′)),
meaning that (H10) 𝑓 ∈ dom(Γ(𝛼 ′)). Therefore, instantiating (H9) with (H10), (H8), and (H6), we obtain that

there exists 𝑡 ′ ∈ Int𝛾 ′,𝑓 (𝑡) such that |= 𝐶 : 𝑡 ′, which implies |= (𝛾 ′,∪𝛼Γ(𝛼)). Defining
• 𝑃𝑖 = ∃𝛼. 𝑃𝑖 (𝛼) ★ 𝛼 ∈ O
• 𝑃𝑖∞ = ∃𝛼. 𝑃𝑖∞ (𝛼) ★ 𝛼 ∈ O
• 𝑄𝑖

ok = ∃𝛼.𝑄𝑖
ok (𝛼) ★ 𝛼 ∈ O

• 𝑄𝑖
err = ∃𝛼.𝑄𝑖

err (𝛼) ★ 𝛼 ∈ O
• Γ′′ := Γ [𝑓𝑖 ↦→ {(𝑃𝑖 ) (𝑜𝑘 : 𝑄𝑖

ok) (𝑒𝑟𝑟 : 𝑄𝑖
err ), (𝑃𝑖∞) (False)}]𝑖∈𝐼 ,

and applying Lemma E.2 twice to ∪𝛼Γ(𝛼) (once to the set of partially terminating specifications and once to

the set of non-terminating specifications), we obtain |= (𝛾 ′, Γ′′), concluding the soundness proof. □
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F FURTHER EXAMPLES
F.1 List Reverse
We consider an iterative implementation of list reversal, which takes a singly-linked list, reverses the pointers,

and returns the pointer to the head of the new list. The code of the list reversal function is as follows:

LRev(x){ while (x ≠ null) { z := [x + 1]; [x + 1] := y; y := x; x := z }; return y}

and the proof sketch of its correctness is given below. To verify this algorithm, we need to apply the iterative

while rule: this means that we have to define the predicates 𝑃𝑖 for all 𝑖 ∈ N:

𝑃𝑖 ≜ ∃𝛽,𝛾 . list(y, 𝛾) ★ list(x, 𝛽) ★ vs = 𝛾† · 𝛽 ★ 𝑖 = |𝛾 | ∧ 𝑅𝑖

where 𝑅𝑖 ≜ (𝑖 = 0 ∧ x = 𝑥 ∧ z = null) ∨ (𝑖 > 0 ∧ x = z ∧ 𝑥 ∈ N), and the minimal 𝑚 for which

𝑃𝑖 does not imply the loop condition is |vs |. In the proof of the while loop body, we use the equivalence

(E1) list(y, [𝑣] ·𝛾) ⇔ ∃𝑦. y ↦→ 𝑣,𝑦 ★ list(𝑦,𝛾) to add the currently processed node to the already reversed part

of the list. Also, we inline the transition from the external to the internal pre-condition, as well as from the

internal to the external post-condition, where 𝑅 ≜ ( |vs | = 0 ★ 𝑥 = null) ∨ (|vs | > 0 ★ 𝑥 ∈ N).

Γ ⊢ ( x = 𝑥 ★ list(𝑥, vs) )
LRev(x){

( x = 𝑥 ★ list(𝑥, vs) ★ y, z = null )
[[ Establish 𝑃0 ]]

( ∃𝛽,𝛾 . list(y, 𝛾) ★ list(x, 𝛽) ★ vs = 𝛾† · 𝛽 ★ 0 = |𝛾 | ★ x = 𝑥 ★ z = null )
while (x ≠ null) {

( 𝑃𝑖 ★ x ≠ null )
( ∃𝛽,𝛾 . list(y, 𝛾) ★ list(x, 𝛽) ★ vs = 𝛾† · 𝛽 ★ 𝑖 = |𝛾 | ★ 𝑖 > 0 ★ x = z ★ 𝑥 ∈ N ★ x ̸= null )
[[ Unfold the list predicate, frame off 𝑖 > 0 ★ 𝑥 ∈ N ]]

( ∃𝛾, 𝑣, 𝑧, 𝛽′ . list(y, 𝛾) ★ x ↦→ 𝑣, 𝑧 ★ list(𝑧, 𝛽′) ★ vs = 𝛾† · [𝑣] · 𝛽′ ★ x = z ★ 𝑖 = |𝛾 | )
z := [x + 1];
( ∃𝛾, 𝑣, 𝑧, 𝛽′ . list(y, 𝛾) ★ x ↦→ 𝑣, 𝑧 ★ list(𝑧, 𝛽′) ★ vs = 𝛾† · [𝑣] · 𝛽′ ★ z = 𝑧 ★ 𝑖 = |𝛾 | )
[x + 1] := y;

( ∃𝛾, 𝑣, 𝑧, 𝛽′ . list(y, 𝛾) ★ x ↦→ 𝑣, y ★ list(𝑧, 𝛽′) ★ vs = 𝛾† · [𝑣] · 𝛽′ ★ z = 𝑧 ★ 𝑖 = |𝛾 | )
y := x;

( ∃𝛾, 𝑣, 𝑧, 𝛽′, 𝑦. y ↦→ 𝑣,𝑦 ★ list(𝑦,𝛾) ★ list(𝑧, 𝛽′) ★ vs = 𝛾† · [𝑣] · 𝛽′ ★ x = y ★ z = 𝑧 ★ 𝑖 = |𝛾 | )
[[ Apply equivalence (E1) ]]

( ∃𝛾, 𝑣, 𝑧, 𝛽′ . list(y, [𝑣] · 𝛾) ★ list(𝑧, 𝛽′) ★ vs = ( [𝑣] · 𝛾)† · 𝛽′ ★ x = y ★ z = 𝑧 ★ 𝑖 = |𝛾 | )
x := z;
( ∃𝛾, 𝑣, 𝑧, 𝛽′ . list(y, [𝑣] · 𝛾) ★ list(x, 𝛽′) ★ vs = ( [𝑣] · 𝛾)† · 𝛽′ ★ x = z ★ 𝑖 = |𝛾 | )
[[ Frame on 𝑖 > 0 ★ 𝑥 ∈ N ]]

( ∃𝛾, 𝑣, 𝑧, 𝛽′ . list(y, [𝑣] · 𝛾) ★ list(x, 𝛽′) ★ vs = ( [𝑣] · 𝛾)† · 𝛽′ ★ x = z ★ 𝑖 = |𝛾 | ★ 𝑖 > 0 ★ 𝑥 ∈ N )
[[ Rename existentials: 𝑣 · 𝛾 → 𝛾 , 𝛽′ → 𝛽]]

( ∃𝛽,𝛾 .list(y, 𝛾) ★ list(x, 𝛽) ★ vs = 𝛾† · 𝛽 ★ x = z ★ 𝑖 + 1 = |𝛾 | ★ 𝑖 + 1 > 0 ★ 𝑥 ∈ N )
( 𝑃𝑖+1 )

};
( ∃𝛽,𝛾 . list(y, 𝛾) ★ list(x, 𝛽) ★ vs = 𝛾† · 𝛽 ★ x = z ★ |vs | = |𝛾 | ∧ 𝑅 |vs | )
( list(y, vs†) ★ x, z = null ∧ 𝑅 |vs | )
return y
[[ Move to external post-condition, collapse existentials ]]

( ∃𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 . list(𝑝𝑦, vs†) ★ 𝑝𝑥 , 𝑝𝑧 = null ★ ret = 𝑝𝑦 ★ 𝑅 )
( list(ret, vs†) ★ 𝑅 )

}
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( list(ret, vs†) ★ 𝑅 )

F.2 List Free
We next consider the list-free algorithm, LFree(x), which frees all the nodes of a given singly-linked list

starting at x. The algorithm is implemented as follows:

LFree(x){
if (x = null) {

r := null
} else {
y := x;

x := [x + 1];
free(y); free(y + 1);
r := LFree(x)

};
return r

}

and the proof sketch of the body of the algorithm is given below. As the algorithm is recursive, the measure

that we use is the length of the list, which corresponds to the number of pointers, 𝛼 ≜ |xs |. As for the list
length algorithm, we assume a valid environment (𝛾, Γ), extend it with the LFree function, and construct Γ(𝛼)
appropriately, and doing the appropriate proof sketch for the function body:

Γ(𝛼) ⊢ ( x = 𝑥 ★ list(𝑥, xs) ★ 𝛼 = |xs | ★ r, y = null )
if (x = null) {

( x = 𝑥 ★ 𝑥 = null ★ list(𝑥, xs) ★ 𝛼 = |xs | ★ r, y = null )
( x = 𝑥 ★ 𝑥 = null ★ xs = 𝜖 ★ 𝛼 = |xs | ★ r, y = null )
skip;

( x = 𝑥 ★ 𝑥 = null ★ xs = 𝜖 ★ 𝛼 = |xs | ★ r, y = null )
} else {

( x = 𝑥 ★ 𝑥 ≠ null ★ list(𝑥, xs) ★ 𝛼 = |xs | ★ r, y = null )
( ∃𝑥 ′, 𝑣, xs′ . x = 𝑥 ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 = |xs | ★ r, y = null )
y := x;

( ∃𝑥 ′, 𝑣, xs′ . x = 𝑥 ★ y = 𝑥 ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 = |xs | ★ r = null )
x := [x + 1];
( ∃𝑥 ′, 𝑣, xs′ . x = 𝑥 ′ ★ y = 𝑥 ★ 𝑥 ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 = |xs | ★ r = null )
( ∃𝑥 ′, 𝑣, xs′ . x = 𝑥 ′ ★ y = 𝑥 ★ y ↦→ 𝑣, 𝑥 ′ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 = |xs | ★ r = null )
free(y);
( ∃𝑥 ′, xs′ . x = 𝑥 ′ ★ y = 𝑥 ★ y ↦→ ∅, 𝑥 ′ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 − 1 = |xs′ | ★ r = null )
free(y + 1);
[ as 𝛼 − 1 < 𝛼 , we can apply the specification for 𝛼 − 1 ]

( ∃𝑥 ′, xs′ . x = 𝑥 ′ ★ y = 𝑥 ★ y ↦→ ∅,∅ ★ list(𝑥 ′, xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 − 1 = |xs′ | ★ r = null )
r := ListDispose(x)
( ∃𝑥 ′, xs′ . x = 𝑥 ′ ★ y = 𝑥 ★ 𝑥 ↦→ ∅,∅ ★ freed(𝑥 ′ : xs′) ★ xs = 𝑥 : xs′ ★ 𝛼 ′ = |xs′ | ★ r = null )

};(
(x = 𝑥 ★ 𝑥 = null ★ xs = 𝜖 ★ r, y = null ★ 𝛼 = |xs |) ∨
(∃𝑥 ′, xs′ . x = 𝑥 ′ ★ y = 𝑥 ★ 𝑥 ↦→ ∅,∅ ★ freed(𝑥 ′ : xs′) ★ xs = 𝑥 : xs′ ★ r = null ★ 𝛼 = |xs |)

)
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We conclude the proof by moving from the internal to the external specification:

∃𝑝𝑥 , 𝑝𝑦, 𝑝𝑟 . ret = 𝑝𝑟 ★ (𝑝𝑥 = 𝑥 ★ 𝑥 = null ★ xs = 𝜖 ★ 𝑝𝑟 , 𝑝𝑦 = null ★ 𝛼 = |xs |) ∨
(∃𝑥 ′, xs′ . 𝑝𝑥 = 𝑥 ′ ★ 𝑝𝑦 = 𝑥 ★ 𝑥 ↦→ ∅,∅ ★ freed(𝑥 ′ : xs′) ★ xs = 𝑥 : xs′ ★
𝑝𝑟 = null ★ 𝛼 = |xs |)

⇔ ret = null ★ 𝛼 = |xs | ★ ((𝑥 = null ★ xs = 𝜖)∨
(∃𝑥 ′, xs′ . 𝑥 ↦→ ∅,∅ ★ freed(𝑥 ′ : xs′) ★ xs = 𝑥 : xs′))

⇔ freed(𝑥 : xs) ★ ret = null ★ 𝛼 = |xs |

F.3 List Algorithm Client
We consider the following client of our three list algorithms

LClient(x) {
l := LLen(x);
if (l < 5) { r := LFree(x); error(“LTS”) } else {

if (l > 10) { while (true) {skip} } else {
r := ListReverse(l)

}
};
return r

}
and prove that it satisfies the following ESL specification:(

x = 𝑥 ★ list(𝑥, vs)
)

LClient(x)(
ok : 5 ≤ |vs | ≤ 10 ★ list(ret, vs†) ★ 𝑅

)(
err : |vs | < 5 ★ (∃xs.freed(𝑥 : xs) ★ |xs | = |vs |) ★ err = “LTS”

)
We prove the three branches separately, exposing the non-terminating case, and then join the obtained

specifications through the admissible disjunction property, to obtain the above specification. We give two of

the three proof sketches below; the third is analogous to the first. We denote the above success post-condition

by𝑄ok , the above faulting post-condition by𝑄err , and assume a specification context Γ that has the appropriate

specifications of the called functions.

Γ ⊢ ( x = 𝑥 ★ list(𝑥, vs) ★ |vs | < 5 )
LClient(x) {

( x = 𝑥 ★ list(𝑥, vs) ★ |vs | < 5 ★ l, r = null )
l := LLen(x);(
x = 𝑥 ★ list(𝑥, vs) ★ |vs | < 5 ★ l = |vs | ★ r = null

)
if (l < 5) {(

x = 𝑥 ★ list(𝑥, vs) ★ |vs | < 5 ★ l = |vs | ★ r = null
)

r := LFree(x);(
x = 𝑥 ★ (∃xs.freed(𝑥 : xs) ★ |xs | = |vs |) ★ |vs | < 5 ★ l = |vs | ★ r = null

)
error(“LTS”)
( err : 𝑄err ★ x = 𝑥 ★ l = |vs | ★ r = null) )

} else {
( False ) . . . ( False )

};
( err : 𝑄err ★ x = 𝑥 ★ l = |vs | ★ r = null) )
return r(
err : 𝑄err ★ (∃𝑎, 𝑏, 𝑐. 𝑎 = 𝑥 ★ 𝑏 = |vs | ★ 𝑐 = null)

)
( err : 𝑄err )

}
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( err : 𝑄err )

Γ ⊢ ( x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10 )
LClient(x) {(

x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10 ★ l, r = null
)

l := LLen(x);(
x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10 ★ l = |vs | ★ r = null

)
if (l < 5) {

( False ) . . . ( False )
} else {(

x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10 ★ l = |vs | ★ r = null
)

if (l > 10) {(
x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10 ★ l = |vs | ★ r = null

)
while (true) {skip}
( False )

} else {
( False ) . . . ( False )

};
}; ( False )
return r
( False )

}( False )

The three obtained specifications then yield via disjunction:

©­«
(x = 𝑥 ★ list(𝑥, vs) ★ |vs | < 5) ∨

(x = 𝑥 ★ list(𝑥, vs) ★ 5 ≤ |vs | ≤ 10) ∨
(x = 𝑥 ★ list(𝑥, vs) ★ |vs | > 10)

ª®¬ LClient(x)
(
ok : False ∨𝑄ok ∨ False

) (
err : False ∨𝑄err ∨ False

)
and via equivalence the desired(

x = 𝑥 ★ list(𝑥, vs)
)
LClient(x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
F.4 Mutual Recursion: even/odd
In addition to reasoning about recursive functions, ESL allows us to reason about mutually recursive function

as well. We illustrate this by using a simple example consisting of two functions which determine whether a

natural number is even or odd, whose implementations are given below.

isEven(n) {
if (n = 0) {

b := true
} else {
n := n − 1;

b := isOdd(n)
};
return b

}

isOdd(n) {
if (n = 0) {;

b := false
} else {
n := n − 1;

b := isEven(n)
};
return b

}
To reason about these two functions, we introduce two (also mutually recursive) predicates:

even(𝑛) ≜ 𝑛 = 0 ∨ odd(𝑛 − 1)
odd(𝑛) ≜ 𝑛 = 1 ∨ even(𝑛 − 1).

and give the pre-condition and the external (𝑄𝑒𝑣𝑒𝑛 (𝛼) and 𝑄𝑜𝑑𝑑 (𝛼)) and internal (𝑄 ′
𝑒𝑣𝑒𝑛 (𝛼) and 𝑄 ′

𝑜𝑑𝑑
(𝛼))

post-conditions for the two functions, noting that both share the same pre-condition 𝑃 (𝛼), and that we again



64 Petar Maksimović, Caroline Cronjäger, Julian Sutherland, Andreas Lööw, and Philippa Gardner

use 𝛼 = 𝑛 for the decreasing measure, just as in the list length case:

𝑃 (𝛼) ≜ n = 𝑛 ★ 𝑛 ∈ N ★ 𝑛 = 𝛼

𝑄𝑒𝑣𝑒𝑛 (𝛼) ≜ (ret = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨ (ret = true ★ even(𝑛) ★ 𝑛 = 𝛼)
𝑄𝑜𝑑𝑑 (𝛼) ≜ (ret = false ★ even(𝑛) ★ 𝑛 = 𝛼) ∨ (ret = true ★ odd(𝑛) ★ 𝑛 = 𝛼)

𝑄 ′
𝑒𝑣𝑒𝑛 (𝛼) ≜ (n = 𝑛 ★ 𝑛 = 0 ★ b = true ★ 𝑛 = 𝛼)

∨(n = 𝑛 − 1 ★ b = false ★ odd(𝑛) ★ 𝑛 = 𝛼)
∨(n = 𝑛 − 1 ★ b = true ★ even(𝑛) ★ 𝑛 = 𝛼)

𝑄 ′
𝑜𝑑𝑑

(𝛼) ≜ (n = 𝑛 ★ 𝑛 = 0 ★ b = false ★ 𝑛 = 𝛼)
∨(n = 𝑛 − 1 ★ b = true ★ odd(𝑛) ★ 𝑛 = 𝛼)

∨(n = 𝑛 − 1 ★ b = false ★ even(𝑛) ★ 𝑛 = 𝛼)

We further assume a well-formed environment (𝛾, Γ) such that isEven, isOdd ∉ dom(𝛾) and extend it as

follows:

𝛾 ′ ≜ 𝛾 [isEven ↦→ ({n},𝐶𝑒𝑣𝑒𝑛, b), isOdd ↦→ ({n},𝐶𝑜𝑑𝑑 , b)]
Γ(𝛼) ≜ Γ [isEven ↦→ {(𝑃 (𝛽)) (ok : 𝑄𝑒𝑣𝑒𝑛 (𝛽)) | 𝛽 < 𝛼},

isOdd ↦→ {(𝑃 (𝛽)) (ok : 𝑄𝑜𝑑𝑑 (𝛽)) | 𝛽 < 𝛼}]

where 𝐶𝑒𝑣𝑒𝑛 and 𝐶𝑜𝑑𝑑 denote the appropriate function bodies. Our goal is to prove

Γ(𝛼) ⊢ (𝑃 (𝛼)) 𝐶𝑒𝑣𝑒𝑛 (𝑜𝑘 : 𝑄 ′
𝑒𝑣𝑒𝑛 (𝛼))

Γ(𝛼) ⊢ (𝑃 (𝛼)) 𝐶𝑜𝑑𝑑 (𝑜𝑘 : 𝑄 ′
𝑜𝑑𝑑

(𝛼))

which we do in the proof sketches given below, first for isEven and then for isOdd:

Γ(𝛼) ⊢ ( 𝑃 (𝛼) ★ b = null )
( n = 𝑛 ★ 𝑛 ∈ N ★ 𝑛 = 𝛼 ★ b = null )
if (n = 0) {

( n = 𝑛 ★ 𝑛 = 0 ★ 𝑛 = 𝛼 ★ b = null )
b := true
( n = 𝑛 ★ 𝑛 = 0 ★ 𝑛 = 𝛼 ★ b = true )

} else {
( n = 𝑛 ★ 𝑛 > 0 ★ 𝑛 = 𝛼 ★ b = null )
n := n − 1

( n = 𝑛 − 1 ★ 𝑛 > 0 ★ 𝑛 = 𝛼 ★ b = null )
( n = 𝑛 − 1 ★ 𝑛 − 1 ∈ N ★ 𝑛 − 1 = 𝛼 − 1 ★ b = null )
[ as 𝛼 − 1 < 𝛼 , we can apply the specification for 𝛼 − 1]

b := isOdd(n)
( n = 𝑛 − 1 ★ ∃𝑏.

(
(𝑏 = false ★ even(𝑛 − 1)) ∨ (𝑏 = true ★ odd(𝑛 − 1))

)
★ 𝑛 = 𝛼 ★ b = 𝑏 )

( n = 𝑛 − 1 ★
(
(b = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨ (b = true ★ even(𝑛) ★ 𝑛 = 𝛼)

)
)

( (n = 𝑛 − 1 ★ b = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨ (n = 𝑛 − 1 ★ b = true ★ even(𝑛) ★ 𝑛 = 𝛼) )
}(
(n = 𝑛 ★ 𝑛 = 0 ★ b = true ★ 𝑛 = 𝛼) ∨ (n = 𝑛 − 1 ★ b = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨
(n = 𝑛 − 1 ★ b = true ★ even(𝑛) ★ 𝑛 = 𝛼)

)
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Γ(𝛼) ⊢ ( 𝑃 (𝛼) ★ b = null )
( n = 𝑛 ★ 𝑛 ∈ N ★ 𝑛 = 𝛼 ★ b = null )
if (n = 0) {

( n = 𝑛 ★ 𝑛 = 0 ★ 𝑛 = 𝛼 ★ b = null )
b := false
( n = 𝑛 ★ 𝑛 = 0 ★ 𝑛 = 𝛼 ★ b = false )

} else {
( n = 𝑛 ★ 𝑛 > 0 ★ 𝑛 = 𝛼 ★ b = null )
n := n − 1

( n = 𝑛 − 1 ★ 𝑛 > 0 ★ 𝑛 = 𝛼 ★ b = null )
( n = 𝑛 − 1 ★ 𝑛 − 1 ∈ N ★ 𝑛 − 1 = 𝛼 − 1 ★ b = null )
[since 𝛼 − 1 < 𝛼 , we can apply the specification for 𝛼 − 1]

b := isEven(n)
( n = 𝑛 − 1 ★ ∃𝑏.

(
(𝑏 = false ★ odd(𝑛 − 1)) ∨ (𝑏 = true ★ even(𝑛 − 1))

)
★ 𝑛 = 𝛼 ★ b = 𝑏 )

( n = 𝑛 − 1 ★
(
(b = false ★ even(𝑛) ★ 𝑛 = 𝛼) ∨ (b = true ★ odd(𝑛) ★ 𝑛 = 𝛼)

)
)

( (n = 𝑛 − 1 ★ b = false ★ even(𝑛) ★ 𝑛 = 𝛼) ∨ (n = 𝑛 − 1 ★ b = true ★ odd(𝑛) ★ 𝑛 = 𝛼) )
}(
(n = 𝑛 ★ 𝑛 = 0 ★ 𝑛 = 𝛼b = false) ∨ (n = 𝑛 − 1 ★ b = false ★ even(𝑛) ★ 𝑛 = 𝛼) ∨
(n = 𝑛 − 1 ★ b = true ★ odd(𝑛) ★ 𝑛 = 𝛼)

)

To complete the proof, we need to show that 𝑄𝑖 ⇔ ∃®𝑝.𝑄 ′
𝑖
[ ®𝑝/®p] ★ ret = b[ ®𝑝/®p] for 𝑖 ∈ {even, odd}. As the

two cases are analogous, we only show the even case in detail:

∃®𝑝.𝑄 ′
𝑒𝑣𝑒𝑛 (𝛼) [ ®𝑝/®p] ★ ret = E[ ®𝑝/®p]

⇔ ∃𝑝𝑛, 𝑝𝑏 .
((𝑝𝑛 = 𝑛 ★ 𝑛 = 0 ★ 𝑝𝑏 = true ★ 𝑛 = 𝛼) ∨
(𝑝𝑛 = 𝑛 − 1 ★ 𝑝𝑏 = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨
(𝑝𝑛 = 𝑛 − 1 ★ 𝑝𝑏 = true ★ even(𝑛) ★ 𝑛 = 𝛼)) ★ ret = 𝑝𝑏

⇔ (𝑛 = 0 ★ ret = true ★ even(𝑛) ★ 𝑛 = 𝛼) ∨ (𝑛 ¤> 0 ★ ret = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨
(𝑛 ¤> 0 ★ ret = true ★ even(𝑛) ★ 𝑛 = 𝛼)

⇔ (𝑛 ¤> 0 ★ ret = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨ (𝑛 ∈ N ★ ret = true ★ even(𝑛) ★ 𝑛 = 𝛼)
⇔ (ret = false ★ odd(𝑛) ★ 𝑛 = 𝛼) ∨ (ret = true ★ even(𝑛) ★ 𝑛 = 𝛼)
⇔ 𝑄𝑒𝑣𝑒𝑛 (𝛼)

F.5 More Complex Mutual Recursion: even/odd/list length
In the previous examples featuring recursion andmutual recursion, the choice of themeasure is straightforward.

For list length and list disposal, we traverse a non-cyclic list, therefore decreasing the distance to the end of

the list in every step. For even/odd, each function decreases the function argument before passing it on to the

other function, therefore also creating a natural measure.

In the real world, however, we might come across clusters of mutually recursive functions where not every

function reduces the obvious measure (e.g., wrapper functions). As long as any function call terminates, we

can still reason about such clusters by defining an appropriate measure. To illustrate this, we will look at a
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collection of three functions, which compute the length of a list in a convoluted, mutually-recursive way:

LL(x) {
if (x = null) {

r := 0;

} else {
v := [x];
if (even(𝑣)) {
r := g(x);

} else {
r := f (x);

};
};
return r

}

f(x) {
v := [x];
if (even(𝑣)) {
x := [x + 1];
r := LL(x);
r := r + 1;

} else {
r := g(x);

};
return r

}

g(x) {
v := [x];
if (odd(𝑣)) {

x := [x + 1];
r := LL(x);
r := r + 1;

} else {
r := f (x);

};
return r

}

Intuitively, whenever either of the functions is called with an argument x, which is the head of a (non-cyclic)

list, it computes the length of the list. The LL function calls 𝑔 if the first value of the list is even and 𝑓 otherwise.

The function 𝑔, however, does the same test and calls 𝑓 if the input was even. Otherwise, it moves one element

down the list and calls LL on the now shortened list. The function 𝑓 moves down the list by one element and

calls LL on the shortened list if the first value is even, and calls 𝑔 on the initial list, if not.

As the functions branch on whether or not values of the list are divisible by 2, we adjust the list(𝑥, vs)
predicate slightly to include the condition that vs is a list of natural numbers:

listN (𝑥, vs) ≜ (𝑥 = null ★ vs = 𝜖) ∨ (∃𝑣, 𝑥, vs′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ 𝑣 ∈ N ★ listN (𝑥 ′, vs′) ★ vs = 𝑣 : vs′)

and furthermore require a trivial property of the previously introduced even() and odd() predicates, stating
that even(𝑣) ∨ odd(𝑣) ⇔ 𝑣 ∈ N. Assuming a valid environment ⊢ (𝛾, Γ), we extend it as follows

𝛾 ′ ≜ 𝛾 [LL ↦→ ({x},𝐶𝐿𝐿, r), f ↦→ ({x},𝐶𝑓 , r), g ↦→ ({x},𝐶𝑔, r)]
Γ(𝛼) ≜ Γ [LL ↦→ {(𝑃𝐿𝐿 (𝛽)) (𝑜𝑘 : 𝑄𝐿𝐿) |𝛽 < 𝛼},

f ↦→ {(𝑃𝑓 (𝛽)) (𝑜𝑘 : 𝑄 𝑓 ) |𝛽 < 𝛼}, g ↦→ {(𝑃𝑔 (𝛽)) (𝑜𝑘 : 𝑄𝑔) |𝛽 < 𝛼}]

Furthermore, we define

Γ′′ ≜ Γ [LL ↦→ {(listN (𝑥, vs) ★ x = 𝑥 ★ (3|vs | + 2) ∈ O)
(𝑜𝑘 : listN (𝑥, vs) ★ ret = 𝑣𝑠 ★ (3|vs | + 2) ∈ O)},

f ↦→ {(listN (𝑥, 𝑣 : vs′) ★ x = 𝑥 ★ 3|𝑣 : vs′ | + (𝑣 mod 2) ∈ O)
(𝑜𝑘 : listN (𝑥, 𝑣 : vs′) ★ ret = |𝑣 : vs′ | ★ 3|𝑣 : vs′ | + (𝑣 mod 2)) ∈ O},

g ↦→ {(listN (𝑥, 𝑣 : vs′) ★ x = 𝑥 ★ 3|𝑣 : vs′ | + 1 − (𝑣 mod 2) ∈ O)
(𝑜𝑘 : listN (𝑥, 𝑣 : vs′) ★ ret = |𝑣 : vs′ | ★ 3|𝑣 : vs′ | + 1 − (𝑣 mod 2) ∈ O)}]

and wish to prove ⊢ (𝛾 ′, Γ′′). To this end, we prove the following three specifications:

Γ(𝛼) ⊢ (𝑃𝐿𝐿 (𝛼) ★ r, v = null) 𝐶𝐿𝐿 (𝑜𝑘 : 𝑄 ′
𝐿𝐿

(𝛼))
Γ(𝛼) ⊢ (𝑃𝑓 (𝛼) ★ r, v = null) 𝐶𝑓 (𝑜𝑘 : 𝑄

′
𝑓
(𝛼))

Γ(𝛼) ⊢ (𝑃𝑔 (𝛼) ★ r, v = null) 𝐶𝑔 (𝑜𝑘 : 𝑄 ′
𝑔 (𝛼))

where 𝐶𝐿𝐿 , 𝐶𝑓 , and 𝐶𝑔 denote the appropriate function bodies, and the function pre-conditions, capturing the

function pre-conditions (with and without measure) and post-conditions (internal and external), are defined
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as follows:

𝑃𝐿𝐿 (𝛼) = listN (𝑥, vs) ★ x = 𝑥 ★ 𝛼 = 3|vs | + 2

𝑃𝑓 (𝛼) = listN (𝑥, 𝑣 : vs′) ★ x = 𝑥 ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)
𝑃𝑔 (𝛼) = listN (𝑥, 𝑣 : vs′) ★ x = 𝑥 ★ 𝛼 = 3|𝑣 : vs′ | + 1 − (𝑣 mod 2)

𝑄 ′
𝐿𝐿

(𝛼) = (𝑥 = null ★ vs = 𝜖 ★ x = 𝑥 ★ r = |vs | ★ v = null ★ 𝛼 = 3|vs | + 2) ∨
(∃𝑣, vs′ . listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ r = |vs | ★ 𝛼 = 3|vs | + 2)

𝑄 ′
𝑓
(𝛼) = ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, vs′) ★ v = 𝑣 ★ r = |𝑣 : vs′ |

★ (x = 𝑥 ′ ★ even(𝑣) ∨ x = 𝑥 ★ odd(𝑣)) ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)
𝑄 ′
𝑔 (𝛼) = ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, vs′) ★ v = 𝑣 ★ r = |𝑣 : vs′ |

★ (x = 𝑥 ′ ★ odd(𝑣) ∨ x = 𝑥 ★ even(𝑣)) ★ 𝛼 = 3|𝑣 : vs′ | + 1 − (𝑣 mod 2)

𝑄𝐿𝐿 (𝛼) = listN (𝑥, vs) ★ ret = |vs | ★ 𝛼 = 3|vs | + 2

𝑄 𝑓 (𝛼) = listN (𝑥, 𝑣 : vs′) ★ ret = |𝑣 : vs′ | ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)
𝑄𝑔 (𝛼) = listN (𝑥, 𝑣 : vs′) ★ ret = |𝑣 : vs′ | ★ 𝛼 = 3|𝑣 : vs′ | + 1 − (𝑣 mod 2)

We give the proof sketch for list length and f below. The proof sketch for g is analogous to that of f.

Γ(𝛼) ⊢ ( listN (𝑥, vs) ★ x = 𝑥 ★ 𝛼 = 3|vs | + 2 ★ r, v = null )
if (x = null) {

( listN (𝑥, vs) ★ x = 𝑥 ★ 𝛼 = 3|vs | + 2 ★ r, v, x = null )
r := 0;

( listN (𝑥, vs) ★ x = 𝑥 ★ 𝛼 = 3|vs | + 2 ★ r = 0 ★ x, v = null )
( 𝑥 = null ★ vs = 𝜖 ★ x = 𝑥 ★ r = |vs | ★ 𝛼 = 3|vs | + 2 ★ v = null )

} else {
( ∃𝑣, 𝑥 ′, vs′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ 𝑣 ∈ N ★ listN (𝑥 ′, vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ 𝛼 = 3|vs | + 2 ★ r, v = null )
v := [x];(
∃𝑣, 𝑥 ′, vs′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ 𝑣 ∈ N ★ listN (𝑥 ′, vs′) ★ vs = 𝑣 : vs′ ★
x = 𝑥 ★ v = 𝑣 ★ 𝛼 = 3|vs | + 2 ★ r = null

)
( ∃𝑣, vs′ . listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ 𝛼 = 3|vs | + 2 ★ r = null )

e
x
i
s
t
s
,
e
q
u
i
v

( listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ 𝑣 ∈ N ★ 𝛼 = 3|vs | + 2 ★ r = null )
if (even(v)) {(

listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ even(𝑣)
★ 𝛼 − 1 = 3|𝑣 : vs′ | + 1 − (𝑣 mod 2) ★ r = null

)
[[ as 𝛼 − 1 < 𝛼 , we can apply 𝑔’s specification for 𝛼 − 1]]

f
r
,
e
q

( r = null ★ x = 𝑥 ★ listN (𝑥, 𝑣 : vs′) ★ 𝛼 − 1 = 3|𝑣 : vs′ | + 1 − (𝑣 mod 2) )
r := g(x);
( x = 𝑥 ★ listN (𝑥, 𝑣 : vs′) ★ r = |𝑣 : vs′ | ★ 𝛼 − 1 = 3|𝑣 : vs′ | + 1 − (𝑣 mod 2) )

( listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ even(𝑣) ★ r = |vs | ★ 𝛼 = 3|vs | + 2 )
} else {(

listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★

odd(𝑣) ★ r = null ★ 𝛼 − 1 = 3|vs | + (𝑣 mod 2)

)
[[ as 𝛼 − 1 < 𝛼 , we can apply 𝑓 ’s specification for 𝛼 − 1 ]]

f
r
,
e
q

( listN (𝑥, 𝑣 : vs′) ★ x = 𝑥 ★ r = null ★ 𝛼 − 1 = 3|vs | + (𝑣 mod 2) )
r := f(x);
( listN (𝑥, 𝑣 : vs′) ★ x = 𝑥 ★ r = |𝑣 : vs′ | ★ 𝛼 − 1 = 3|vs | + (𝑣 mod 2) )

( listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ odd(𝑣) ★ r = |vs | ★ 𝛼 = 3|vs | + 2 )
}
( listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ r = |vs | ★ (even(𝑣) ∨ odd(𝑣)) ★ 𝛼 = 3|vs | + 2 )

( ∃𝑣 ∈ N, vs′ . listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ r = |vs | ★ 𝛼 = 3|vs | + 2 )
}
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(𝑥 = null ★ vs = 𝜖 ★ x = 𝑥 ★ r = |vs | ★ v = null ★ 𝛼 = 3|vs | + 2) ∨
(∃𝑣 ∈ N, vs′ . listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ x = 𝑥 ★ v = 𝑣 ★ r = |vs | ★ 𝛼 = 3|vs | + 2)

)
Γ(𝛼) ⊢ ( listN (𝑥, 𝑣 : 𝑣𝑠′) ★ x = 𝑥 ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2) ★ v, r = null )

( ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ 𝑣 ∈ N ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2) ★ v, r = null )
v := [x];
( ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ 𝑣 ∈ N ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ★ v = 𝑣 ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2) ★ r = null )
( ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ★ v = 𝑣 ★ 𝑣 ∈ N ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2) ★ r = null )
if (even(v)) {

( ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ★ v = 𝑣 ★ even(𝑣) ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | ★ r = null )
x := [x + 1];
( ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ′ ★ v = 𝑣 ★ even(𝑣) ★ 𝛼 − 1 = 3|𝑣𝑠′ | + 2 ★ r = null )
[ as 3𝛼 − 1 < 𝛼 , we can apply LL’s specifications for 𝛼 − 1 ]

f
r
+
e
x

( listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ′ ★ r = null ★ 𝛼 − 1 = 3|𝑣𝑠′ | + 2 )
r := LL(x);
( listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ′ ★ r = |𝑣𝑠′ | ★ 𝛼 − 1 = 3|𝑣𝑠′ | + 2 )
r := r + 1;

( listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ′ ★ r = |𝑣𝑠′ | + 1 ★ 𝛼 − 1 = 3|𝑣𝑠′ | + 2 )(
∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ′ ★ v = 𝑣 ★

r = |𝑣 : vs′ | ★ even(𝑣) ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2)

)
} else {(

∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ★ v = 𝑣 ★

odd(v) ★ 𝛼 − 1 = 3|𝑣 : 𝑣𝑠′ | + 1 − (𝑣 mod 2) ★ r = null

)
[ as 𝛼 − 1 < 𝛼 , we can apply 𝑔’s specification for 𝛼 − 1]

f
r
+
e
x ( listN (𝑥, 𝑣 : 𝑣𝑠′) ★ x = 𝑥 ★ r = null ★ 𝛼 − 1 = 3|𝑣 : 𝑣𝑠′ | + 1 − (𝑣 mod 2) )

r := g(x);
( listN (𝑥, 𝑣 : 𝑣𝑠′) ★ x = 𝑥 ★ r = |𝑣 : 𝑣𝑠′ | ★ 𝛼 − 1 = 3|𝑣 : 𝑣𝑠′ | + 1 − (𝑣 mod 2) )

( ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ x = 𝑥 ★ v = 𝑣 ★ odd(v) ★ r = |𝑣 : vs | ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2) )

}
(
∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, 𝑣𝑠′) ★ v = 𝑣 ★ r = |𝑣 : vs′ | ★
(x = 𝑥 ′ ★ even(𝑣) ∨ x = 𝑥 ★ odd(𝑣)) ★ 𝛼 = 3|𝑣 : 𝑣𝑠′ | + (𝑣 mod 2)

)
To conclude the proof, we need to show that 𝑄 ′

𝐿𝐿
(𝛼), 𝑄 ′

𝑓
(𝛼) and 𝑄 ′

𝑔 (𝛼) are in the internalisations of their

external counterparts, which is done as follows, again eliding the proof for 𝑄𝑔 (𝛼) as it is analogous to that of

𝑄 𝑓 (𝛼).

∃®𝑝.𝑄 ′
𝐿𝐿

(𝛼) [ ®𝑝/®p] ★ ret = r[ ®𝑝/®p]
⇔ ∃𝑝𝑥 , 𝑝𝑟 , 𝑝𝑣 .

(
(𝑥 = null ★ vs = 𝜖 ★ 𝑝𝑥 = 𝑥 ★ 𝑝𝑟 = |vs | ★ 𝑝𝑣 = null ★ 𝛼 = 3|vs | + 2) ∨

(∃𝑣, vs′ . listN (𝑥, 𝑣 : vs′) ★ vs = 𝑣 : vs′ ★ 𝑝𝑥 = 𝑥 ★ 𝑝𝑣 = 𝑣 ★ 𝑝𝑟 = |vs |
★ 𝛼 = 3|vs | + 2)

)
★ ret = 𝑝𝑟

⇔ listN (𝑥, vs) ★ ret = |vs | ★ 𝛼 = 3|vs | + 2

∃®𝑝.𝑄 ′
𝑓
(𝛼) [ ®𝑝/®p] ★ ret = r[ ®𝑝/®p]

⇔ ∃𝑝𝑥 , 𝑝𝑣, 𝑝𝑟 , 𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, vs′) ★ 𝑝𝑣 = 𝑣 ★ 𝑝𝑟 = |𝑣 : vs′ |
★ (𝑝𝑥 = 𝑥 ′ ★ even(𝑣) ∨ 𝑝𝑥 = 𝑥 ★ odd(𝑣)) ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)

⇔ ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, vs′) ★ ret = |𝑣 : vs′ |
★ (even(𝑣) ★ odd(𝑣)) ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)

⇔ ∃𝑥 ′ . 𝑥 ↦→ 𝑣, 𝑥 ′ ★ listN (𝑥 ′, vs′) ★ ret = |𝑣 : vs′ | ★ 𝑣 ∈ N ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)
⇔ listN (𝑥, 𝑣 : vs′) ★ ret = |𝑣 : vs′ | ★ 𝛼 = 3|𝑣 : vs′ | + (𝑣 mod 2)
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G COMPOSITIONAL SYMBOLIC EXECUTION
In this appendix, we present an outline of a proof of backward completeness for the below symbolic execution

semantics.

G.1 Symbolic Execution Semantics

Skip

𝜎, skip ⇓Γ ok : 𝜎

Assign

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝑠′ = 𝑠 [x ↦→ 𝑣 ]

(𝑠, ˆℎ, 𝜋 ), x := E ⇓Γ ok : (𝑠′, ˆℎ, 𝜋 ′ )

Assign (Error)

JEK𝜋̂
𝑠
⇓  𝜋̂ ′

𝑣err = [“ExprEval”, str(E) ]
(𝑠, ˆℎ, 𝜋 ), x := E ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

Nondet

r̂ fresh 𝜋 ′ = r̂ ∈ N ∧ 𝜋

(𝑠, ˆℎ, 𝜋 ), x := nondet ⇓Γ ok : (𝑠 [x ↦→ r̂ ], ˆℎ, 𝜋 ′ )

Error

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝑣err = [“Error”, 𝑣 ]

(𝑠, ˆℎ, 𝜋 ), error(E) ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

Error (Error)

JEK𝜋̂
𝑠
⇓  𝜋̂ ′

𝑣err = [“ExprEval”, str(E) ]
(𝑠, ˆℎ, 𝜋 ), error(E) ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

If-Then

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝜋 ′ ∧ 𝑣 SAT(𝜋 ′′ )

(𝑠, ˆℎ, 𝜋 ′′ ),𝐶1 ⇓Γ 𝑜 : (𝑠′, ˆℎ′, 𝜋 ′′′ )
(𝑠, ˆℎ, 𝜋 ), if (E) 𝐶1 else𝐶2 ⇓Γ 𝑜 : (𝑠′, ˆℎ′, 𝜋 ′′′ )

If-Else

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝜋 ′ ∧ ¬𝑣 SAT(𝜋 ′′ )

(𝑠, ˆℎ, 𝜋 ′′ ),𝐶2 ⇓Γ 𝑜 : (𝑠′, ˆℎ′, 𝜋 ′′′ )
(𝑠, ˆℎ, 𝜋 ), if (E) 𝐶1 else𝐶2 ⇓Γ 𝑜 : (𝑠′, ˆℎ′, 𝜋 ′′′ )

If-Err-Val

JEK𝜋̂
𝑠
⇓  𝜋̂ ′

𝑣err = [“ExprEval”, str(E) ]
(𝑠, ˆℎ, 𝜋 ), if (E) 𝐶1 else𝐶2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

If-Err-Type

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝜋 ′ ∧ 𝑣 ∉ Bool SAT(𝜋 ′′ )

𝑣err = [“Type”, str(E), 𝑣, “Bool”]
(𝑠, ˆℎ, 𝜋 ), if (E) 𝐶1 else𝐶2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Seq

𝜎̂,𝐶1 ⇓Γ ok : 𝜎̂ ′

𝜎̂ ′,𝐶2 ⇓Γ 𝑜 : 𝜎̂ ′′

𝜎̂,𝐶1;𝐶2 ⇓Γ 𝑜 : 𝜎̂ ′′

Seq-Err

𝜎̂,𝐶1 ⇓Γ 𝑜 : 𝜎̂ ′ 𝑜 ≠ ok

𝜎̂,𝐶1;𝐶2 ⇓Γ 𝑜 : 𝜎̂ ′

Lookup

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
ˆℎ (𝑣𝑙 ) = 𝑣𝑚 𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′ SAT(𝜋 ′′ )

(𝑠, ˆℎ, 𝜋 ), x := [E] ⇓Γ ok : (𝑠 [x ↦→ 𝑣𝑚 ], ˆℎ, 𝜋 ′′ )

Lookup-Err-Val

JEK𝜋̂
𝑠
⇓  𝜋̂ ′

𝑣err = [“ExprEval”, str(E) ]
(𝑠, ˆℎ, 𝜋 ), x := [E] ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

Lookup-Err-Type

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝑣 ∉ N ∧ 𝜋 ′ SAT(𝜋 ′′ ) 𝑣err = [“Type”, str(E), 𝑣, “Nat”]

(𝑠, ˆℎ, 𝜋 ), x := [E] ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Lookup-Err-Use-After-Free

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
ˆℎ (𝑣𝑙 ) = ∅ 𝜋 ′′ = 𝑣 ∈ N ∧ (𝑣𝑙 = 𝑣) ∧ 𝜋 ′ SAT(𝜋 ′′ )
𝑣err = [“UseAfterFree”, str(E), 𝑣 ]

(𝑠, ˆℎ, 𝜋 ), x := [E] ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Lookup-Err-Missing

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝑣 ∈ N ∧ 𝑣 ∉ dom( ˆℎ) ∧ 𝜋 ′ SAT(𝜋 ′′ )
𝑣err = [“MissingCell”, str(E), 𝑣 ]

(𝑠, ˆℎ, 𝜋 ), x := [E] ⇓Γ miss : (𝑠err , ˆℎ, 𝜋 ′′ )

Mutate

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

1

ˆℎ (𝑣𝑙 ) = 𝑣𝑚 𝜋 ′′ = (𝑣𝑙 = 𝑣1 ) ∧ 𝜋 ′

SAT(𝜋 ′′ ) JE2K𝜋̂
′′

𝑠
⇓ 𝑣𝜋̂

′′′
2

ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ 𝑣2 ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′′ )

Mutate-Err-Val-1

JE1K𝜋̂𝑠 ⇓  𝜋̂ ′
𝑣err = [“ExprEval”, str(E1 ) ]

(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

Mutate-Err-Type

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

1
𝜋 ′′ = 𝑣1 ∉ N ∧ 𝜋 ′ SAT(𝜋 ′′ )

𝑣err = [“Type”, str(E1 ), 𝑣1, “Nat”]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )
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Mutate-Err-Missing

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

1
𝜋 ′′ = 𝑣1 ∈ N ∧ 𝑣1 ∉ dom( ˆℎ) ∧ 𝜋 ′

SAT(𝜋 ′′ ) 𝑣err = [“MissingCell”, str(E1 ), 𝑣1 ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ miss : (𝑠err , ˆℎ, 𝜋 ′′ )

Mutate-Err-Use-After-Free

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

ˆℎ (𝑣𝑙 ) = ∅
𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′ SAT(𝜋 ′′ )

𝑣err = [“UseAfterFree”, str(E1 ), 𝑣 ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Mutate-Err-Val-2

JE1K𝜋̂𝑠 ⇓ 𝑣𝜋̂
′

1
JE2K𝜋̂

′
𝑠

⇓  𝜋̂ ′′
𝜋 ′′′ = 𝑣1 ∈ N ∧ 𝜋 ′′

SAT(𝜋 ′′′ ) 𝑣err = [“ExprEval”, str(E2 ) ]
(𝑠, ˆℎ, 𝜋 ), [E1 ] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′′ )

New

ˆ𝑙 fresh 𝜋 ′ = ˆ𝑙 ∈ N ∧ ˆ𝑙 ∉ dom( ˆℎ) ∧ 𝜋

(𝑠, ˆℎ, 𝜋 ), x := new( ) ⇓Γ ok : (𝑠 [x ↦→ ˆ𝑙 ], ˆℎ[𝑣𝑙 ↦→ null], 𝜋 ′ )

Free

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
ˆℎ (𝑣𝑙 ) = 𝑣𝑚

𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′

SAT(𝜋 ′′ ) ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ ∅]
(𝑠, ˆℎ, 𝜋 ), free(E) ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′ )

Free-Err-Eval

JEK𝜋̂
𝑠
⇓  𝜋̂ ′

𝑣err = [“ExprEval”, str(E) ]
(𝑠, ˆℎ, 𝜋 ), free(E) ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

Free-Err-Type

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝑣 ∉ N ∧ 𝜋 ′ SAT(𝜋 ′′ )

𝑣err = [“Type”, str(E), 𝑣, “Nat”]
(𝑠, ˆℎ, 𝜋 ), free(E) ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Free-Err-Missing

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
𝜋 ′′ = 𝑣 ∈ N ∧ 𝑣 ∉ dom( ˆℎ) ∧ 𝜋 ′ SAT(𝜋 ′′ )
𝑣err = [“MissingCell”, str(E), 𝑣 ]

(𝑠, ˆℎ, 𝜋 ), free(E) ⇓Γ miss : (𝑠err , ˆℎ, 𝜋 ′′ )

Free-Err-Use-After-Free

JEK𝜋̂
𝑠
⇓ 𝑣𝜋̂

′
ˆℎ (𝑣𝑙 ) = ∅ 𝜋 ′′ = 𝑣 ∈ N ∧ (𝑣𝑙 = 𝑣) ∧ 𝜋 ′

SAT(𝜋 ′′ ) 𝑣err = [“UseAfterFree”, str(E), 𝑣 ]
(𝑠, ˆℎ, 𝜋 ), free(E) ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′ )

Fcall

J®EK𝜋̂
𝑠
⇓ ®̂𝑣𝜋̂ ′ (

®x = ®𝑥 ∗ 𝑃
)
𝑓 (®x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
∈ Γ ˆ𝜃 = [ ®𝑥 ↦→ ®̂𝑣 ]

matchAndConsume(𝑃, ˆ𝜃, (𝑠, ˆℎ, 𝜋 ′ ) ) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠, ˆℎ𝑓 , 𝜋
′′ ) )ok 𝑟, 𝑟 fresh

produce(𝑄ok [𝑟/ret], ˆ𝜃 ′ [𝑟 ↦→ 𝑟 ], (𝑠, ˆℎ𝑓 , 𝜋
′′ ) ) ⇝ ( ˆ𝜃 ′′, ˆℎ𝑞, (𝑠, ˆℎ′, 𝜋 ′′′ ) )ok

(𝑠, ˆℎ, 𝜋 ), y := 𝑓 (®E) ⇓Γ ok : (𝑠 [y ↦→ r̂ ], ˆℎ′, 𝜋 ′′′ )

Fcall-Qerr

J®EK𝜋̂
𝑠
⇓ ®̂𝑣𝜋̂ ′ (

®x = ®𝑥 ∗ 𝑃
)
𝑓 (®x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
∈ Γ ˆ𝜃 = [ ®𝑥 ↦→ ®̂𝑣 ]

matchAndConsume(𝑃, ˆ𝜃, (𝑠, ˆℎ, 𝜋 ′ ) ) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠, ˆℎ𝑓 , 𝜋
′′ ) )ok 𝑟, 𝑟 fresh

produce(𝑄err [𝑟/err], ˆ𝜃 ′ [𝑟 ↦→ 𝑟 ], (𝑠, ˆℎ𝑓 , 𝜋
′′ ) ) ⇝ ( ˆ𝜃 ′′, ˆℎ𝑞, (𝑠, ˆℎ′, 𝜋 ′′′ ) )ok

(𝑠, ˆℎ, 𝜋 ), y := 𝑓 (®E) ⇓Γ err : (𝑠 [err ↦→ r̂ ], ˆℎ′, 𝜋 ′′′ )

Fcall-Err-Val

1 ≤ 𝑚 ≤ 𝑛 𝜋0 = 𝜋 (JE𝑖K𝜋̂𝑖−1

𝑠
⇓ 𝑣

𝜋̂𝑖
𝑖

) |𝑚−1

𝑖=1
JE𝑚K

𝜋̂𝑚−1

𝑠
⇓  𝜋̂ ′

𝑣err = [“ExprEval”, str(E𝑚 ) ]
(𝑠, ˆℎ, 𝜋 ), y := 𝑓 (E1, . . . , E𝑛 ) ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′ )

where 𝑠err ≜ 𝑠 [err → 𝑣err ].

G.2 Backward Completeness
In this section, we show that the above symbolic execution semantics is backward complete w.r.t. the simple

programming language used in ESL. This means, we prove the following theorem:

Theorem G.1 (Backward completeness: Symbolic execution).

𝜎̂,C ⇓Γ 𝑜 : 𝜎̂′∧ |= (𝛾, Γ) =⇒ ∀𝜎′ ∈ M𝑜𝑑 (𝜎̂′) . ∃𝜎 ∈ M𝑜𝑑 (𝜎̂) . 𝜎,C ⇓𝛾 𝑜 : 𝜎′

To relate smybolic expression evaluation to concrete evaluation, we require the following property.
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Property 1.

Wf 𝜋 (𝑠) ∧ JEK𝜋
𝑠
⇓ 𝑤̂𝜋 ′

∧ 𝜀 (𝜋 ′) = true ∧ 𝑠 ⊆ 𝜀 =⇒ JEK𝜀 (𝑠 ) = 𝜀 (𝑤̂)
where 𝑤̂ ∈ SVal ∪ { }.

Furthermore, we will require a lemma which says that any state that is well-formed w.r.t. a path condition

is also well-formed with respect to a weaker path condition:

Lemma G.2 (Wf implication).

Wf 𝜋 (𝑠) ∧ (𝜋 ′ =⇒ 𝜋) =⇒ Wf 𝜋 ′ (𝑠)

Proof. This is a straight-forward implication of the definition of well-formedness given in 6. □

With this, we can now prove Theorem G.1.

Proof. We assume

𝜎̂,C ⇓Γ 𝑜 : 𝜎̂′∧ |= (𝛾, Γ)
and prove by induction over the structure of C that

∀𝜎′ ∈ M𝑜𝑑 (𝜎̂′). ∃𝜎 ∈ M𝑜𝑑 (𝜎̂) . 𝜎,C ⇓𝛾 𝑜 : 𝜎′

All cases except function calls are straightforward. The successful function call and non-successful func-

tion call cases are similar, we present only the successful function call case here. We include a few simple

representative cases for illustrative purposes.

Fcall. Rule:
Fcall

J®EK𝜋
𝑠
⇓ ®̂𝑣𝜋

′ (
®x = ®𝑥 ∗ 𝑃

)
𝑓 (®x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
∈ Γ ˆ𝜃 = [®𝑥 ↦→ ®̂𝑣]

matchAndConsume(𝑃, ˆ𝜃, (𝑠, ˆℎ, 𝜋 ′)) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠, ˆℎ𝑓 , 𝜋
′′))ok 𝑟, 𝑟 fresh

produce(𝑄ok [𝑟/ret], ˆ𝜃 ′ [𝑟 ↦→ 𝑟 ], (𝑠, ˆℎ𝑓 , 𝜋
′′)) ⇝ ( ˆ𝜃 ′′, ˆℎ𝑞, (𝑠, ˆℎ′, 𝜋 ′′′))ok

(𝑠, ˆℎ, 𝜋), y := 𝑓 (®E) ⇓Γ ok : (𝑠 [y ↦→ r̂], ˆℎ′, 𝜋 ′′′)
We assume

(𝑠, ˆℎ, 𝜋), y := 𝑓 (®E) ⇓Γ ok : (𝑠 [y ↦→ 𝑟 ], ˆℎ′, 𝜋 ′′′)
which yields

(H1) J®EK𝜋
𝑠
⇓ ®̂𝑣𝜋 ′

(H2)
(
®x = ®𝑥 ∗ 𝑃

)
𝑓 (®x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
∈ Γ

(H3) ˆ𝜃 = [®𝑥 ↦→ ®̂𝑣]
(H4) matchAndConsume(𝑃, ˆ𝜃, (𝑠, ˆℎ, 𝜋 ′)) ⇝ ( ˆ𝜃 ′, ˆℎ𝑝 , (𝑠, ˆℎ𝑓 , 𝜋

′′))ok

(H4a) Wf ((𝑠, ˆℎ𝑓 , 𝜋
′′))

(H4b) ˆℎ = ˆℎ𝑝 ⊎ ˆℎ𝑓
(H4c) 𝜋 ′′ ⇒ 𝜋 ′

(H4d) ˆ𝜃 ′ ≥ ˆ𝜃 and dom( ˆ𝜃 ′) = {®𝑥} ∪ fv(𝑃)
(H4e) (∅, ˆℎ𝑝 , 𝜋

′′) ⊇M 𝑃 ˆ𝜃 ′ ★ 𝜋 ′′, i.e. ∀𝜀, ℎ𝑝 . 𝜀, ∅, ℎ𝑝 |= 𝑃 ˆ𝜃 ′ ★ 𝜋 ′′ =⇒ 𝜀 ((∅, ˆℎ𝑝 , 𝜋
′′)) = (∅, ℎ𝑝 )

(H5) 𝑟, 𝑟 fresh
(H6) produce(𝑄ok [𝑟/ret], ˆ𝜃 ′ [𝑟 ↦→ 𝑟 ], (𝑠, ˆℎ𝑓 , 𝜋

′′)) ⇝ ( ˆ𝜃 ′′, ˆℎ𝑞, (𝑠, ˆℎ′, 𝜋 ′′′))ok

(H6a) Wf ((𝑠, ˆℎ′, 𝜋 ′′′))
(H6b) ˆℎ′ = ˆℎ𝑞 ⊎ ˆℎ𝑓
(H6c) 𝜋 ′′′ ⇒ 𝜋 ′′

(H6d) ˆ𝜃 ′′ ≥ ˆ𝜃 ′ [𝑟 ↦→ 𝑟 ] and dom( ˆ𝜃 ′′) = {®𝑥} ∪ fv(𝑃) ∪ fv(𝑄ok [𝑟/ret])
(H6e) ∀𝜀. 𝜀 (𝜋 ′′′) = true ∧ ˆ𝜃 ′′, 𝑠, ˆℎ′ ⊆ 𝜀 =⇒ 𝜀 ( ˆ𝜃 ′′), ∅, 𝜀 ( ˆℎ𝑞) |= 𝑄ok [𝑟/ret]
Now, let 𝜎′ = (𝑠′, ℎ′) ∈ M𝑜𝑑 (𝑠 [y ↦→ 𝑟 ], ˆℎ′, 𝜋 ′′′), i.e. there exists an 𝜀′ such that

(H8a) 𝜀′ (𝑠 [y ↦→ 𝑟 ]) = 𝑠′

(H8b) 𝜀′ ( ˆℎ′) = ℎ′
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(H8c) 𝜀′ (𝜋 ′′′) = true

(H8b), (H6b) imply that (H9) 𝜀′ ( ˆℎ′) = 𝜀′ ( ˆℎ𝑞) ⊎ 𝜀′ ( ˆℎ𝑓 ), and we define (H9a) ℎ𝑞 = 𝜀′ ( ˆℎ𝑞) and (H9b)
ℎ𝑓 = 𝜀′ ( ˆℎ𝑓 ). With (H8b), this yields (H9c) ℎ′ = ℎ𝑞 ⊎ ℎ𝑓 .

(H6e), (H8c), (H9a), together with an appropriately (arbitrarily) extended 𝜀′′ ≥ 𝜀′ that covers ˆ𝜃 ′′ and 𝑠

imply (H10) 𝜀′′ ( ˆ𝜃 ′′), ∅, ℎ𝑞 |= 𝑄ok [𝑟/ret], and we define (H10a) 𝜃 = 𝜀′′ ( ˆ𝜃 ′′).
(H2) and |= (𝛾, Γ) imply that we have a valid UX triple

11 (H11) 𝛾 |= [®x = ®𝑥 ∗ 𝑃 ∗ ®z = null] 𝐶 [𝑜𝑘 : 𝑄 ′
ok],

where (H11a)𝑄ok ⇔ ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ ret = E′ [ ®𝑝/®p], (H11b) 𝑓 (®x){𝐶, return E′} ∈ 𝛾 and (H11c) pv(𝐶)\{®x} =

{®z}.
(H5), (H10), (H10a) and (H11a) imply

𝜃, ∅, ℎ𝑞 |= ∃®𝑝.𝑄 ′
ok [ ®𝑝/®p] ★ 𝑟 = E′ [ ®𝑝/®p]

that is, that there exist ®𝑤 ∈ Val, such that

(H12) 𝜃, ∅[®p ↦→ ®𝑤], ℎ𝑞 |= 𝑄 ′
ok ★ 𝑟 = E′

and we define (H12a) 𝑠𝑞 = ∅[®p ↦→ ®𝑤]. Given (H10a), (H12) and (H6d), we obtain (H13) JE′K𝜃,𝑠𝑞 = 𝜃 (𝑟 ) = 𝜀′′ (𝑟 ).
(H9c), (H11) and (H12) imply

(H14) ∃𝑠𝑝 , ˜ℎ𝑝 . 𝜃, 𝑠𝑝 , ˜ℎ𝑝 |= ®x = ®𝑥 ★ 𝑃 ★ ®z = null ∧ (𝑠𝑝 , ˜ℎ𝑝 ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 ok : (𝑠𝑞, ℎ𝑞 ⊎ ℎ𝑓 )
(H3), (H4d), (H6d) and (H10a) then imply

(H15) 𝜃 ( ®𝑥) = 𝜀′′ ( ˆ𝜃 ′ ( ®𝑥)) = 𝜀′′ (®̂𝑣)
Since 𝑃 does not hold any program variables, (H14) implies

(H16) 𝜃, ∅, ˜ℎ𝑝 |= 𝑃

Given 𝜀′′ and (H4b), we can pick an 𝜀′′′ ≥ 𝜀′′ which covers
ˆℎ𝑝 , and obtain

(H17) 𝜀′′′ ( ˆℎ) = 𝜀′′′ ( ˆℎ𝑝 ) ⊎ 𝜀′′′ ( ˆℎ𝑓 )
Lemma 6.3 (2), (H16) and (H10a) then imply

(H18) 𝜀′′′, ∅, ˜ℎ𝑝 |= 𝑃 ˆ𝜃 ′′

(H8c), (H6c) and 𝜀′′′ ≥ 𝜀′ ≥ 𝜀′ also imply that

(H19) 𝜀′′′ (𝜋 ′′) = true

which then, together with (H18), yields

(H20) 𝜀′′′, ∅, ˜ℎ𝑝 |= 𝑃 ˆ𝜃 ′′ ★ 𝜋 ′′

(H4d) and (H6d) yield 𝑃 ˆ𝜃 ′′ = 𝑃 ˆ𝜃 ′, which together with (H4e) and (H20) yield

(H21) 𝜀′′′ ( ˆℎ𝑝 ) = ˜ℎ𝑝 ,

meaning that we have matched the heaps. As C does not include program variables beyond ®x and ®z, (H14) and
(H15) mean that we can restrict 𝑠𝑝 to ∅[®x → 𝜀′′ (®̂𝑣)] [®z → null] without affecting the execution of C, yielding

(H22) (∅[®x → 𝜀′′ (®̂𝑣)] [®z → null], ˜ℎ𝑝 ⊎ ℎ𝑓 ),𝐶 ⇓𝛾 : (𝑠𝑞, ℎ𝑞 ⊎ ℎ𝑓 ). Finally, (H1) and Property 1 give that (H23)
J®EK𝑠 = 𝜀′′′ (®̂𝑣), where (H23a) 𝑠 = 𝜀′′′ (𝑠).

The hypotheses needed to apply the concrete function call rule (for successful execution) are given through

the hypotheses (H8a), (H11b), (H11c), (H13), (H22) and (H23). This yields

(H23) (𝑠, ˜ℎ𝑝 ⊎ ℎ𝑓 ), x := 𝑓 (®E) ⇓𝛾 (𝑠′, ℎ𝑞 ⊎ ℎ𝑓 )

(H9b), (H17), (H21) and 𝜀′′′ ≥ 𝜀′ yield (H25) ˜ℎ𝑝 ⊎ ℎ𝑓 = 𝜀′′′ ( ˆℎ).
Lastly, (H1) implies 𝜋 ′ ⇒ 𝜋 , which together with (H4c), (H6c) and (H8c) yields (H26) 𝜀′′′ (𝜋) = true.

11
A UX triple is valid when frame-preserving under-approximating validity as defined in Def. 4.5 holds
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Finally, (H23a), (H25) and (H26) imply

(𝑠, ˜ℎ𝑝 ⊎ ℎ𝑓 ) ∈ M𝑜𝑑 ((𝑠, ˆℎ, 𝜋))

which concludes the proof.

Assign. Rule:
Assign

JEK𝜋
𝑠
⇓ 𝑣𝜋

′
𝑠′ = 𝑠 [x ↦→ 𝑣]

(𝑠, ˆℎ, 𝜋), x := E ⇓Γ ok : (𝑠′, ˆℎ, 𝜋 ′)
We assume

(𝑠, ˆℎ, 𝜋), x := E ⇓Γ ok : (𝑠 [x ↦→ 𝑣], ˆℎ, 𝜋 ′)
which yields

(H0) Wf 𝜋 (𝑠)
(H1) JEK𝜋

𝑠
⇓ 𝑣𝜋

′

(H2) 𝑠′ = 𝑠 [x ↦→ 𝑣]
Now, let 𝜎′ = (𝑠′, ℎ′) ∈ M𝑜𝑑 (𝑠 [x ↦→ 𝑣], ˆℎ, 𝜋 ′), i.e. there exists an 𝜀′ such that

(H3a) 𝜀′ (𝑠 [x ↦→ 𝑣]) = 𝑠′

(H3b) 𝜀′ ( ˆℎ) = ℎ′

(H3c) 𝜀′ (𝜋 ′) = true

(H1) implies (H4) 𝜋 ′ ⇒ 𝜋 .

Furthermore, let 𝜀 ≥ 𝜀′ be an extension which covers 𝑠 and define (H5) 𝑠 = 𝜀 (𝑠). (H4) and (H3c) imply (H6)
𝜀 (𝜋) = true. Given (H0), (H1), (H5) and (H6), Property 1 imply (H7) 𝜀 (𝑣) = JEK𝑠

Defining 𝑣 = JEK𝑠 , (H3a), (H5) and (H7) yield (H8) 𝑠′ = 𝑠 [x ↦→ 𝑣].
The concrete operational semantics therefore yields

(𝑠, ℎ′), x := E ⇓𝛾 (𝑠′, ℎ′)

and through (H5), (H3b) and (H6), we obtain (𝑠, ℎ′) ∈ M𝑜𝑑 ((𝑠, ˆℎ, 𝜋)), which concludes the proof.

Mutate. Rule:
Mutate

JE1K𝜋𝑠 ⇓ 𝑣𝜋
′

1

ˆℎ(𝑣𝑙 ) = 𝑣𝑚 𝜋 ′′ = (𝑣𝑙 = 𝑣1) ∧ 𝜋 ′

SAT(𝜋 ′′) JE2K𝜋
′′

𝑠
⇓ 𝑣𝜋

′′′
2

ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ 𝑣2]
(𝑠, ˆℎ, 𝜋), [E1] := E2 ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′′)

We assume

(𝑠, ˆℎ, 𝜋), [E1] := E2 ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′′)
which yields

(H0) Wf 𝜋 (𝑠) andWf 𝜋 ( ˆℎ)
(H1) JE1K𝜋𝑠 ⇓ 𝑣𝜋

′
1

(H2) ˆℎ(𝑣𝑙 ) = 𝑣𝑚
(H3) 𝜋 ′′ = (𝑣𝑙 = 𝑣1) ∧ 𝜋 ′

(H4) SAT(𝜋 ′′)
(H5) JE2K𝜋

′′

𝑠
⇓ 𝑣𝜋

′′′
2

(H6) ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ 𝑣2]
Now, let 𝜎′ = (𝑠, ℎ′) ∈ M𝑜𝑑 (𝑠, ˆℎ′, 𝜋 ′′′), i.e. (given (H6)) there exists an 𝜀′ such that

(H7a) 𝜀′ (𝑠) = 𝑠

(H7b) 𝜀′ ( ˆℎ[𝑣𝑙 ↦→ 𝑣2]) = ℎ′

(H7c) 𝜀′ (𝜋 ′′′) = true
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(This 𝜀′ exists, because (H4) and (H5) imply SAT(𝜋 ′′′).)
(H1), (H3) and (H5) imply (H8) 𝜋 ′′′ ⇒ 𝜋 ′′ ⇒ 𝜋 ′ ⇒ 𝜋 and (H7c) yields (H9) 𝜀′ (𝜋 ′′′) = 𝜀′ (𝜋 ′′) = 𝜀′ (𝜋 ′) =

𝜀′ (𝜋) = true.
(H0), (H2) and (H9) implies (H10) 𝜀′ (𝑣𝑙 ) ∈ N.
(H3) and (H9) imply (H11a) 𝜀′ (𝑣𝑙 ) = 𝜀′ (𝑣1) and we define (H11a) 𝑛 = 𝜀′ (𝑣𝑙 ) = 𝜀′ (𝑣1) ∈ N, given (H10).

We extend 𝜀 ≥ 𝜀′ to cover
ˆℎ and define (H12a) ℎ = 𝜀 ( ˆℎ) and (H11a) and (H12) then implies (H12b)

ℎ(𝑛) ∈ Val.
(H6), (H7b), (H11a) and (H12a) implies (H13) ℎ′ = ℎ[𝑛 ↦→ 𝜀′ (𝑣2)].
Given (H0), (H1), (H7a), (H9) and (H11a), Property 1 implies (H14) JE1K𝑠 = 𝑛.

Given (H0), (H5) and (H8), G.2 implies (H15) Wf 𝜋 ′′ ( ˆℎ).
Given (H5), (H7a), (H9) and (H15), Property 1 yields (H16) JE2K𝑠 = 𝜀′ (𝑣2).
Given (H12b), (H13), (H14) and (H16), the concrete semantics yields

(𝑠, ℎ), [E1] := E2 ⇓𝛾 (𝑠, ℎ′)

and since (H7a), (H8) and (H13) implies (𝜎,ℎ) ∈ M𝑜𝑑 ((𝑠, ˆℎ, 𝜋)), concluding the proof.

Free. Rule:
Free

JEK𝜋
𝑠
⇓ 𝑣𝜋

′
ˆℎ(𝑣𝑙 ) = 𝑣𝑚

𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′

SAT(𝜋 ′′) ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ ∅]
(𝑠, ˆℎ, 𝜋), free(E) ⇓Γ ok : (𝑠, ˆℎ′, 𝜋 ′′)

We assume

(𝑠, ˆℎ, 𝜋), free(E) ⇓Γ ok : (𝑠, ˆℎ[𝑣𝑙 ↦→ ∅], 𝜋 ′′)
which yields

(H0) Wf 𝜋 (𝑠) andWf 𝜋 ( ˆℎ)
(H1) JEK𝜋

𝑠
⇓ 𝑣𝜋

′

(H2) ˆℎ(𝑣𝑙 ) = 𝑣𝑚
(H3) 𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′

(H4) SAT(𝜋 ′′)
(H5) ˆℎ′ = ˆℎ[𝑣𝑙 ↦→ ∅]
Now, let 𝜎′ = (𝑠, ℎ′) ∈ M𝑜𝑑 (𝑠, ˆℎ′, 𝜋 ′′), i.e. (given (H5)) there exists an 𝜀′ such that

(H6a) 𝜀′ (𝑠) = 𝑠

(H6b) 𝜀′ ( ˆℎ[𝑣𝑙 ↦→ ∅]) = ℎ′

(H6c) 𝜀′ (𝜋 ′′) = true

(H1) and (H3) imply (H7) 𝜋 ′′ ⇒ 𝜋 ′ ⇒ 𝜋 and through (H6c) we obtain (H8) 𝜀′ (𝜋 ′′) = 𝜀′ (𝜋 ′) = 𝜀′ (𝜋) = true.
Extending 𝜀 ≥ 𝜀′ to cover

ˆℎ, we define (H9) ℎ = 𝜀 ( ˆℎ).
Given (H0), (H1), (H8) amd (H6a), G.2 yields (H10a) JEK𝑠 = 𝜀′ (ê). Defining 𝑛 = 𝜀′ (ê), (H0), (H2), (H3), (H8)

and (H10a) imply (H10b) 𝑛 = JEK𝑠 = 𝜀′ (ê) = 𝜀′ (ê𝑙 ). With (H2) and (H9) we obtain (H10c) ℎ(𝑛) ∈ Val.
(H6b), (H9) and (H10b) yield (H11) ℎ′ = ℎ[𝑛 ↦→ ∅].
Given (H10b), (H10c) and (H11), the concrete semantics yields

(𝑠, ℎ), free(E) ⇓ 𝛾 (𝑠, ℎ′)

and (H6a), (H8), (H9) and 𝜀 ≥ 𝜀′ imply (𝑠, ℎ) ∈ M𝑜𝑑 ((𝑠, ˆℎ, 𝜋)), concluding the proof.
Seq. Rule:

Seq

𝜎̂,𝐶1 ⇓Γ ok : 𝜎̂′ 𝜎̂′,𝐶2 ⇓Γ 𝑜 : 𝜎̂′′

𝜎̂,𝐶1;𝐶2 ⇓Γ 𝑜 : 𝜎̂′′

We assume

𝜎̂,𝐶1;𝐶2 ⇓Γ 𝑜 : 𝜎̂′′
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which yields

(H1) 𝜎̂,𝐶1 ⇓Γ ok : 𝜎̂′

(H2) 𝜎̂′,𝐶2 ⇓Γ 𝑜 : 𝜎̂′′

Now, let 𝜎′ ∈ M𝑜𝑑 (𝜎̂), i.e. there exists some 𝜀 such that 𝜎 = 𝜀′ (𝜎̂). The inductive hypothesis and (H2) imply

that there exists some 𝜎′′ ∈ M𝑜𝑑 (𝜎̂′′) such that (H3) 𝜎′′,C2 ⇓𝛾 𝜀′ (𝑟 ) : 𝜎′. The inductive hypothesis and (H1)

imply that there exists some 𝜎 ∈ M𝑜𝑑 (𝜎̂) such that (H4) 𝜎,C1 ⇓𝛾 𝜎′′.
Given (H3) and (H4), the concrete semantics imply

𝜎,C1;C2 ⇓𝛾 𝜀′ (𝑟 ) : 𝜎′

As 𝜎 ∈ M𝑜𝑑 (𝜎̂), the proof is concluded.
Mutate-Err-Val-1. Rule:

Mutate-Err-Val-1

JE1K𝜋𝑠 ⇓  𝜋
′

𝑣err = [“ExprEval”, str(E1)]
(𝑠, ˆℎ, 𝜋), [E1] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′)

We assume

(𝑠, ˆℎ, 𝜋), [E1] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′)
which yields

(H1) Wf 𝜋 (𝑠)
(H2) JE1K𝜋𝑠 ⇓  𝜋 ′

(H3) 𝑣err = [“ExprEval”, str(E1)]
Now, let (𝑠′, ℎ) ∈ M𝑜𝑑 ((𝑠err , ˆℎ, 𝜋 ′)), i.e. there exists some 𝜀′ such that

(H4a) 𝜀′ (𝑠 [err ↦→ 𝑣err ]) = 𝑠′

(H4b) 𝜀′ ( ˆℎ) = ℎ

(H4c) 𝜀′ (𝜋 ′) = true

(H2) implies (H5) 𝜋 ′ ⇒ 𝜋 , which implies with (H4c) that (H6) 𝜀′ (𝜋 ′) = 𝜀′ (𝜋) = true.
Define (H7) 𝑠 = 𝜀′ (𝑠).
Given (H1), (H2), (H6) and (H7), Property 1 yields (H8) JEK𝑠 =  .
As 𝑣err has no symbolic variables, we have (H9) 𝑣err = 𝜀′ (𝑣err ) = 𝑣err .

(H4a), (H7) and (H9) implies that (H10) 𝑠′ = 𝑠 [err ↦→ 𝑣err ].
Given (H10), (H8), (H9) and (H3), the operational semantics implies

(𝑠, ℎ), [E1] := E2x ⇓𝛾 err : (𝑠′, ℎ)

(H7), (H4b) and (H6) imply that (𝑠, ℎ) ∈ M𝑜𝑑 (𝑠, ˆℎ, 𝜋), concluding the proof.

Mutate-Err-Use-After-Free. Rule:
Mutate-Err-Use-After-Free

JE1K𝜋𝑠 ⇓ 𝑣𝜋
′

ˆℎ(𝑣𝑙 ) = ∅
𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′ SAT(𝜋 ′′)

𝑣err = [“UseAfterFree”, str(E1), 𝑣]
(𝑠, ˆℎ, 𝜋), [E1] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′)

We assume

(𝑠, ˆℎ, 𝜋), [E1] := E2 ⇓Γ err : (𝑠err , ˆℎ, 𝜋 ′′)
which yields

(H0) Wf 𝜋 (𝑠)
(H1) JE1K𝜋𝑠 ⇓ 𝑣𝜋

′

(H2) ˆℎ(𝑣𝑙 ) = ∅
(H3) 𝜋 ′′ = (𝑣𝑙 = 𝑣) ∧ 𝜋 ′

(H4) SAT(𝜋 ′′)
(H5) 𝑣err = [“UseAfterFree”, str(E1), 𝑣]
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Now, let (𝑠′, ℎ) ∈ M𝑜𝑑 ((𝑠err , ˆℎ, 𝜋 ′′)), i.e. there exists some 𝜀′ such that

(H6a) 𝜀′ (𝑠 [err ↦→ 𝑣err ]) = 𝑠′

(H6b) 𝜀′ ( ˆℎ) = ℎ

(H6c) 𝜀′ (𝜋 ′′) = true

(H1) and (H3) imply (H7) 𝜋 ′′ ⇒ 𝜋 ′ ⇒ 𝜋 , which implies with (H6c) that (H8) 𝜀′ (𝜋 ′′) = 𝜀′ (𝜋 ′) = 𝜀′ (𝜋) = true
and (H9) 𝜀′ (𝑣𝑙 ) = 𝜀′ (𝑣).

Define (H10) 𝑠 = 𝜀′ (𝑠).
Given (H0), (H1), (H8), (H10) and (H6a), Property 1 yields (H11) JE1K𝑠 = 𝜀′ (𝑣) ∈ N.
(H2), (H3) and (H6b) imply (H12) ℎ(𝜀′ (𝑣𝑙 )) = ∅.
(H5) implies (H13) 𝜀′ (𝑣err ) = [“UseAfterFree”, str(E1), 𝜀′ (𝑣)].
(H6a), (H10) and (H13) imply (H14) 𝑠′ = 𝑠 [err ↦→ 𝜀′ (𝑣err )].
Given (H9), (H11), (H12), (H13) and (H14), the concrete semantics imply

(𝑠, ℎ), [E1] := E2 ⇓𝛾 err : (𝑠′, ℎ)

(H10), (H6b), and (H8) and imply that (𝑠, ℎ) ∈ M𝑜𝑑 ((𝑠, ˆℎ, 𝜋)), concluding the proof.

□
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