Exact Separation Logic
Towards bridging the gap between verification and bug-finding

PETAR MAKSIMOVIC, Imperial College London, United Kingdom
CAROLINE CRONJAGER, Ruhr-Universitit Bochum, Germany
JULIAN SUTHERLAND, Imperial College London, United Kingdom
ANDREAS LOOW, Imperial College London, United Kingdom
PHILIPPA GARDNER, Imperial College London, United Kingdom

Over-approximating (OX) program logics, such as separation logic, are used to verify properties of heap-
manipulating programs: all terminating behaviour is characterised but the reported results and errors need not
be reachable. OX function specifications are thus incompatible with true bug-finding supported by symbolic
execution tools such as Pulse and Gillian. In contrast, under-approximating (UX) program logics, such as
incorrectness separation logic, are used to find true results and bugs: reported results and errors are reachable,
but not all behaviour can be characterised. UX function specifications thus cannot capture full verification.
We introduce exact separation logic (ESL), which provides fully verified function specifications compatible
with true bug finding: all terminating behaviour is characterised, and all reported results and errors are
reachable. ESL requires subtle definitions of internal and external function specifications compared with the
familiar definitions of OX logics. It supports reasoning about mutually recursive functions and non-termination.
We prove frame-preserving soundness for ESL, demonstrating, for the first time, functional compositionality
for a non-OX program logic. We investigate the expressivity of ESL and the role of abstraction in UX reasoning
by verifying abstract ESL specifications of list algorithms. To show overall viability of exact verification for true
bug-finding, we formalise a compositional symbolic execution semantics capable of using ESL specifications
and characterise the conditions that these specifications must respect so that true bug-finding is preserved.

1 INTRODUCTION

Program logics were introduced for reasoning about program correctness, originating with Hoare
logic [28] and evolving to separation logics (SL) [6, 38, 43] for reasoning in a functionally com-
positional way about heap-manipulating programs. These over-approximating (OX) logics are
well-suited for verifying properties of programs: OX specifications capture all terminating be-
haviour, non-termination can also be captured, in some scenarios, via the postcondition False, but
not all reported results and errors are necessarily reachable.

By contrast, under-approximating (UX) logics were comparatively recently introduced for finding
true results and bugs, originating with reverse Hoare logic (RHL) [13] for reasoning about proba-
bilistic programs and coming to prominence with incorrectness logic (IL) [37] for reasoning about
program incorrectness: UX specifications capture some terminating behaviour, non-termination
cannot be characterised, and all reported results and errors are reachable. Since then, many UX logics
have been introduced, including incorrectness separation logic (ISL) [40], concurrent incorrectness
separation logic (CISL) [41], and insecurity separation logic (InsecSL) [35].

The application of UX reasoning to program incorrectness arose from the challenge to record,
as function summaries, the true results and bugs coming from Meta’s symbolic execution tool,
Pulse [37, 40]. Such information tends to be partial: e.g., the SAT solver can fail; the loop unrolling
fuel can run out; a function may not be found; or a computation may take too long. This partiality
is embedded into the meaning of UX specifications, but, as a consequence, UX specifications do
not provide verification guarantees. In addition, symbolic execution tools are not able to use OX
specifications without breaking the UX guarantee of no false positives. Our goal is to develop fully
verified function specifications of, for example, data-structure libraries that are compatible with
symbolic execution tools that target true bug-finding.

2 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

We introduce exact separation logic (ESL) for reasoning about heap-manipulating sequential
programs, using a simple demonstrator programming language with a linear memory model. We
demonstrate that ESL provides verified exact (EX) specifications compatible with true bug-finding.
These specifications capture all terminating behaviour in full, all reported results and errors are
reachable, and non-termination can be characterised using the post-condition False. Despite these
strong properties, we have found ESL specifications to be more expressive and ESL proofs to
be easier than one might expect. We illustrate this by verifying EX correctness specifications of
standard list algorithms and finding standard language errors associated with examples from the
UX literature. In addition, we adapt Gillian [16, 20, 33, 34] to EX verification, and verify these
specifications semi-automatically. We prove a frame-preserving soundness result for ESL with
mutually recursive functions, presented in such a way that it is immediately transferable to ISL
and SL, demonstrating, for the first time, functional compositionality of UX reasoning. In addition,
we introduce a symbolic execution semantics that can call functions with ESL specifications, and
prove a correctness result that demonstrates that verified ESL function specifications are indeed
compatible with true bug-finding. Finally, through the list-algorithm examples, we investigate the
interaction of abstraction with UX reasoning, highlighting the difference between abstraction and
over-approximation, and delineate a boundary for the usability of abstraction in true bug-finding.

In order to better understand the difference between ESL and ISL, consider the ISL quadruple
[P] C [ok : Q(,k] [err : Qerr] , which tells us that any state satisfying either the success post-condi-
tion Qo or the error post-condition Q. is reachable from some state satisfying the pre-condition P
by executing the command C. It says nothing about any other behaviours of C, and even if the
post-condition is complete, it is not possible to identify this within ISL. In contrast, an ESL quadruple
(P) C (0k : Qok) (err : Qerr) additionally states that all terminating executions of C starting from a
state satisfying the pre-condition either end successfully in a state that satisfies Q. or fault in a
state that satisfies Q.. These exact quadruples, which provide unified reasoning about correctness
and incorrectness, are fundamental to ESL and to OX logics requiring such a treatment of errors.!
They are not fundamental to UX logics, in that a UX quadruple can be split into two separate triples.

An important property of OX separation logics is that the reasoning is functionally compositional,
and hence scalable.? This function compositionality is the reason why Meta’s Infer and Pulse tools
can work on industrial-scale codebases. This property is not immediate for ESL and UX logics,
as the OX definitions do not transfer and, to our knowledge, functional compositionality for UX
logics has not been studied.* We develop ESL with mutually recursive functions, requiring subtle
definitions of external function specifications, which provide the interface that the function exposes
to the client, and internal function specifications, which provide the interface to the function’s
implementation. With OX logics, these specifications are well-understood and the gap between
them is small. For ESL and UX logics, this gap is larger, especially with the post-conditions. This is
because information cannot be lost within the reasoning, and so parameters and local variables
must remain in the internal post-condition, but at the same time must not be present in the external
post-condition, as their scope does not extend outside the function.

We present ESL rules for calling functions and for extending the set of available functions (the
environment) with a new cluster of mutually recursive functions: function call is analogous to
its OX counterpart; environment extension is substantially different. First, it captures the more
intricate transfer from the internal to the external post-condition. Second, when a new cluster
is added, terminating and non-terminating specifications are treated separately. In particular, to

IStrictly speaking, the ESL post-condition could be expressed as a disjunction of ok- and err-labelled assertions, but the
quadruple distinction is helpful as compound commands (e.g., sequence) treat the two differently.

ZInterestingly, we were not able to find a direct proof of functional compositionality for sequential SL.

31ISL [40] and InsecSL [35] use function specifications in examples and associated tools, but provide no logic rules.

Exact Separation Logic 3

preserve UX reachability, all terminating specifications must be provably terminating: this we
achieve by imposing a joint measure on the pre-conditions and restricting (mutually) recursive
calls to pre-conditions of smaller measure only. Non-terminating specifications, on the other hand,
may be used without constraints to prove themselves, as in OX logics. Relying on transfinite and
Scott induction [45], we prove a frame-preserving soundness result for ESL, achieving functional
compositionality. Our approach can be simply adapted to ISL and SL. We believe we are the first to
have demonstrated functional compositionality for UX reasoning.

We illustrate the usability of ESL by exploring singly-linked list algorithms and specifications
with different degrees of abstraction. For example, two specifications of the list-length algorithm are:

(x = x % list(x,n)) LLen(x) (list(x,n) x ret = n) (SP1)
(x = x * list(x, xs, vs)) LLen(x) (list(x, xs, vs) * ret = |vs|) (SP2)

where the triple notation means that no errors occur.* In (SP1), list(x, n) denotes the standard list
abstraction that tells us that in memory, starting from address x, there is a singly-linked list of
length n, hiding information about node addresses and values. This shows that ESL specifications
can be as abstract as their OX counterparts, which may seem counter-intuitive given the UX
requirement of not losing any information. The insight is that information hidden via abstraction
in the pre-condition may soundly remain hidden in the post-condition as well. We observe that
specifications such as (SP1) cannot be used in standard symbolic execution precisely due to this
hiding of information. By contrast, the specification (SP2) features the list(x, xs, vs) abstraction,
which provides full information about the list structure through variable xs, denoting the list of
node addresses, and vs, denoting a list of values.” With respect to (SP1), it additionally captures the
fact that the list structure does not change, and can therefore be used in standard symbolic execution
for true bug-finding. Abstractions that expose node addresses are also needed for specifying, e.g., a
list-free algorithm, where the post-condition must explicitly state that these addresses have been
freed, as resource cannot be forgotten with EX or UX reasoning. We adapt the semi-automatic OX
verification of Gillian [33] to handle exact verification for recursive functions, and prove a number
of exact list-algorithm specifications with varying degrees of abstraction.

We introduce compositional symbolic execution (CSE) for our demonstrator language, including a
function call rule that allows it to use EX and UX specifications. We prove that if the abstractions used
in the specifications are strictly exact, then our CSE satisfies backward completeness, a property of

symbolic execution analogous to UX validity in program logics. This result is the first to demonstrate
the feasibility of combining true bug-finding with verified separation-logic specifications.

Contributions. In summary, the contributions of this paper are:

e the introduction of exact specifications and ESL, a sound exact separation logic for verifying
such specifications (§4);

o the first proof of sound function compositionality for a non-OX program logic (§4.12);

e exact specifications of a number of illustrative examples, demonstrating how ESL can be used to
reason about data-structure libraries, language errors, mutual recursion, and non-termination (§5);

o the adaptation of the Gillian platform to support EX verification of recursive functions (§5);

e a compositional symbolic execution semantics for true bug-finding, which can soundly use
verified ESL/ISL function specifications (§6);

e an investigation into the use of abstraction for true bug-finding in UX program logics and
symbolic execution (§5, §6).

4In ESL, an equality assertion, E; = E,, denotes that the heap is empty and that E; and E, represent the same value.
5 Abstractions such as list(x, xs, vs) are called strictly exact in the literature [46, p. 149]. Their property is that, for any
concretisation of their parameters, there exists at most one heap that satisfies such a concretisation.

4 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

2 RELATED WORK

We place ESL in the context of related work on OX and UX logics, symbolic analysis, and associated
tools. In particular, we highlight its relationship to Gillian [16, 20, 33, 34], a recently-developed
platform for unified symbolic analysis. In addition, we briefly discuss existing approaches to use of
summaries and abstraction in symbolic execution.

OX Program Logics. OX separation logics have been applied to many diverse languages and li-
braries, including Java and java.util.concurrent [11, 15,39], C [3, 29, 31], POSIX [36], JavaScript
and DOM [21, 22, 42], Wasm [44], and Rust [4, 30]. These works account at times for language
errors, almost always use exact axioms for the basic commands, but are set in the overall context of
OX reasoning. An interesting question is just how much of their OX reasoning can be made exact;
our examples, which use list abstractions, suggest that this percentage could be high.

The combination of ideas originating from SL, together with the bi-abductive technique needed
for automation [9, 10], led first to the Monoidics Infer tool for verification and then to Meta’s Infer
tool for bug finding [8]. However, the specifications generated by both of these tools are OX in
principle, meaning that the reported bugs are not necessarily true.

UX Program Logics. The work on UX program logics originated with RHL [13], which introduced
backward consequence and UX correctness triples, and was used to prove properties of non-
deterministic algorithms, e.g., an array shuffle. The recent work on IL [37], ISL [40], CISL [41], and
InsecSL [35] shifted the focus of UX reasoning to true bug-finding, expressed through various UX
incorrectness triples. The motivation for IL and ISL came from Meta’s bug-finding tool, Pulse [37, 40],
developed by the Infer team with the goal of only generating true bugs. InsecSL also comes with
an accompanying symbolic execution tool, and the CISL framework has formalised ideas arising
from the concurrent analysis in the work on RacerD [26] and Views [14].

To our knowledge, none of this work on UX reasoning addresses functions, despite functional
compositionality being essential for scalability. Our approach to internal and external function
specifications, informed by the backward consequence of UX logics and hinted at in InsecSL, yields
a unified treatment of functions across OX and UX reasoning. Our ESL soundness proof, which
implies functional compositionality, transfers to ISL by removing the non-terminating specifications
and the Scott-induction part of the proof. When it comes to abstraction, only RHL uses recursive
predicates (e.g., for list permutation), but their predicates are first-order and not abstract.

Independently, LCL4 [7] is a non-functionally-compositional, first-order logic that combines
UX and OX reasoning using abstract interpretation. It is parametric on an abstract domain A,
and proves UX triples of the form +4 [P] C [Q] where, under certain conditions, the triple also
guarantees verification. These conditions, however, normally mean that only a limited number
of pre-conditions can be handled. The conditions also have to be checked per-command and if
they fail to hold (due to, e.g., issues with Boolean guards, which are known to be a major source of
incompleteness), then the abstract domain has to be incrementally adjusted; the complexity of this
adjustment and the expressivity of the resulting formalism is unclear.

Gillian and ESL. Our motivation for ESL came from Gillian [16, 20, 33, 34], a recently-introduced
multi-language platform for unified symbolic analysis that uses EX and OX function specifications.
Gillian’s core symbolic execution engine [34], used for whole- program symbolic testing, has
been shown to satisfy forward soundness and backward completeness, properties that strongly
correspond to to the OX and UX parts of our ESL soundness result. Gillian’s SL-based compositional
verification provides OX specifications [20, 33], and its compositional symbolic testing based on
bi-abduction [20] generates (mostly) EX specifications.

Exact Separation Logic 5

Compositional Symbolic Execution. There exists a substantial body of work on symbolic
execution with function summaries (e.g. [1, 23, 25, 27, 32, 47]), most of which is based on first-order
logic. We highlight the work of Godefroid et al., which initially used first-order exact summaries of
bounded program behaviour to drive the compositional dynamic test generation of SMART [23],
and later distinguished between may (OX) and must (UX) summaries, leveraging the interaction
between them to design the SMASH algorithm for compositional property checking and test
generation [25]. Our ESL specifications are able to capture properties of unbounded program
behaviour, as well as non-termination, and can be used in both OX and UX program-logic reasoning.
Our compositional symbolic execution is able to soundly use ISL/ESL specifications, which can
contain arbitrary information about the heap. When it comes to abstraction, for example, Anand
et al. [2] implement linked-list and array abstractions for true bug-finding in non-compositional
symbolic execution, in the context of the Java PathFinder, and use it to find bugs in list and array
partitioning algorithms. True bug-finding is maintained by checking for state subsumption, which
requires code modification rather than annotation and a record of all previously visited states.

3 THE PROGRAMMING LANGUAGE

We introduce ESL using a simple programming language, highlighting the most important aspects
in the body of the paper, and delegating the rest to Appendix A due to space constraints.
Language Syntax

I

v€eVal:=neNat|beBool|seStr|null |v x € PVar
EePExp:=v|x|E+E|E—E|..|E=E|E<E|=E|EAE|..|E:E|E-E]..

CeCmd:==skip|x:=E|x:=nondet | error(E) | if (E) C else C | while (E) C | C;C |
y == f(E) | x:=[E] | [E] :== E | x :== new(E) | free(E)

Syntax. The language syntax is given above. Values, v € Val, include: natural numbers, n € Nat;
Booleans, b € Bool = {true, false}; strings, s € Str; a dedicated value null; and lists of values,
v € List. Expressions, E € Exp, comprise values, program variables, x € PVar, and various unary
and binary operators (e.g., addition, equality, negation, conjunction, list prepending, and list con-
catenation). Commands comprise: variable assignment; non-deterministic number generation; error
raising; if statement; while loop; command sequencing; function call; and memory management
commands, that is, lookup, mutation, allocation, and deallocation. The sets of program variables
for expressions and commands, denoted by pv(E) and pv(C) respectively, and the sets of modified
variables for commands, denoted by mod(C), are defined in the standard way.

Definition 3.1 (Functions). A function, denoted by f(X) { C;return E }, comprises: a function
identifier, f € Fid, given by a string; the function parameters, X, given by a list of distinct program
variables; a function body, C € Cmd; and a return expression, E € PExp, with pv(E) C {X} U pv(C).

Program variables in function bodies that are not the function parameters are treated as local
variables initialised to null, with their scope not extending beyond the function.

Definition 3.2 (Function Implementation Contexts). A function implementation context y is a finite
partial function from function identifiers to their implementations:

y : Fid =g, PVar List x Cmd x PExp
For y(f) = (X, C, E), we also write f(X){C;return E} €y.
Operational Semantics. We define an operational semantics that gives a complete account of the

behaviour of commands and does not get stuck on any input, as we explicitly account for language
errors and missing resource errors.

6 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

Definition 3.3 (Stores, Heaps, States). Variable stores (also: stores), s : PVar —¢;, Val, are partial
finite functions from program variables to values. Heaps, h : Nat —¢;, (Val W @), are partial finite
functions from natural numbers to values extended with a dedicated symbol @ ¢ Val. Program
states (also: states), o = (s, h), consist of a store and a heap.

Heaps are used to model the memory, and the dedicated symbol @ ¢ Val is required for UX
frame preservation® to hold (cf. Definition 4.5). In particular, h(n) = v means that an allocated heap
cell with address n contains the value v; and h(n) = @ means that a heap cell with address n has
been deallocated [17-19, 21, 40]. This linear memory model is used in much of the SL literature,
including ISL [40]. Onward, 0 denotes the empty heap, h; & h; denotes heap disjoint union, and
hy 8 hy denotes that h; and h, are disjoint.

Definition 3.4 (Expression Evaluation). The evaluation of an expression E with respect to a store s,
denoted [[E]s, results in either a value or a dedicated symbol denoting an evaluation error, 4 ¢ Val.
Some illustrative cases are:

s(x), x € dom(s) [Eils + [E2]ls. [Eills. [E2]s € Nat

7, otherwise

[ls=0 D= { [Es + Eafls = {

4, otherwise

The big-step operational semantics uses judgements of the form o,C |, o : ¢’, read: given
implementation context y and starting from state o, the execution of command C results in outcome
o € O = {ok, err, miss} and state ¢’. The outcome o can either equal: ok (elided to avoid clutter
where possible), meaning that the execution was successful; err, meaning that the execution faulted
with a language error, or miss, meaning that the execution faulted with a missing resource error.

Definition 3.5 (Operational Semantics). The big-step operational semantics is given in Figure 1
(all success cases), and Figure 2 (representative error cases).

The successful cases of the semantics are straightforward: for example, the nondet command
generates an arbitrary natural number; the function call executes the function body in a store
where the function parameters are given the values of the arguments of the function call and the
local variables of the function are initialised to null; and the control flow statements behave as
expected. Allocation requires the specified amount of contiguous cells (always available as heaps
are finite), and lookup, mutation, and deallocation require the targeted cell not to have been freed.

The semantics stores error information in a dedicated program variable err, which is not available
to the programmer. For simplicity of error messages, we assume to have a function str : PExp — Str,
which serialises program expressions into strings. The error cases of the semantics are split into
language errors, which can be captured by program-logic reasoning, and missing resource errors,
which cannot. Language errors arise due to, for example: expressions evaluating to 4 because
a variable is missing from the store, sub-expressions being incorrectly typed (e.g. null + 1), or
operators being partial (e.g. 0 — 5 landing out of Nat); the access of deallocated cells (i.e., the
use-after-free error); incorrect typing in commands (e.g., non-Booleans in the condition of the if or
while statements); and the calling of non-existent functions. On the other hand, missing resource
errors arise from accessing cells that are not present in memory.

90X/UX frame preservation essentially means that if a program successfully runs from/to a given initial/final state, then it
will also successfully run from/to an extended initial/final state, and that extension (referred to as frame) will not be affected
by the execution. It is known that losing deallocation information breaks UX frame preservation, because then it would be
possible to frame on the deallocated cells onto the final state, but not the initial state [40]. The solution is to keep explicit
track of deallocated cells, which we achieve through the use of .

Exact Separation Logic 7

[Els=v s" =s[x— o] neN s =s[x— n] [E]s =true (s,h),Cyy o
o,skip |y o (s,h),x=E |y (s',h) (s, h),x := nondet ||, (s’,h) (s,h),if (E) CyelseCy |y o’

[E]s = true (s,h),Cl, o”

[E]. = fakse (s.h).Caly o' [E] = false o”,while (E) C Iy o’
(s,h),if (E) Cy else Cz | o (s,h),while (E) C | (s, h) (s, h),while (E) C I, o’
FE) {CireturnE’ } ey [E]s=3
oCilyor PO\ = (5} sp=0[%— B[z - null]
a".Clly o (sp,h),C Uy (sq b)) [E']sq =0 [Els=n h(n)=vo
m (s,h),y:=f(E) UY (s[y—>y’],h’) (s,h),x:=[E] Uy (s[x — o],h)
[Ei]s =n h(n) € Val [E]s =n (n’ +i¢dom(h))|o<i<n
[E2ls =0 h'=hln— o] k" =h[n" = null]---[n"+n -1+ null] [E]s=n h(n) € Val
(sB). [E1) =2 Uy (s) (s,h),x = new(E) Uy (s[x — n"],h") (s, h), free(E) Uy (s, h[n — 2])

Fig. 1. Operational semantics, successful cases

[E1]ls = ¢ [E1]s = n ¢ dom(h) [Eils=n h(n) =2
Verr = [“ExprEval”, str(Eq)] Verr = [“MissingCell”, str(Ey), n] Verr = [“UseAfterFree”, str(Ey), n]
(s,h), [E1] = E2 Uy err: (S, h) (s,h),[E1] = E2 Uy miss : (Serr h) (s,h), [E1] = E2 Uy err: (Serr, h)
[Els =v e = [“Error’, 0] 0,Cy |y err:o’ [E]s = true (s,h),C | err: (s, h)
(s, h),error(E) Uy err: (ser h) 0,Ci;Cy Uy err: o’ (s,h),while (E) C | err: (s,h)

Fig. 2. Operational semantics, faulting cases (excerpt), with se- = s[err — v.r] and str: PExp — Str.

4 EXACT SEPARATION LOGIC

We introduce an exact separation logic for our programming language, giving the assertion language
in §4.1, specifications in §4.2, and the program logic rules in §4.3.

4.1 Assertion Language

To define assertions and their meaning, we introduce logical variables, x, y, z, € LVar, distinct from
program variables, and define the set of logical expressions as follows:

EclExp2o|x|x|E+E|E-E|..|E=E|-E|EAE|..|E-E|E:E|..

Note that we can use program expressions in assertions (for example, E € Val), as they form a
proper subset of logical expressions.

Definition 4.1 (Assertion Language). The assertion language is defined as follows:
HEBASFtéEIZEZ|E1<E2|E€X|...|ﬁﬂ|ﬂ1=>ﬂ'2

PeAsrt = |False |Py = P, |3x.P|emp |E; = E; | Er> @ | Py x Py | ®p <x<p, P
where E, E;, E; € LExp, X C Val, and x € LVar.

Boolean assertions, 7 € BAsrt, lift Boolean logical expressions to assertions. Assertions, P € Asrt,
contain Boolean assertions, standard first-order connectives and quantifiers, and spatial assertions.
Spatial assertions include the empty memory assertion, emp, the positive cell assertion E; — Ej,
and the negative cell assertion E — @ as found in [17-19, 21], and in ISL as E &+ [40], and assertions
built from separating conjunction (star) and its iteration (iterated star).

8 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

To define assertion satisfiability, we introduce substitutions, 6 : LVar —¢;, Val, which are partial
finite mappings from logical variables to values, extending expression evaluation of Definition 3.4
to [E]g.s straightforwardly, with a new base case for logical variables:

[x]Egs = 0(x), if x € dom(6) [x]os = 4,if x ¢ dom(0)

Definition 4.2 (Satisfiability). The satisfiability relation is first defined for Boolean assertions,
denoted by 0, s | 7, and is then lifted to arbitrary assertions, denoted by 6, o |= P, as follows:

0,(s,h) E
T o O0sExAh=0
0.s False & never
Ei=E, & [E1=E]gs=true PL=P, © 0,(sh)EP =0 (sh) kP,
E1<E © [E1 < Ex]gs = true dx. P & doveVal.O[x— v],(s,h) EP
EeX & [Elos € X emp o h=0
T = T2 < Os '= m = 0,s '= T2 Ei— E; & h= {[[EI]]G,S = [[EZHS,S}
(B =E) & [E=Elg=fase L1792 & h={[E]p;— 2}
—|(E1 < Ez) =1 [[El < Ez]]g,s = false Py x Py & Jhi, by h=h1 W hy A
—|(E c X) o [[E]]Bs ¢ X 0, (S,hl) '=P1 A0, (S,hz) '7CP2
~(m > m) e O ';”l AB,s | - ®E1SX<E2P<: (i<kA3hy... hg_i.h= wj;i hj A
—r o OsErm Vji.i<j<k=0(shj) EP[ji/x])V

(i>kAh=0),wherei= [[El]]g’s, k= [[Ezﬂg’s
and x is not featured in either E; or E;.

Note that Boolean assertion satisfiability (expectedly) does not depend on the heap, but also
that due to Boolean expression evaluation being three-valued (true, false, or #), negation has to
be defined case-by-case for Boolean assertions, rather than using the negation of the meta-logic.
The satisfiability cases for first-order and spatial assertions are defined in the standard way. For
convenience, we choose Boolean assertions to be satisfiable only in the empty heap. Also, note that
the iterated star defaults to emp if the upper bound is not greater than the lower.

Definition 4.3 (Validity and Entailment). An assertion P is valid, denoted by |= P, iff V6, 0. 0, 0 = P.
An assertion P entails an assertion Q, denoted by P = Q, iff V0,0. 0,6 P = 60,0 Q.

4.2 Specifications

We define specifications for commands and functions, focussing in particular on external and
internal function specifications and the relationship between them, as well as various forms of
specification validity.

Definition 4.4. Specifications, t = (P) (ok : Qo) (err : Qer) € Spec : Asrt X Asrt X Asrt, comprise
a pre-condition, P, a success post-condition, Q.k, and the faulting post-condition, Q..

We denote that command C has specification ¢t by C : t, or (P) C (ok: Qo) (err: Qer) in
quadruple form. Additionally, we use the following shorthand:

(P) C(Q) £ (P) C (0k: Q) (err: False)
(P) C (err: Q) = (P) C (ok : False) (err: Q)
(P)C(Q) = (P) C (ok:—) (err:-)
noting the use of the calligraphic Q for cases in which the post-condition details are not relevant.

The validity of a specification t for a command C in an implementation context y requires both
OX and UX frame-preserving validity.

Exact Separation Logic 9

Definition 4.5 (y-Valid Specifications). Given implementation context y, command C, and specifi-
cation ¢t = (P) (ok : Qo) (err : Qer), the specification ¢t of command C is y-valid, if and only if:

// Frame-preserving over-approximating validity
(V0,s,h, he,0,5,h". 0,(s,h) EP =
(s;hWhe),Clyo:(s',h') = (o# missAIW . K" =h" Whr A0, (s", 1) E Qo)) A
/! Frame-preserving under-approximating validity
(V0.s", 1, hf,0.0,(s,/') EQ, = hpfih =
(3s,h. 0,(s,h) EP A (s,hWhy),Cl,0:(s',h" Why)))

We writey F C : tory (P) C (ok : on) (err : Qerr) to denote that a specification ¢t =
(P) C (ok : on) (err : Qm) of command C is y-valid.

Observe that the outcome o can either be success or a language error; it cannot be a missing
resource error as this would break frame preservation. As our operational semantics is complete, we
can also use ESL to characterise non-termination. In particular, if a command satisfies a specification
in which both post-conditions are False, then it is guaranteed to not terminate if executed from a
state satisfying the pre-condition. Were the semantics incomplete (e.g., if it did not reason about
errors), then such a specification might also indicate the absence of a semantic transition.

Functions have two kinds of specifications: external specifications, which provide the interface
the function exposes to the client, and the related internal specifications, which provide the interface
to the function implementation. This terminology is also used informally in InsecSL [35].

Definition 4.6 (External Specifications). A specification (P) (ok : Qo) (err : Qg) is an external
function specification (also: external specification) if and only if

e P = (X = X x P’), for some distinct program variables X, distinct logical variables X, and
assertion P/, with pv(P’) = 0

o pv(Quk) = {ret} or Qu = False

® pV(Qerr) = {err} or Qg = False

The set of external specifications is denoted by ESpec.

Definition 4.7 (Function Specification Contexts). A function specification context (also: specifica-
tion context), I', is a finite partial function from function identifiers to a set of external specifications:

T € Fid —p, P(ESpec)

The constraints on the program variables in external specifications are well-known from OX
logics and follow the usual scoping of the parameters and local variables of functions: the pre-
conditions only contain the function parameters, X; and the post-conditions only have the (dedicated)
program variables ret or err, which hold, respectively, the return value of the function on successful
termination or the error value on faulting termination. No other program variables can be present
in the two post-conditions due to variable scope being limited to the function body.

Internal function specifications are more interesting for exact and UX reasoning. The internal
pre-condition is straightforward, simply extending the external pre-condition by instantiating the
locals to null. The internal post-condition must include information about the parameters and local
variables, as no information can be lost from the pre- to the post-condition. This means that the
connection between internal and external specifications is subtle, given the constraints on external
post-conditions. To address this, we define an internalisation function, relating an external function
specification with a set of possible internal specifications. In particular, the external post-condition
is required to be equivalent to the internal one in which the parameters and local variables of the
internal post-condition have been replaced by fresh existentially quantified logical variables.

10 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

Definition 4.8 (Internalisation). Given implementation context y and function f € dom(y), a
function specification internalisation, Int, ¢ : ESpec — P (Spec) is defined as follows:

Inty,f((P) (Ok : on) (err : Qerr)) =
{(P*xZ=null) (ok:Q!) (err:Q,,) | E Q! = E € Valand
F Qok © 3p. Q) [p/P] * ret = E[p/p] and
= Qerr © 35- Qérr [5/5] }’
where f(X){C;return E} € y,7 = pv(C)\pv(P), p = pv(P) ¥ {Z}, and the logical variables p are
fresh with respect to Qo and Qeyr.

This approach works for OX logics as well. It is not necessary, however, as information about
program variables can be forgotten in internal post-conditions using forward consequence, making
the internal post-conditions simpler.

Definition 4.9 (Environments). An environment, (y,T), is a pair consisting of an implementation
context y and a specification context I'.

An environment (y,T) is valid if and only if every function specified in ' has an implementation
in y and every specification in T has a y-valid internal specification.

Definition 4.10 (Valid Environments). Given an implementation context y and a specification
context I', the environment (y,T') is valid, written |= (y,T), if and only if
dom(I') € dom(y) A
(Vf.X,CE. f(X){C;returnE} ey = (Vt.t e (f) = 3t eInt,r(t).y EC:t'))
Finally, a specification t is valid for a command C in a specification context I' if and only if ¢ is

y-valid for all implementation contexts y that validate T".

Definition 4.11 (I'-Valid Specifications). Given a specification context I', a command C, and a
specification t = (P) (Q), the specification t is valid for command C in T (also: I'-valid), written
IFT'eEC:torT E (P) C(Q),if and only if:

Vy.E () = yE (/) C(@Q

4.3 Program Logic

The rules for the program logic are given in Figure 3 for basic commands, Figure 4 for composite
commands and structural rules, and Figure 5 for the function-related rules. In the figures, we only
give an excerpt of error-related rules (all are available in Appendix B) and denote the repetition
of the pre-condition in the post-condition by pre. When reading these rules, it is important to
remember that the judgements must not lose information and must cover all paths. The judgement
T+ (P) C (ok : Qok) (err : Qerr) means that the specification t is derivable for a command C given
the specifications recorded in I', whereas the judgement + (y, ') means that the environment (y, I')
is well-formed, i.e. constructed through the [ENV-EMPTY] and [ENV-EXTEND] rules.

The basic command rules are fairly straightforward. The [NONDET] rule existentially quantifies
the generated value (i.e., x € N) to capture all paths, in contrast with the rules featured in RHL [13]
and ISL [40] which record an explicitly chosen value to describe one path. The E’ € Val is necessary
in the post-condition as we know that E’ evaluates to a value from x = E’ in the pre-condition and
exact reasoning cannot lose information; this also applies to a number of other rules. The [AssIGN]
rule requires that the program expression E evaluates to a value in the pre-condition (E € Val), as we
are working in an untyped setting. Strictly speaking, we should have an additional case in which the
variable being assigned to is not in the store. For the logical reasoning, to avoid clutter, we instead

Exact Separation Logic 1

NONDET ASSIGN
x ¢ pv(E") x ¢ pv(E")
SKIP Q2F eValxxeN Q2 E €Val xx=E[E'/x]

I'+ (emp) skip (emp) T+ (x=E') x:=nondet (Q) I'+t (x=FE % EeVal)x:=E (Q)

LOOKUP
x & pv(E’) MUTATE
O 2 E e Val x x= E[E/x] % E[E'/x] = E[E' /] O2E; s Ey % Ec Val
T'r (X:E,*EHEl)XZZ [E] (Q) Tr (El »—>E*E2€Va]) [El] =Ey (Q)
NEW
x & pv(E’) FREE
Q £ E €Val % @ g<icp(rx) ((x+1i) — null) Q2F eVaxEr @
T't (x=FE *E€N)x:=new(E) (ok: Q) I'+ (E E') free(E) (ok: Q)
LOOKUP-ERR-VAL LOOKUP-ERR-USE-AFTER-FREE
ERROR Pﬁx:E'*E;{VaI P2x=F *xE— o
err 2= [“Error”, E] err = [“ExprEval”, str(E)] err = [“UseAfterFree”, str(E), E]
T'+ (E e Val)error(E) (err:err=Egy) T+ (P)x:=[E] (err: Qen) Tr (P)x:=[E] (err: Qen)

Fig. 3. ESL basic command rules (excerpt), with Q. = (pre % err = E¢py)

IF-THEN IF-ELSE IF-ERR-VAL
C 2 if (E) CielseCy C 2 if (E) CielseCy C2if (E) CielseCy
T'r(PAE)C;(Q) T'r(PA=E)Cy (Q) Eerr = ["ExprEval”, str(E)]
T'+(PAE)C(Q) T+ (PA=E)C(Q) T+ (P xEgVal) C(err: Qepr)
SEQ WHILE-ITERATE
T+ (P)Cy (0k:R) (err: QL) VieN. =P, =EeB
T+ (R) Cy (0k: Qo) (err: Q%)) VieN.TFr (P; AE) C (ok:Piyq) (err: Q)

T+ (P) Cy; Cy (0k: Qur) (err: QL. v Q%) T+ (Py) while (E) C (ok: 3m.Py,) (err: 3m.Qm)

EQUIV FRAME
T+ (P") C(ok:Q.) (err: Q) mod(C) N fv(R) =0
= P,»Q;k’ Q;rr & P, Qok> Qerr T+ (P) C (0k: Qo) (err: Qen)
T+ (P)C (0k:Qu) (err:Qepr) TH(P*R)C(0k:Qur *R) (err: Qerr x R)
EXISTS DIsj
T F (P)C (ok: Qo) (err: Qerr) T+ (P)C(ok:Ql) (err:QL,) T+ (P)C (ok:Q%) (err: Q%)
T+ (3x.P) C (ok: 3x. Q) (err: 3x. Qury) T+ (PLVPy)C(ok:QlvQL) (err:Qp Vv Q%)

Fig. 4. ESL composite-command and structural rules (excerpt)

assume that the program variables are always in the store because we are analysing function bodies
and all local variables are initialised on function entry. The error-related rules capture cases in
which expression evaluation faults (e.g. [LOOKUP-ERR-VAL] rule, using E ¢ Val), expressions are of
the incorrect type, or memory is accessed after it has been freed (e.g. [LOOKUP-ERR-USE-AFTER-FREE]
rule, using E — @). Note that missing resource errors cannot be captured without breaking frame
preservation, as the added-on frame could contain the missing resource.

When it comes to composite commands, we opt for two if-rules, covering the branches separately.
The sequencing rule shows how exact quadruples of successive commands can be joined together,
highlighting, in particular, how errors are collected using disjunction. The while rule is a simple
adaptation of the RHL while rule [13]. Interestingly, it does not need adjustment for non-termination,
as it can already capture it, since it is, in fact, a generalisation of the SL while rule.

12 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

FCALL

(X=X * P) (Qok) (Qerr) € T(f) y € pv(Ey)
T+ (y=EyxE=X*P)y:=f(E) (ok:E[Ey/y] =% * Quly/ret]) (err:y=E, * E =% % Qu)

ENV-EMPTY
- (0,0)

ENV-EXTEND
F(nD) I={1...,n} Vielfi¢gdom(y) v =ylfir> RiCiEi)lier
T(a) =T[f; = {(P'(B)) (ok: QL (B))(err: QL () | p < a} U{(PL(B)) (False) | B < a}lier
Viela 3t € Inty/’fi((Pi((x)) (ok : Ql’;k(a))(err (0L (). T(a) FC;i: t

Vi€ la 3t € Inty f((PL(a)) (False)). T(a) F C;: ¢
Pl 3q.Pl(a) xaeO Pl £ 3q.Pl(a) xaeO

Q) 23a.Q) () xaeO QL,23a.Ql(a) xaxeO

I :=T[fi = {(P) (ok: QL) (err: Qly,), (PL) (False)}ier

F@LT)

Fig. 5. ESL function-related rules (excerpt)

The structural rules are not surprising, with equivalence replacing the forward consequence of
OX reasoning and backward consequence of UX reasoning, and with frame, existential elimination
and disjunction affecting both post-conditions. Disjunction allows us to derive the standard SL
if rule, which captures both branches at the same time. Note, however, the absence of a sound
conjunction rule, due to the fact that the conjunction rules of SL and ISL cannot be combined in ESL,
as conjunction does not distribute over the star in both directions, breaking frame preservation.

We discuss the function-related rules in detail, starting from [FcaLL], whose premises are standard,
but whose pre- and post-condition are adjusted for sound UX reasoning. In particular, in the pre-
condition, the usual P’ [E /X] assertion (P’ can have program variables in X) now has the form
E =X % P (where P has no program variables). This is required because the connection between
the passed function arguments and the logical variables has to be maintained in the post-condition
as well, with E[Ey /y] = X. Otherwise, the rule would not be UX-sound as it could lose information
about the program variables of the calling function.

The [ENV-EXTEND] rule highlights our need for different treatment of terminating and non-
terminating specifications. In particular, at each extension we add a cluster of mutually recursive
functions {f; | i € {1,...,n}}, imposing a joint non-negative measure on the specifications, denoted
by @ in the set of computable ordinals O £ wX. Extending the measure beyond natural numbers
allows us to reason about a broader set of functions, such as those with non-deterministic nested
recursion. We require that any recursive function call of any added function may use a terminating
specification of any f; only if its measure is strictly smaller than «, or a non-terminating specification
of any f; with measure less or equal to «. If this distinction were not in place, that is, if we were to
try to use the standard SL rule:

F(@.T) I={1,...,n} Viel f; ¢dom(y)
Y =vlfir X CiE)lies] T'=T[fi{tiliel}] Viel3telnty;(t;). +C;:t
F(.T)
then we would be able to prove unsound specifications of non-terminating functions. For example,
we would be able to prove that the non-terminating function f() { r := f(); returnr } satisfies the

sound specification (emp) f() (False), but also the unsound specification (emp) f() (ret = 42). This
is not an issue in OX logics because the meaning of triples is conditional on function termination.

Exact Separation Logic 13

In UX logics, it would imply the existence of an execution path from the pre- to the post-condition,
contradicting the non-termination of f. In the end, the measure « is abstracted into a logical
variable in the final specification added to I'”’, and can normally be eliminated using equivalence,
as shown in examples in §5. Finally, note that, for each f;, we provide one terminating and one
non-terminating specification. We can generalise to an arbitrary number of specifications, but this
would complicate the presentation without introducing additional ideas.

4.4 Soundness

We state the soundness results for ESL and give intuition about the proofs, which can be found
integrally in Appendices C, D, and E.

THEOREM 4.12. Any derivable specification is valid:
VILP,C,Q.T+(P)C(Q) = T E(P)C (Q)

Proor. By induction on T + (P) C (Q). Most cases are straightforward; the [FcarL] rule obtains
a valid specification for the function body from the validity of the environment. O

THEOREM 4.13. Any well-formed environment is valid:
Vp.Io - (D) = F (D)

When a specification can be used to prove itself (e.g, any specification in SL, and the non-
terminating (NT) specifications in ESL), a form of fixpoint induction, called Scott induction [45], is
required, which we use with three slightly varying instantiations to prove Theorem 4.13. We give
the outline of the proof below.

PrOOF. At the core of the proof is a lemma that states that = (y,I') = (Va.F (v, T(a))),
where y” and I'(«) have been obtained from y and I' as in the [ENV-EXTEND] rule. Using this lemma,
and also showing that existential elimination can be soundly lifted to function specifications, we
derive the desired |= (y/,I"”"), where I'”” is obtained from I" and I'(«) as in the [ENV-EXTEND] rule.

The proof of this lemma is done by transfinite induction on «, which has standard zero, successor,
and limit ordinal cases. For clarity, we outline the proof for the case in which a single function f
with body Cy is added; the generalisation to n mutually recursive functions is straightforward.

In all three induction cases, the soundness of all specifications except the non-terminating (NT)
specification with the highest considered ordinal follows straightforwardly from the inductive
hypothesis. This remaining NT-specification is vacuously UX-valid, meaning that we only need to
prove its OX-validity, for which we use Scott induction [45].

We set up the Scott induction by extending the set of commands with two pseudo-commands,
scope and choice, with the former modelling the function call but allowing arbitrary commands
to be executed in place of the function body, and the latter denoting non-deterministic choice.

We then construct the greatest-fixpoint closure of these extended commands, denoted by C,
whose elements may contain infinite applications of the command constructors. We define a
behavioural equivalence relation =~/ on C and denote by C, the obtained quotient space. This
relation induces a partial order C,, and a join operator that coincides with choice, and we show
that (C,/,C,/) is a domain.

We next define S* as the set of all equivalence classes that hold an element that, for every
specification in (I'(«))(f), OX-satisfies at least one of its internal specifications, and show that
5% is an admissible subset of C,/, that is, that it contains the least element of C,. (represented, for
example, by the infinite loop while (true) { skip }) and is chain-closed.

14 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

We then define the function h(C) = C¢[C,y’, f], which replaces all function calls to f in Cy
with C using the scope command, and the function g as the lifting of h to C,-: g([C]) := [h(C)].

We next prove that g is continuous (that is, monotonic and supremum-preserving) and that
g(S8%*) € §%, from which we can apply the Scott induction principle, together with a well-known
identity of the least-fixpoint, which implies that C € Ifp(g), to obtain that [Cy] € S*. From there,
we are finally able to prove that = (y’,I'(a)). O

These two theorems, to the best of our knowledge, are the first to demonstrate sound functional
compositionality for non-OX logics. In particular, the proof of Theorem 4.13 can be adjusted for
ISL (for which the function call rule is the same, but the [ENV-EXTEND] rule does not include
non-terminating specifications) by removing the part using Scott induction. On the other hand,
the Scott induction itself can be easily adapted for SL. We were not able to find an SL-proof in the
literature, and wonder whether our proof is the first complete proof of its kind.

Admissible Properties of Function Specifications. We conclude by discussing how the struc-
tural rules of the logic transfer to specifications. In particular, given a valid function specification:

(P) £ (ok : Q) (err: Qur)

the specifications obtained from it using equivalence, frame, and existential introduction:

(P’) f(X) (0k: Q")) (err: Q)
(P x R) f(X) (0k : Qok % R) (err: Qe * R)
(3x. P) f(X) (ok : 3x. Qok) (err : Ix. Qerr)

where P/, Q(’) . and Q,,, are equivalent, respectively, to P, Qok, and Qer, R does not contain program

variables, and x is an arbitrary logical variable, are also valid.

5 EXAMPLES: LIST ALGORITHMS

We demonstrate how to use ESL to specify and verify correctness, incorrectness, and non-termination
properties of recursive and iterative functions, using standard singly-linked list algorithms as
demonstrator examples. In doing so, we give a number of observations from our specific ESL
reasoning which are relevant to EX and UX reasoning in general. In particular, we focus on the
difference between losing information via OX reasoning and hiding information via abstraction,
highlighting strictly exact abstractions which play a fundamental role in compositional symbolic
execution (cf. §6). Further examples, illustrating mutual recursion, can be found in Appendix F.

List Predicates. We implement singly-linked lists (onward: lists) in the standard way: every list
node consists of two contiguous cells in the heap, with the first holding the value of the node, the
second holding a pointer to the next node in the list, and the list terminating with a null pointer.
To capture lists in ESL, we use several standard list predicates:
list(x) 2 (x =null) V (Fo,x".x > 0, x" * list(x))

list(x,n) £ (x =null *x n=0) V (Jo,x".x > 0,x" x list(x’,n — 1))

list(x,vs) = (x =null x vs=[]) V (Fo,x’, vs'. x > 0v,x" % list(x’, vs') *x vs =0 : vs)

list(x,xs) £ (x =null x xs=[]) V (Fo,x’, x5". x > 0,x" * list(x’, x5’) * xs = x” : x5’)

list(x,xs,vs) 2 (x =null x xs=[] xvs=[]) vV
(Fo,x’, x5’ vs".x > 0, x" x list(x", xs', vs') k xs=x": vs' * vs =0 : vs')

These predicates expose different parts of the list structure in their parameters, hiding the rest

via existential quantification: the list(x) predicate hides all information about the represented
mathematical list, just declaring that there is a singly-linked list at address x; the list(x, n) predicate

Exact Separation Logic 15

hides the internal node addresses and values, exposing the list length via the parameter n; the
list(x, xs) predicate hides information about the values of the mathematical list, exposing the
internal addresses of the list via the parameter xs; the list(x, vs) predicate hides information about
the internal addresses, exposing the list’s values via the parameter vs; and the strictly exact list
predicate list(x, xs, vs) hides nothing, exposing the entire node-value structure via the parameters
xs and vs. In the following examples, we investigate, for the first time, the use of such predicates in
non-OX program logics. These predicates are related to each other via logical equivalence as follows:

list(x) © 3n/vs/xs. list(x, n/vs/xs) < xs, vs. list(x, xs, vs)
list(x, n) & Jvs/xs. list(x, vs/xs) * |vs/xs| = n & Txs, vs. list(x, xs, vs) * |xs/vs| = n

list(x, xs/vs) & Fvs/xs. list(x, xs, vs)

List Length: Recursion, Iteration. We verify correctness of a recursive and an iterative imple-
mentation of the LLen(x) function, which returns the length of a given list starting at address x. In
doing so, we illustrate how to handle the measure for recursive function calls, how the folding of
predicates works in the presence of equivalence, and how to move between external and internal
specifications. The implementations are given in Figure 6 (left and middle), and the corresponding
proof sketches are given in Figure 7. The specification we prove for both is standard:

(x = x * list(x,n)) LLen(x) (list(x,n) % ret = n)

We first prove the recursive implementation, where we start by defining a decreasing measure on
the pre-condition, which in this case is trivially n. Denoting the function body by C and using the
[ENV-EXTEND] rule, we assume to have a well-formed environment (y, T'), such that LLen ¢ dom(y),
and define, using P(a) = x = x % list(x,n) x a = nand Q(«) = list(x,n) xret =nx a = n:

y' =yltlen > ({x},Cn] T(a) =T[LLen = {(P(p)) (Q(B) | p < a}]

Then, we construct the proof sketch in Figure 7 (left), starting from the internal pre-condition of
LLen and arriving at the internal post-condition Q" = Q] V Q;. Interestingly, it is not possible to
fold list(x, n) back in Q; because the existentially quantified x’ is still held in program variable x,
which can be forgotten in OX logics, but not in ESL/ISL due to equivalence/backward consequence.
This observation can be formulated generally as follows:

(01) if the analysed code accesses data-structure information that the used predicate hides, then it
might not be possible to fold that predicate in an ESL/ISL proof.

LLen(x) { LFree(x){
if (x=null) { LLen(x) { if (x = null) {
r:=0 r=0 r:=null
}else { while (x # null) { } else {
x:=[x+1]; x:=[x+1]; yi=x; x:=[x+1];
r:=LLen(x); re=r+1 free(y); free(y + 1);
r=r+1 b r:=LFree(x)
= returnr 5
returnr } returnr
} }

Fig. 6. List algoritms: iterative list-length (left); recursive list-length (middle); recursive list-free (right)

16 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

In such cases, the folding happens in the transition from the internal to the external post-condition,
which forgets all program variables:
Txg, rq- Q" [xq/x][rg/r] * ret = r[xq/x]|[rq/r]

Sa=nxret=nx ((x=null xn=0)V (Axgrqv.x". x5 =x" * x> 0,x" * list(x",n = 1) x rg = n))

Sa=nxret=n* ((x=null xn=0)V (Jo,x". x > v,x” % list(x’,n — 1))) [[can fold now]]

Sa=nxret=nxlist(x,n) x (n=0vn>0) © Q(a)

This, according to the [ENV-EXTEND] rule, yields a final I which contains the specification
(Ja. P(a)) LLen(x) (Ja. Q(a)), from which we obtain the desired specification using equivalence.

Observe, however, that if the list-length code called another function whose pre-condition
required the list(x, n) predicate folded while having x = x’, the proof could not continue. We
discuss this ESL/ISL-specific issue further in the upcoming client examples.

We move to the iterative list length algorithm, eliding the measure as there is no recursion. To
state the loop variant, we use the list-segment predicate, defined as follows:

Iseg(x,y,n) £ (x=yxn=0)V (Jo,x".x — 0,x" % Iseg(x’,y,n — 1))
and to apply the [WHILE-ITERATE] rule, we define:

p 2 3j. Iseg(x,x, i) % list(x, j)) x n=i+jxr=1i, ifi<n
"~ | False otherwise

and via the proof sketch show that its premises hold. On exiting the loop, the negation of the loop

condition collapses the existentials m and j. We obtain the given internal post-condition, from

which we then move to the desired external post-condition, similarly to the recursive version.
For this proof, we also use three equivalence lemmas:

L1:[Elseg(x,y,n+1) & 3x’, 0. Iseg(x,x’,n) x x" — 0,y
L2:Elist(null,j) © j=0
L3 : [Iseg(x,null, n) & list(x, n)

T'(a)F

(x=x % list(x,n) xa=n*r=null) Tk (x=xxlist(x,n) *r=null)

. =0

if (x=null) { ' .
(x=xxlist(x,n) *x@a=n*xr=null xx=null) g;—)x*llst(x,n)*r—o)
r:=0 .0
(Qr:x=xxlist(x,n) ka=n*x=null xr=0) while (x#null) {

} else { (P; xx#null)

(x=x % list(x,n) *x @ =n*r=null x x#null)

Lo il
(30,x’.x:x*xr—>v,x’*[ist(x’,n—l)*) list(x",j 1) kn=i+jkr=1i

x:=[x+1];
(Fj,x’, 0. Iseg(x, x’,i) * x" > v, x * list(x, j) *)

(3j,0,x’.|seg(x,x,i)*xl—>v,x’*)

a=n%r=null
x:=[x+1];

(E!v,x’.x:x’*list(x’,n—l)*a—l:n—l*) n=(i+1)+jHr=1i

(3j. Iseg(x, x, i+ 1) * list(x, j) *

x> 0, x" *xr=null . ’)
n=(i+1)+jxr=i

[[As @ — 1 < a, we can use the spec for & — 1]]
r:=LLen(x);

Jo,x". x=x" * x> 0,x" *x list(x",n— 1) %
(a—n*r—n—l)

)[[u 1

dm, j. Iseg(x,x,m) % list(x, j) * n=m+ j *
r=m % x=null

Iseg(x,null, n) * r=n % x = null) [[L2 + equiv]]

r:=

Q Jo,x". x=x" % x > o, x" % list(x’,n - 1) %
a=n*r=n

Q"

—_—~—————

(list(x, n) % ret = n)[r/ret] » x = null) [[L3]]
"1QIVQ;)

Fig. 7. List length algorithm proof sketch: recursive (left) and iterative (right).

Exact Separation Logic 17

which state, respectively, that we can separate a non-empty list segment into its last element and
the rest, that the length of an empty list is zero, and and that a null-terminated list-segment is a list.
These two proofs lead us to the following observation:

(02) in ESL/ISL specifications, just as in OX reasoning, information hidden via predicates in the
pre-condition may also remain hidden in the post-condition,

highlighting that hiding information inside predicates does not always lead to over-aproximation.
In particular, for list length, from the UX point of view no information is lost as it was never there
in the first place.

List Free: Deallocation. We next consider an implementation of the LFree(x) function (Figure 6,
right), which frees a given list at address x. Its OX specification is {list(x)} LFree([x]) {ret = null},
but it does not transfer to ESL/ISL because no resource from the pre-condition can be forgotten in
the post-condition. Instead, we have to expose the internal pointers of the list using the list(x, xs)
predicate and then explicitly state that they have been freed in the post-condition:

(x = x * list(x, xs)) LFree([x]) (freed(x : xs) *x ret = null)
where the freed(xs) predicate is defined as follows:
freed(xs) = (xs = [null]) Vv (3x',xs’. xs=x:x5’ *x x> @ x x +1 > @ * freed(xs’))

This specification, which has to make freed addresses explicit, yields the following observation:
(O3) ESL/ISL specifications may reveal implementation details.
We give the proof sketch in Appendix F, as it carries no additional insight w.r.t. that of LLen(x).

List Reverse. We also consider the LRev(x) function, which reverses a given list at address x, and
prove that it satisfies the following, almost standard, specification:

(x = x * list(x, vs)) LRev(x) (list(ret, vsT) x R)

where vs' denotes the reverse of the mathematical list. The only difference with respect to its OX
counterpart is in the additional R £ (|vs| = 0 * x = null) V (]vs| > 0 x x € N) in the post-condition,
which has to be there to maintain information about x known from the pre-condition. For space
reasons, we give the proof sketch in Appendix F.

Client Code: Degrees of Abstraction, Non-Termination. We conclude the examples with two
somewhat contrived, yet illustrative clients of the previously specified functions. The first example,
given in Figure 8 (left), reverses the tail of a given non-empty list before re-attaching it and then
calculating the list length. This proof sketch exhibits two problems. First, list(x, vs) cannot be folded
back for the call to list-length, as y holds an internal list pointer x’. The way to circumvent this is
to move via equivalence to the strictly exact list(x, xs, vs) predicate, which exposes the internal
pointers and allows the folding. However, we then run into the second problem, which is that our
specification of LLen(x) works with list(x, n), not list(x, xs, vs). For that, the only solution is to
re-prove LLen(x) with the specification

(x = x * list(x, xs, vs)) LLen(x) (list(x, xs, vs) * ret = |vs|)
which can then be used for this client, reinforcing (O3). However, if we proved this less abstract

LLen specification first, then we could derive the initial, more abstract one from it via equivalence.
This brings us to the following observation:

(04) admissible properties of function specifications allow the degree of abstraction to be adjusted.

18 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

Tk (list(x,0:vs) xy=null xr=null) LClient (x) {

y=berdl; |:=LLen(x)
e X);

Ax’. 7 % list(x *y=x"%r=null ’
;‘_XLRZV?Y;).,X e if (I <5) { r:=LFree(x); error(“LTS”) } else {
(3. x> 0,x" * list(y, vs') % r=null) if (|,> 10) {)
[x+1] =y while (true) { skip }
(3x'.x = 0.3 list(y. v5") %y =+ r=null) F e et
[[Problem: Cannot fold. Solution: Move to list(x, xs, vs)] } -

(Fxs,x". x> v,x" % list(y,xs,vs") * y=x" xr=null) "
(3xs, x’. list(x, x” : xs5,0: vs') *xy=x"*r=null) ’
returnr

[[Problem: Predicate not appropriate for LLen]]
r:=LLen(x);

}

Fig. 8. Example Clients

Interestingly, applying this observation to the list-free algorithm, we obtain the specification
(x =x % list(x)) LFree([x]) (freed([x]) x ret = null x (Jxs. freed(xs)))

where the post-condition states that there exists some portion of memory that has been freed. This
is as close as one can get to the OX list-free specification in exact and UX reasoning.

We note that specifications featuring only strictly exact predicates, such as the one for list-length
given above, will play an important role in compositional symbolic execution for true bug-finding
(cf. §6); all of our example algorithms can be easily specified in this style.

Our second client program is given in Figure 8 (right). It takes a list and: reverses it if its length
is between 5 and 10; frees it and then throws a language List-Too-Short (LTS) error if its length is
less than 5; and does not terminate otherwise. Its ESL specification is:

(x = x % list(x, vs))
LClient(x)
(ok :5 < |vs| <10 * list(ret, vs") * R) (err: |vs| <5 x (Txs.freed(x : xs) * |xs| = |vs|) * err = “LTS”)

where the assertion R is as given for list reverse; the proof sketch is given in Appendix F. The
specification captures the successful and faulting behaviours explicitly, together with the conditions
under which they occur, and carries two noteworthy points.

First, there is the question of which list predicate is appropriate for this client. As the list is being
reversed in one branch, we believe that a useful predicate should contain node values. We chose
list(x, vs), but could have gone with list(x, xs, vs) instead, obtaining a less abstract specification
from which we could then derive the one given above by existentially quantifying xs.

Second, the non-terminating branch (when |vs| > 10) is implicit, in that it is subsumed by the
success post-condition (since P V (|vs| > 10 x False) & P). However, to demonstrate that it exists,
we can constrain the pre-condition appropriately to prove the (partial) specification:

(x = x * list(x, vs) * |vs| > 10) LClient(x) (False)
This implicit loss of non-terminating branches can be characterised informally as follows:

(05) if the post-conditions do not cover all paths allowed by the pre-condition,
then the “gap” is non-terminating.

In this case, the pre-condition implies that |vs| € N and the post-conditions cover the cases where
|vs| < 10, leaving the gap when |vs| > 10, for which we provably have client non-termination.

In general, there are cases when non-terminating branches cannot be captured by ESL specifica-
tions. For example, if the code branches on a value that does not originate from the pre-condition
and if one of the resulting branches does not terminate, and if the code can also terminate success-
fully, then the non-terminating branch will be implicit in the pre-condition, but no gap in the sense

Exact Separation Logic 19

of (O5) will be present. This is illustrated by the code and specification below, where the pre- and
the post-condition are the same, but a non-terminating path still exists.

(x=null) x:=nondet; if (x > 42) { while (true) {skip} } else { x:=null } (x =null)
Exact Verification in Gillian. We have adapted the OX verification of Gillian to EX verification
of recursive functions by, essentially, disallowing use of forward consequence and replacing it with
equivalence. The details of this adaptation are intricately tied to the parametricity of Gillian and
are, therefore, beyond the scope of this paper.

We have implemented, exactly specified, and verified a number of iterative and recursive list
algorithms, including list-length, list-free, list-reverse, list-copy, list-append, and list membership.
For each, we provided several specifications with different degrees of abstraction, using the various
list predicates given in this section. To illustrate, the EX specifications of the recursive list-length
algorithm given in the introduction and repeated in this section are written in Gillian as follows:

((x == #x) = list(#x, #n)) with variant: #n

function LLen(x) { ... }
(list(¥#x, ret))

((x == #x) * list(#x, #xs, #vs)) with variant: len #vs
function LLen(x) { ... }

(list(d#x, #xs, #vs) *x (ret == len #vs))
where the variables prefixed with the hash symbol denote logical variables and len denotes the
list-length operator. When it comes to additional annotation, recursive function pre-conditions and
loop invariants (which are always needed for semi-automatic verification) need to be equipped
with an explicit variant, which corresponds to the decreasing measure (#n and len #vs in the above
specifications), whereas predicate folding and unfolding is automatic.

6 COMPOSITIONAL SYMBOLIC EXECUTION WITH ESL SPECIFICATIONS

Our motivation for ESL came from Gillian, a multi-language symbolic analysis platform. On the way
to bringing ESL results back to Gillian, we now turn to symbolic execution. Specifically, inspired
by Gillian, we introduce a compositional symbolic execution semantics (CSE), which handles
function calls by using UX (that is, ISL or ESL) specifications, for our demonstrator language and
prove that that this CSE enjoys true bug-finding. We are not aware of a similar proof of function
compositionality for symbolic execution in the literature. We conclude by highlighting the interplay
between abstractions, which can hide information, and symbolic execution, which cannot.

Symbolic Values, Expressions and Assertions. We introduce the symbolic constructs on which
our CSE and correctness results depend, starting from symbolic values, ¢ € SVal, which are built
from concrete values and symbolic variables, X € SVar:

A

deSVal 2o |X|6+0|6-0].|6=0]=0|0A0].|0-6]0:0]..

Symbolic expressions are defined analogously to logical expressions, with the only difference
being in them having symbolic variables (via symbolic values), instead of logical variables:

ecSExp=d|x|e+e|e—e|..|e=e|-e|lene|..|e-e|le:e]..
and symbolic assertions are defined analogously to logical assertions (cf. Def. 4.1).
Definition 6.1 (Symbolic Assertions). Symbolic assertions are defined as follows:
FESBAsrt2 e =& |1 <& |eeX|...| x| = &
P e SAsrt £ # | False|l31 = P, | Ix. P lemp|e— & | e @ |131 * P, | ®@lg<é2}3
where ¢, &, & € SExp, X C Val, and X € SVar.

20 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

Notation. For convenience, we introduce a generic function sv(X), which collects the symbolic
variables of a given construct X (e.g., a symbolic expression or assertion, and later store or memory),
and write X C ¢ to denote sv(X) C dom(e).

For symbolic assertion satisfiability, we introduce symbolic interpretations, ¢ : SVar —¢;, Val,
which are partial finite mappings from symbolic variables to values, and lift them to symbolic values,
overloading the ¢ notation. We also lift symbolic interpretations to a number of other symbolic
constructs, always overloading the ¢ notation.

Definition 6.2 (Symbolic Assertion Satisfiability and Models). The symbolic satisfiability relation
is first defined for Boolean symbolic assertions, denoted by ¢, s |= 7, and is then lifted to arbitrary
symbolic assertions, denoted by ¢, o |= P, analogously to Def. 4.2. The set of models of a symbolic

assertion P is defined in the standard way: Mod(P) def {0 | 3¢. &, 0 |= P}, and we use the notation
o | P to denote o € Mod(P).

Relating Symbolic and Logical Assertions. Observe that symbolic and logical assertions are
isomorphic. We provide a mechanism for straightforwardly moving from logical to symbolic

assertions by introducing symbolic substitutions, § : LVar —¢;, SVal, which are partial finite
mappings from logical variables to symbolic expressions, and lift them to logical values, expressions,
and assertions in the standard way (the latter two maintain program variables), overloading the 6
notation, as for interpretations. We write PO to denote é(P) to keep in line with the common
notation for substitutions. We extend interpretations to symbolic substitutions by interpreting their
co-domain, yielding concrete substitutions: ¢ : (LVar —¢i, SVal) —¢in (LVar —¢, Val).

LeEMMA 6.3. The following properties can be proven by induction on E and P, respectively:

sv(0) ce = [El, 4, = [0B)]es (1)

e(0),0 EP & ¢e0 PO (2)

Symbolic States. Symbolic states, & = (§, fl,), comprise: a symbolic store, § : PVar —¢;, SVal,
mapping program variables to symbolic values; a symbolic heap, h : SVal —¢;, (SVal W @); and a
path condition, 7 € SVal, capturing constraints imposed on symbolic variables during execution.
We extend interpretations to symbolic stores (by interpreting the co-domain) and to heaps (by
interpreting both the domain and co-domain), requiring the following well-formedness constraints:
WF.(5) & 3$§Ce A 4 ¢e(codom(s))
Wf.(h) & hCe A e(dom(h)) N A |dom(h)| = |e(dom(h))| A 4§ ¢ e(codom(h))
These constraints expectedly require non-faulting evaluation after interpretation (e.g., disallow-

ing interpretations that assign incorrectly typed values), but also that the interpretation of the heap
domain yields disjoint addresses. We extend well-formedness to symbolic states:

WF((5,h 7)) © #SAT A (Ve. §,h C e A e(£) = true = WF,(5) A WF,(h)

requiring store and heap well-formedness for any interpretation that can interpret all of the
components and validates 7, which also has to be satisfiable. Analogously, we define Wf . () and

WFf ”(fz) We extend interpretations to well-formed symbolic states as follows:

(b (e(8),e(h)), if WF,.(5) ANWF,(h) A e(#) = true
T undefined, otherwise

and define symbolic state models and satisfiability between symbolic and concrete states:

Mod(6) ™ (6| Fe. £(8) = o} o6 = oe Mod(6)

Exact Separation Logic 21

MurtaTe . .
AsSIGN [Ed]F U oF h(dr) = o A" = (0 =0) A A
[E]Z 167 ¢ =3[x+> 0] SAT(2”) [E]Z Bof " R =hlo;— 6]
(8, h,7),x:=E |r ok: (3, h, 7’ (5,h,#), [E1] =Ep Ur ok : (5, A/, #"")
FREE) o
[E]F 46" h(d) =dm SEQ
i = (B =23) A i’ 6,C1 Ur ok: 6’ MUTATE-ERR-VAL-1
SAT(#"") h =h[d — @] 6',C; ro:6” [EJF U 47 Oerr = [“ExprEval”, str(Ep)]
(5, h,), free(E) Ur ok: (8, i, #") 6,C1;Cy ro: 68" (5,h, 7#), [E1] =3 Ur err : Ger, b, #7)
MUTATE—ERAR—USAE,—AFATER—FREE
[E:]F Uo" h(dy) =2 MUTATE—E/RR—MISSING .
A= (o =0) AA SAT(#”) [E]Z Lo A" =0 e NAd; ¢ dom(h) A7’
derr = [“UseAfterFree”, str(E;), 9] SAT(#"") derr = [“MissingCell”, str(Ey), 91]
(8, h, 7). [E1] = E3 Ur err: (Ser b, #7) (8, h, #), [E1] := E3 Ur miss : (Seps b #77)

Fig. 9. Symbolic operational semantics, selection of rules, where $¢ = §[err — dgpr]

as well as three models-based relations, C p(, 2 a1, and =4, between symbolic states and assertions:

6CmP e=Veo.0=¢6)=>e0kEP (implying Mod(8) € Mod(P))
62MP &= Veo0.0=¢(6) =c0P (implying Mod(8) 2 Mod(P))
6=pmP =6y PAGOLP (implying Mod(&) = Mod(P))

the second of which, 2 4 is essential for our correctness proof. In particular, it states that the state
satisfying an assertion is uniquely determined by the interpretation. We discuss the ramifications
of this requirement shortly.

Compositional Symbolic Semantics. For our CSE, we assume to have the symbolic expression
evaluation relation, [[E]];r U w?' where w denotes either a symbolic value or 4, and the (satisfiable)
output path condition, 7" = 7, may extend 7 with additional conditions under which the evaluation
branches (e.g., division branching on denominator equalling zero). We keep symbolic expression
evaluation opaque, as it carries little insight.

We provide a big-step symbolic semantics for the simple demonstrator programming language
used for ESL, with two differences. First, we disallow dynamic memory allocation, as that would
require a more complex representation of symbolic states; instead, we allow only allocation of
concrete size. Second, we do not handle while loops, as that is orthogonal to our goals and would
introduce clutter, and assume that they have been transformed into recursive functions.

The symbolic operational semantics uses judgements of the form &, C ||r o0 : ', meaning that,
given specification context I and starting from state &, the execution of command C results in
outcome o (ok, err, or miss) and state 6’. We present a selection of rules in Figure 9 that illustrate
the main points of the reasoning; the full semantics is given in Appendix G. The function call rule
is introduced separately shortly due to its complexity.

We highlight three of the mutation rules, as they are representative of the single-trace reasoning
that we use for the symbolic execution. In particular, [MUTATE] first evaluates E;, obtaining a
symbolic value 91, and then checks if it is possible for 9; to equal a non-freed address in the heap, 3;,
in which cases it takes that branch by adding the appropriate equality to the path condition,
evaluates E; to obtain d,, and updates the value of ¢; in the heap to d,. Similarly, the [MUTATE-ERR-
Use-AFTER-FREE] captures the branches in which 9; equals a freed address in the heap, whereas
the [MUTATE-ERR-MIssING] rule covers the branch in which it is not in the heap at all. Note that

22 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

it is not necessary to add ¢; € dom(h) to the final path condition in non-missing rules, as that is
guaranteed by the well-formedness of the initial symbolic state.

Treatment of Function Calls. Consider how function specifications are applied in ESL proof
sketches, given the proof rules of §4.3 and the examples of §5. In particular, if we have the command
y:=f (E), specification (x = X * P) f(X) (ok : Qo) (assuming no faulting executions for simplicity),
and current (logical) assertion A, this process can roughly be split into the following steps:

(L1) using logical equivalence’ to massage A to match the function pre-condition plus some frame,

that is, into the form (E =x%P)xF,

(L2) framing F off;

(L3) using the function call rule to replace the matched E =X * P with Qokly/ret]; and

(L4) framing F back on.

On the other hand, our approach to performing the same function call in symbolic execution
with current state & is as follows:

(S1) understand which part of & corresponds to E = X * P and consume it, leaving only the part
that corresponds to the frame, 6F;
(52) extend 6F with the symbolic state 6 corresponding to Qo [y/ret], that is, produce &¢ in 6.

These two approaches intuitively correspond to each other; the main difference is that in logic the
frame is removed, while in symbolic execution it is maintained. Onward, as is standard for symbolic
execution tools, we restrict the set of allowed assertions in the specifications to exclude spatial
negation, implication, and iterative separating conjunction. Following the approach of [33], we
assume that pre- and post-conditions do not have explicit existential quantification, treating logical
variables in the pre-condition as universally quantified and logical variables in the post-condition
that are not in the pre-condition as implicitly existentially quantified. Any ESL specification can be
trivially transformed into this format while preserving equivalence.

With these constraints in place, we give the function call rule for our CSE:

IE] f Ut evaluate function parameters
(x=X=P) f(X) (0k: Qo) (err: Qerm) €T get function specification
0= [X — 5] create initial substitution
matchAndConsume(P, 6, (3, b, #)) ~» (€, ﬁp, (8,]:lf, #'7))0k consume pre-condition (step (S1))
r, 7 fresh generate fresh vars for return value
Q;k = Q,k[r/ret] and 0" =0"[r > 7 set up return value
produce(Q’ok, 9, (s ﬁf, 1Y)~ (877, ﬁq, (3,1, 7))ok produce post-condition (step (S2))

(8, h#),y = f(E) Ur ok: (3[y — #. A", #""")

For convenience, we use ESL specifications in the presentation; in general, any UX specification
can be used. This rule uses two auxiliary functions, matchAndConsume (in charge of (S1)) and
produce (in charge of (S2)), which we present axiomatically.® In particular, we require that both

matchAndConsume(P, 6, (3, b, #)) ~> (0", hy, (5, hp, #))°

and
produce(P, 0, (8, hyr, 7)) ~» (0', hy, (8", h, 7"))°
satisfy the following properties for successful execution (when o = ok):
7Or consequence/backward consequence in SL/ISL, this is the only function-call difference between the three logics.

8In Gillian, both functions are implemented parametrically on the memory model of the language under analysis, forming a
parametric spatial entailment engine. We believe that their complexity deserves a separate publication.

Exact Separation Logic 23

(P1) dom(é) C fv(P) A 0 >0 A dom(é’) = fv(P): this means that, given the initial bindings
of é, both functions extend 8 to cover all of the logical variables of P; matchAndConsume
learns them as part of the matching process, and produce generates fresh symbolic variables
for the existentials of P, as per (P8) below;

(P2) §’ = §: this means that the store cannot be modified by the consumption or production of
assertions, which is expected as we do not treat program variables as resource;

(P3) h= flp W fzf: for matchAndConsume, this means that it syntactically splits the initial heap, h,
into the heap that corresponds to the spatial part of P, i;p, and the remaining frame, h £ for
produce, this means that it syntactically extends the frame, h r, with the heap corresponding
to the spatial part of P, flp, resulting in the final heap, ﬁ;

(P4) n’ = x: this means that the path condition may only get strengthened, an expected property
of symbolic execution: matchAndConsume may strengthen it to capture that specific branch
of the matching; and produce may strengthen it with pure assertions that are part of P;

(P5) WF(S, h, 7"): this captures that both initial and final states of both functions are well-formed,
relying on (P4) and the monotonicity properties of ‘Wf; as a consequence, this also means
that 7’ is satisfiable;

(Pe) (0, flp, ') 2m PY’ % #': this property links the consumed/produced assertion P to the
corresponding symbolic state, requiring that the & covers P, in the style of UX backward
consequence. This is a rare point where OX, UX, and EX symbolic execution differ: in
particular, OX verification requires C »(, UX true bug-finding requires 2 », and EX reasoning
requires = (. As a consequence, we obtain the expected satisfiability between P and the
interpretation of its correspondmg symbohc state, which holds for all three scenarios:

(P7) Ve. e(t") = true A 0,8hCe = 5(9), (8, h , ') E P.

Finally, for produce, we require in addition that the logical variables of P not in the domain of @

(that is, the existentials of P) are afterwards mapped to fresh symbolic variables
(P8) 6’ = 07 — §], where {§} = fv(P) \ dom(f) and § fresh.

The symbolic execution also has function call rules that handle erroneous and missing executions.
The erroneous ones that arise due to function parameter evaluation failing or the error post-
condition being produced are standard and are therefore delegated to Appendix G. On the other
hand, the case in which matchAndConsume fails carries additional insight. It means that it is not
possible to apply the given specification in the given state, which could be due to, for example,
the specification being incomplete, the symbolic state not having the required resource, or the
code being incorrect. In all of those cases, there can be no guarantees regarding the behaviour of
the corresponding concrete execution, and there are several approaches to handling this issue. In
program logic, if a function specification cannot be applied, the proof cannot continue; we take
this approach, which amounts to simply not having the rules for matchAndConsume failing in
our CSE. Alternatively, we could instead attempt to symbolically execute the body of the function
in such cases, which would be a sound solution. Finally, we note that there are no error/missing
rules regarding produce because if matchAndConsume succeeds, then produce will also succeed
due to the validity of the used specification.

True Bug-finding of Compositional Symbolic Execution. We prove that our CSE respects
backward completeness, a property corresponding to UX validity in ESL, and therefore, by con-
sequence, preserves true bug-finding.” Here, we give a high-level overview of the proof; the full

Note that terminology is used inconsistently throughout the literature. What we call completeness is called “correctness”
by de Boer and Bonsangue [12], “soundness” by Godefroid et al. [24], and “completeness” by Baldoni et al’ [5].

24 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

details can be found in Appendix G.2. To our knowledge, this is the first proof of its kind for
a symbolic execution that can use UX/EX function specifications coming from a compositional
program logic.'°
THEOREM 6.4 (BACKWARD COMPLETENESS: SYMBOLIC EXECUTION).
6,Clro:6'ANE(r,T)Ao"E6 = Fo.ocE6A0,Clyo0:0

The correspondence between backward completeness and UX soundness for ESL is evident:
6,C Jr o : & corresponds to T + (P) C (Q) of Theorem 4.12, | (y,T) to the same part of
Definition 4.11, and the rest to UX validity of Definition 4.5, frame notwithstanding.

Abstractions for True Bug-finding. So far, the constraints placed on the allowed specifications
are standard. However, property (P6) can be broken by existential quantification, disjunction, and
abstractions that are not strictly exact (that is, that hide information). We focus the discussion
on abstractions and illustrate the issue with an example; disjunction is handled analogously and
existential quantification has been taken care of given the already placed constraints.

Consider the list-length specification from §5: (x = x % list(x, n)) LLen(x) (list(x,n) % ret = n),
where the list(x, n) predicate hides information about the list node addresses and values, and
consider the symbolic state & = (8, fz, i), where § = {x — %,y — null}, h= {x > 42,x+1
null}, and 7 = x € N, in which there is a linked list at X consisting of one node carrying the
value 42. Further consider the command y := LLen(x). Given the structure of 6, one would expect
to be able to apply the given specification, but this is not possible in a way that preserves true
bug-finding. In particular, the (P6) requirement for matchAndConsume amounts to

(0,{x > 42,x+1 1 null},x € N) Dy list(x,1) xx € N

but this does not hold, as, for example, the concrete state (0, {0 + 43,1 +— null) is in the models
of the right-hand side, but not in the models of the left-hand side, with the discrepancy being in
the node values (42 vs. 43), which is precisely the information hidden by the list predicate.

This means that compositional symbolic execution for true-bug finding may only use specifica-
tions that contain strictly exact abstractions, such as list(x, xs, vs). In particular, for that predicate
and the relevant list-length specification

(x = x * list(x, xs, vs)) LLen(x) (list(x, xs, vs) % ret = |xs|)
the (P6) requirement amounts to:
(0,{x > 42,%x + 1 — null},x € N) Dy list(x, [x],[42]) * X € N

and the above-mentioned issue no longer exists. We believe this to be the boundary of sound use
of abstractions for true-bug finding with standard symbolic states.

One way of crossing this boundary would be to have symbolic states of the form (6, ﬁ A, i),
where the new component, A, contains a list of predicates, and also extend the symbolic execution
with commands for unfolding and folding predicates. This, in particular, allows information hiding
in symbolic states and is both what happens in the implementation of Gillian OX and EX verification
and what is required to potentially model dynamic memory allocation. In this context, the (P6)
requirement would hold for a broader class of symbolic states and assertions. For example, we
would have that:

(0,0, [list(x,1)], £ € N) Dpq list(%,1) x x € N
letting us believe that there is room for soundly bringing in more abstraction to symbolic execution
while maintaining true bug-finding. We leave a deeper exploration of this extension for future work.

10The literature contains examples of symbolic execution with function summaries (e.g. [1, 23, 25, 27, 32, 47]), but those
either come without a soundness proof or use first-order summaries that do not talk about the heap.

Exact Separation Logic 25

7 CONCLUSIONS AND FURTHER WORK

We have introduced exact reasoning for analysing heap-manipulating programs by presenting an
exact separation logic, ESL. Exact specifications provide a bridge between verification and true bug-
finding, as they can be soundly used for both: they guarantee the absence of bugs for success post-
conditions and, at the same time, all bugs exposed in error post-conditions are true. ESL supports
reasoning about mutually recursive functions and comes with a frame-preserving soundness result
that transfers straightforwardly to UX and OX separation logics, thus demonstrating, for the first
time, functional compositionality for UX reasoning.

We have verified exact specifications for a number of illustrative examples, showing how ESL
can be used to reason about data-structure libraries, language errors, mutual recursion and non-
termination. In particular, we verify exact specifications for list algorithms using familiar inductive
predicates for singly-linked lists, demonstrating that abstraction can be soundly used in exact
and UX reasoning. We emphasise the distinction between hiding information through existential
quantification, which can be used with exact and UX reasoning, and losing information through
forwards consequence that can only be used in OX reasoning. We have adapted the OX verification
of Gillian [33] to exact verification, and have verified the examples presented here. As future work,
we will explore the applicability of Gillian’s exact verification to real-world code: in particular, we
believe that the parts of the AWS codebase that have already been OX-verified by Gillian [33] can
be adapted to exact verification.

To demonstrate overall viability of exact verification for true bug-finding, we have introduced a
compositional symbolic execution semantics that is able to call functions described using exact
specifications, precisely pinpointing when such specifications are applicable (property (P6) of
matchAndConsume and produce introduced §6): for example, the list algorithms require that the
specifications are defined using strictly exact list-predicate assertions. Our ultimate aim is to unify
OX, UX and exact reasoning in Gillian, underpinned by the appropriately parametric and monadic
version of compositional symbolic execution presented here.

REFERENCES

[1] S. Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven Compositional Symbolic Execution. In Tools
and Algorithms for the Construction and Analysis of Systems, TACAS (Lecture Notes in Computer Science, Vol. 4963),
C. R. Ramakrishnan and Jakob Rehof (Eds.). 367-381. https://doi.org/10.1007/978-3-540-78800-3_28

[2] Saswat Anand, Corina S. Pasareanu, and Willem Visser. 2009. Symbolic execution with abstraction. International
Journal on Software Tools for Technology Transfer 11, 1 (2009), 53-67. https://doi.org/10.1007/s10009-008-0090- 1

[3] Andrew W. Appel. 2012. Verified Software Toolchain. In NASA Formal Methods Symposium (NFM), Vol. 7226.
https://doi.org/10.1007/978-3-642-28891-3_2

[4] Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust types for modular
specification and verification. Proceedings of the ACM on Programming Languages 3, OOPSLA (2019). https:
//doi.org/10.1145/3360573

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of
Symbolic Execution Techniques. Comput. Surveys 51, 3 (2018). https://doi.org/10.1145/3182657

[6] Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent Separation Logic. ACM SIGLOG News 3, 3 (2016). https:
//doi.org/10.1145/2984450.2984457

[7] Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract
Interpretations. In Symposium on Logic in Computer Science (LICS). https://doi.org/10.1109/LICS52264.2021.9470608

[8] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program Verifier for Memory Safety of C Programs.
In NASA Formal Methods Symposium (NFM). https://doi.org/10.1007/978-3-642-20398-5_33

[9] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. 2009. Compositional Shape Analysis by
Means of Bi-Abduction. In Principles of Programming Languages (POPL). https://doi.org/10.1145/1480881.1480917

[10] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional Shape Analysis by

Means of Bi-Abduction. Journal of the ACM (JACM) 58, 6 (2011). https://doi.org/10.1145/2049697.2049700

https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3182657
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1145/2049697.2049700

26

[11]

[12]
[13]

[14]

[15

=

[16]

[17]

(18]
[19]
[20]

[21

—

[22

—

[23

—

[24

—

[25

—

[26]

[27

—

[28]

[29

—

[30

—

[31]
[32]
[33]
[34]

[35]

Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data
Abstraction. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.1007/978-3-662-
44202-9_9

Frank S. de Boer and Marcello Bonsangue. 2021. Symbolic execution formally explained. Formal Aspects of Computing
33, 4-5 (2021). https://doi.org/10.1007/s00165-020-00527-y

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Software Engineering and Formal Methods
(SEEM). https://doi.org/10.1007/978-3-642-24690-6_12

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:
Compositional reasoning for concurrent programs. In Principles of Programming Languages (POPL). https://doi.org/
10.1145/2429069.2429104

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent
Abstract Predicates. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.1007/978-
3-642-14107-2_24

José Fragoso Santos, Petar Maksimovic, Sacha-Flie Ayoun, and Philippa Gardner. 2020. Gillian, Part I: A Multi-
language Platform for Symbolic Execution. In Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/3385412.3386014

José Fragoso Santos, Petar Maksimovi¢, Théotime Grohens, Julian Dolby, and Philippa Gardner. 2018. Symbolic
Execution for JavaScript. In Principles and Practice of Declarative Programming (PPDP). https://doi.org/10.1145/
3236950.3236956

José Fragoso Santos, Petar Maksimovi¢, Daiva Naudzitniené, Thomas Wood, and Philippa Gardner. 2018. JaVerT:
JavaScript Verification Toolchain. PACMPL 2, POPL (2018). https://doi.org/10.1145/3158138

José Fragoso Santos, Petar Maksimovi¢, Gabriela Sampaio, and Philippa Gardner. 2019. JaVerT 2.0: Compositional
Symbolic Execution for JavaScript. PACMPL 3, POPL (2019). https://doi.org/10.1145/3290379

José Fragoso Santos, Petar Maksimovi¢, Sacha Elie Ayoun, and Philippa Gardner. 2020. Gillian: Compositional Symbolic
Execution for All. arXiv:2001.05059

Philippa Gardner, Sergio Maffeis, and Gareth David Smith. 2012. Towards a program logic for JavaScript. In Principles
of Programming Languages (POPL). https://doi.org/10.1145/2103656.2103663

Philippa Gardner, Gareth Smith, Mark J. Wheelhouse, and Uri Zarfaty. 2008. Local Hoare reasoning about DOM. In
Principles of Database Systems (PODS). https://doi.org/10.1145/1376916.1376953

Patrice Godefroid. 2007. Compositional dynamic test generation. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/1190216.1190226

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Conference
on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/1065010.1065036

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. 2010. Compositional May-Must Program
Analysis: Unleashing the Power of Alternation. In Principles of Programming Languages (POPL). https://doi.org/10.
1145/1706299.1706307

Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A true positives theorem for a static race detector.
Proceedings of the ACM on Programming Languages 3, POPL (2019). https://doi.org/10.1145/3290370

Benjamin Hillery, Eric Mercer, Neha Rungta, and Suzette Person. 2016. Exact Heap Summaries for Symbolic Execution.
In Verification, Model Checking, and Abstract Interpretation (VMCAI). https://doi.org/10.1007/978-3-662-49122-5_10
C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Communications of the ACM (CACM) 12, 10
(1969). https://doi.org/10.1145/363235.363259

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast:
A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods Symposium (NFM). https:
//doi.org/10.1007/978-3-642-20398-5_4

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe systems programming in Rust.
Communications of the ACM (CACM) 64, 4 (2021). https://doi.org/10.1145/3418295

Robbert Krebbers. 2016. A Formal C Memory Model for Separation Logic. Journal of Automated Reasoning 57, 4
(2016). https://doi.org/10.1007/s10817-016-9369-1

Yude Lin, Tim Miller, and Harald Sondergaard. 2015. Compositional Symbolic Execution Using Fine-Grained Summaries.
In Australasian Software Engineering Conference. https://doi.org/10.1109/ASWEC.2015.32

Petar Maksimovic, Sacha-Elie Ayoun, José Fragoso Santos, and Philippa Gardner. 2021. Gillian, Part II: Real-World
Verification for JavaScript and C. In Computer Aided Verification (CAV). https://doi.org/10.1007/978-3-030-81688-9_38
Petar Maksimovié, José Fragoso Santos, Sacha Elie Ayoun, and Philippa Gardner. 2021. Gillian: A Multi-Language
Platform for Unified Symbolic Analysis. http://arxiv.org/abs/2105.14769

Toby Murray, Pengbo Yan, and Gidon Ernst. 2021. Incremental Vulnerability Detection with Insecurity Separation
Logic. arXiv:2107.05225 [cs.PL]

https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/s00165-020-00527-y
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3290379
https://arxiv.org/abs/2001.05059
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/1376916.1376953
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/3290370
https://doi.org/10.1007/978-3-662-49122-5_10
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3418295
https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1109/ASWEC.2015.32
https://doi.org/10.1007/978-3-030-81688-9_38
http://arxiv.org/abs/2105.14769
https://arxiv.org/abs/2107.05225

Exact Separation Logic 27

[36]

[37]
[38]
[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]

[47]

Gian Ntzik and Philippa Gardner. 2015. Reasoning about the POSIX file system: local update and global pathnames. In
International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). https:
//doi.org/10.1145/2814270.2814306

Peter W. O’Hearn. 2019. Incorrectness Logic. Proceedings of the ACM on Programming Languages 4, POPL (2019).
https://doi.org/10.1145/3371078

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data
Structures. In Computer Science Logic (CSL). https://doi.org/10.1007/3-540-44802-0_1

Matthew J. Parkinson and Gavin M. Bierman. 2005. Separation Logic and Abstraction. In Principles of Programming
Languages (POPL). https://doi.org/10.1145/1040305.1040326

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning
About the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification (CAV). https://doi.org/
10.1007/978-3-030-53291-8_14

Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Concurrent Incorrectness Separation Logic.
Proceedings of the ACM on Programming Languages 6, POPL (2022). https://doi.org/10.1145/3498695

Azalea Raad, José Fragoso Santos, and Philippa Gardner. 2016. DOM: Specification and Client Reasoning. In Asian
Symposium on Programming Languages and Systems (APLAS). https://doi.org/10.1007/978-3-319-47958-3_21

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Logic in Computer Science
(LICS). https://doi.org/10.1109/LICS.2002.1029817

Conrad Watt, Petar Maksimovic, Neelakantan R. Krishnaswami, and Philippa Gardner. 2019. A Program Logic
for First-Order Encapsulated WebAssembly. In European Conference on Object-Oriented Programming (ECOOP).
https://doi.org/10.4230/LIPIcs. ECOOP.2019.9

Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An Introduction, Chapter 10. MIT Press,
Cambridge, MA, USA.

Hongseok Yang. 2001. Local Reasoning for Stateful Programs. Ph.D. Dissertation. University of Illinois Urbana-
Champaign.

Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating precise and concise procedure summaries. In Principles
of Programming Languages (POPL). https://doi.org/10.1145/1328438.1328467

https://doi.org/10.1145/2814270.2814306
https://doi.org/10.1145/2814270.2814306
https://doi.org/10.1145/3371078
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695
https://doi.org/10.1007/978-3-319-47958-3_21
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://doi.org/10.1145/1328438.1328467

28 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

A COMPLETE OPERATIONAL SEMANTICS

[E]s =0

[E]s =4 verr = [“ExprEval”, str(E)]

o,skip ly o

neN

(s,h),x:=E |y (s[x = v],h)

(s, h),x :=nondet ||, (s[x — n],h)

[[E]]s =4

Oerr = [“ExprEval”, str(E)]

(s,h),error(E) Uy err: (serr, h)

[E]s = false
0,if (E)CrelseCz Jy0: 0’

0,C2Jyo:0

[E]ls=v¢B
verr = [“Type”, str(E), v, “Bool’]

(s, h),x:=E |y err: (sem, h)

[[E]]s =0 0gr = [“Error’, 0]
(s,h),error(E) Uy err: (serr h)

[E]lc =true o0,C1 lyo0:0’
0,if (E) CrelseCz [y 0: 0’

[Els =4 ver = [“ExprEval”, str(E)]
(s,h),if (E) Cr else Cz |y err: (semr, h)

[Els = true o,C |y o”

[E]s = false o”,while (E)C |y o0: 0’

(s,h),if (E) Cr else Cz |y err: (sem, b)

IIEI'S =4
Verr = [“ExprEval”, str(E)]

(s, h),while (E) C |y err: (serr, h)

[Els =true o,Clyo:0" o# ok

owhile (E)C |y o

0,C1 Uy o”

o,while (E)C ly0:0’

[E]s=0v¢N
Verr = [“Type”, str(E), v, “Bool”]

(s,h),while (E) C Uy err: (serr, h)

d’,Cylyo:0 0,CiJyo0:0" o# ok

o,while (E)C |y o0: 0’

_}f(i) {C;returnE’ } ey
[Els =3 pv(O\{X}=1{Z}
sp = 0[X — 7][Z — null]
(sp.h),C Uy (sq. h') [[E']]sq =0

(s,h),y = f(E) Uy (sly = '], 1)

ﬂf(i){C; returnE’' } ey

[Els=7 pv(O)\{x} = {7}

sp = 0[x — 3][Z — null]
(sp.h),C Uy 0:(sq.h) o# ok

(s,h),y = f(l_-f) Uy o: (s[err — sq(err)], h")

f ¢ dom(y) ver =[*NoFunc”, f]

[Els=n h(n)=o

0,C1;C Uy o’ 0,C1;Cy llyo:a’

#f(i){C; returnE’ } €y
[Els =3 pv(O)\{X}={zZ}
sp = 0[X — 3][Z — null]
(sps h)s C U)/ (sq5 h/) [[E,]]Sq = é
Verr = [“ExprEval”, str(E’)]

(s,h),y = f(E) Uy err: (sem 1)

fX){C;returnE’ } ey
ke{l,...n} ([E]s=o)lE5! [E]s = ¢
Verr = [“ExprEval”, str(Eg)]

(s;h),y == f(E1,...En) Uy err: (sem h)

[[E]]s =4
Verr = [“ExprEval”, str(E)]

(s,h),x = f(E) Uy err: (sem h)

[E]s=0v¢N
Verr = [“Type”, str(E), v, “Nat”]

(s, h),x = [E] Uy err: (serr h)

[Els=n h(n)=2
verr = [“UseAfterFree”, str(E), n]

(s, h),x = [E] Uy err : (Serr, h)

(s,h),x = [E] Uy (s[x — o], h)

(s, h),x == [E] Uy err: (serr, h)

[E]s = n ¢ dom(h)
Verr = [“MissingCell”, str(E), n]

(s, h),x == [E] Uy miss: (serr, h)

[[E]]]S =n h(n) € Val [[Ez]]s =0
(s,h), [E1] :=E2 Uy (s,h[n — 0])

Exact Separation Logic

[[Elﬂs = é
Verr = [“ExprEval”, str(E;)]

(s, h), [E1] = E2 Uy err : (Serr, h)

[E1]s = n ¢ dom(h)
Verr = [“MissingCell”, str(E1), n]

29

[[Elﬂs =0¢N
Verr = [“Type”, str(E1), v, “Nat”]

(s,h), [E1] := E2 Uy miss : (serr, h)

[Exs=n h(n)eVal [Es =4
verr = [“ExprEval”, str(Ez)]

(s,h), [E1] = E; Uy err : (Serr, h)

[[E]]s = é
verr = [“ExprEval”, str(E)]

(s,h), [E1] :=E2 Uy err : (Serr, h)

[Eils=n h(n) =02
verr = [“UseAfterFree”, str(Ey), n]

(5: h)’ [El] =E Uy err: (serr, h)

[Els=n (n" +i ¢ dom(h))lo<i<n
W =h[n’ - null]---[n"+n—-1 null]

(s, h),x :=new(E) |y err: (serr, h)

[E]s =n h(n) € Val

Ve = [“BxprEval’ ()]

(s, h),x :=new(E) Iy (s[x — n'],n)

[E]s=v¢N
Verr = [“Type”, str(E), v, “Nat”]

(s, h),x := new(E) Uy err: (serr, h)

[E]s=v¢N
Verr = [“Type”, str(E), v, “Nat”]

(s, h), free(E) Uy (s, h[n — @]) (s, h), free(E) Uy err: (serr, h)

[E]s = n ¢ dom(h)
Verr = [“MissingCell”, str(E), n]

(s, h), free(E) Uy miss: (serr, h)

where serr = s[err — verr].

(s, h), free(E) Uy err: (serr, h)

[Els=n h(n) =0
verr = [“UseAfterFree”, str(E), n]

(s,h), free(E) Uy err: (serr, h)

30 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

B EXACT SEPARATION LOGIC

Definition B.1. The satisfiability relation, denoted 0, s |= 7 for pure assertions and 0, o |= P for assertions,
is defined as follows:

0,(s,h) E
T o O0sExAR=0
0.5 False o neve'zr
Ey=E; & [E1=E]ps =true PL=P, © 0,(sh)EP = 6,(sh) EP;
E1 <E & [E1 < Ex]gs = true 3x. P © FoeVal.O[x—ov],(sh) EP
EeX e [Elos €X emp e h=0
T = T2 © O0skEm=0skEm Ei— Ep S h= {[[EI]]G,S — [[Ez]]g’s}
-(E1 = E;) & [E1 = E]g =false E—o © h={[Ei]os — 2}
-(F1 <E) & [E1<E2ﬂészfalse Py x Py & Jhi,hp.h=h1Why A
~(EeX) & [Elos¢X 0. (s.h1) | Py A0, (s.h2) [P2
o m) e 0skemAadskEar ®hsx<pPe (<kA3hi... . h=wk1hiA
- e bskExn Vji.i<j<k=0(shj) EP[j/x])V

(i=kAh=0),wherei= IIEI]]H,S’ k= [[Ez]]g,s
and x is not featured in either E; or Es.

The complete rules of ESL are as follows (with Qe = pre % err = Egpp):

NONDET
SKIP X ¢ pV(EI)

T+ (emp) skip (em
(emp) skip (emp) '+ (x=E") x:=nondet (E’ € Val x x € N)

ASSIGN ASSIGN-ERR
x ¢ pv(E") 6 = [E'/x] Eerr = [ExprEval”, str(E)]
F'r(x=E xEeVal) x:=E (E' € Val x x = Ef) Ik (x=E xE¢gVal) x:=E (err: Qer)
LOOKUP

xegpv(E) 0=[E/x]
T+ (x=FE *E Eq) x:=[E] (E' €Val % x = E10 % E0 > E;0)

LOOKUP-ERR-VAL
Eerr = [“ExprEval”, str(E)]

T+ (x=E % E¢Val) x:=[E] (err: Qerr)

LOOKUP-ERR-TYPE LOOKUP-ERR-USE-AFTER-FREE
Eerr = ["Type”, str(E), E, ’Nat”] Eerr 2 ["UseAfterFree”, str(E), E]

FF(XZE'*EGVal*EﬁéN)x::[E] (err: Qerr) I't (x=E %xE~ @) x:=[E] (err: Qerr)

MUTATE-ERR-VAL-1
Eerr = [PExprEval”, str(Eq)]

I+ (Eg %Val) [E1] = E2 (err: Qerr)

MUTATE-ERR-TYPE MUTATE-ERR-USE-AFTER-FREE
Eerr = ["Type”, str(E1), E1, ”Nat”] Eerr = ["UseAfterFree”, str(Eq), E1]

T+ (Ey € Val x Ey ¢N) [Eq] = E2 (err: Qerr) I+ (E; — @) [E1] :=E3 (err: Qerr)

MUTATE
I'+ (E; — Ex Ez eVal) [E1] :=E3 (E1 — E2 x E € Val)

Exact Separation Logic

MUTATE-ERR-VAL-2
Eerr = ["ExprEval”, str(E2)]

Tk (E1 — E % Ep %Val) [E1] == E2 (err: Qerr)

NEW
x¢pv(E') 0= [E'/x]
Tr (x=E xE€N) x:=new(E) (ok : E" € Val x ® g<;cpg((x+i) — null))

NEW-ERR-EVAL

A

Eerr 2 [“ExprEval”, str(E)]
T+ (x=E %E¢Val) x := new(E) (err : Qeyr)

NEW-ERR-TYPE

A

Eerr = ["Type”, str(E), E, "Nat”]
I'+(x=E xE€Val x EZN) x:=new(E) (err: Qerr)

_— FREE-ERR-EVAL
Eerr = ["ExprEval”, str(E)
T+ (E > E') free(E) (ok : E/ € Val x E — ©) e = ['Exp]
T+ (E;E'Val) free(E) (err: Qerr)

FREE-ERR-TYPE
Eerr 2 ["Type”, str(E), E, "Nat”]
I'+ (E€Val x EZN) free(E) (err: Qerr)

FREE-ERR-USE-AFTER-FREE
Eerr = ["UseAfterFree”, str(E), E]

T+ (E @) free(E) (err: Qerr)

ERROR ERROR-ERR

Eerr 2 [ExprEval”, str(E)]
I'+ (E ¢ Val) error(E) (err : Qerr)

IF-ELSE
Tr(PA-E)C (Q)

T+ (PA=E)if (E) CyelseCz (Q)

Eerr = [“Error”, E]
T+ (E € Val) error(E) (err: err = E¢py)

IF-THEN

T+ (PAE)C (Q
T (PAE)if (E) Cyelse Cy (Q)

IF-ERR-VAL

A

Eerr 2 ["ExprEval”, str(E)]
I'+ (P % E¢Val) if (E) C1 else Cy (err : Qerr)

SEQ
IF-ERR-TYPE T+ (P)Cy (ok:R) (err: Q¢

T+ (R) Gz (0k : Qop) (err: Q2,)
T+ (P) C1; G (ok: Q) (err: QL v Q%)

Eerr = ["Type”, str(E), E, "Bool”]
T+ (P % EeVal x E¢B) if (E) Cy else Cz (err: Qepr)

WHILE-ITERATE
VieN. P =E€B P = False
VieN. T+ (Pi AE)C (ok:Pis1) (err: Q;)) m 2 min({i € N& {oo} | E P; = —=E})
T+ (Po) while (E) C (ok : Pr) (err: 3n < m.Qy)
WHILE-ITERATE-ERR-VAL
ImeN.(Vie N EP; > E) A Py, = E ¢ Val
Vie N Tt (P,-) C (ok : P,-+1) (err : Ql) Eerr = ["ExprEval”, str(E)]
I'+ (Py)while (E) C (err: (3n < m.Qpn) V (P * err = Egpy))

WHILE-ITERATE-ERR-TYPE
ImeN.(VieN™ EP,=E)A P, =EcVal\B
Vi e N T+ (Pi) C (ok : Pis1) (err: Qi) Eerr 2 ["Type”,str(E), E, "Bool”]
T+ (Py) while (E) C (err: (In < m.Qp) V (P * err = Egpy)))

32 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

EQUIV
T+ (P') C(ok:Qpp) (err: Qo) EPQ Qo © P Qoks Qerr
T+ (P) C (ok: Quk) (err: Qerr)
EXISTS
T+ (P) C (ok: Qo) (err : Qerr)

FRAME
T+ (P) C (ok:Qok) (err: Qerr) mod(C) NfV(R) =0
Tk (3x.P) C (ok : x. Quk) (err : 3x. Qerr)

N (P*R) c (Ok : on*R) (err:Qerr*R)
DIS]
I'+ (Py) C (ok: Q(l,k) (err:QL,) Tr (P2)C (ok: ng) (err: Q%)
'+ (PyVPp)C (ok: Q(I)k M Qik) (err: Q;rr v Q(zzrr)

FCALL
X=x def
(X=X * P) (Qok)(Qerr) € T(f) y ¢ pv(Ey) o= [Ey/y]
Th(y=EyxE=%%P)y=f(E) (ok:E0 = » Quly/ret]) (erm:y = Ey » E=3 * Qo)
FCALL-ERR-FCT-NOFUNC
f ¢ dom(T) Eerr = ["NoFunc”, f] ENV-EMPTY
F(0,0)

'+ (YZEy*E=>?)YI=f(E) (err: Qerr)

ENV-EXTEND
F(y,T) I={1,...,n} Vi el f; ¢ dom(y)
(@) =T[fi = {(P'(B)) (ok : QL (B)(err : O (P) | B < a} U{(PL(B)) (False) | f < a}ier
VieLa 3t € Inty g ((P(a)) (ok : QF (@) (err : Qfy(@)). T(a) F Ci i t

Vie La 3t €Inty ((Po(a)) (False)). T'(a) - C : t
Pl 230 P (a) k€O

Qe 2 Fa. Qp(@) k@€ 0

Y =vlfi— i CiEd)lier

P2 30.P(a) *acO

Qf)k £ Ja. Qik(a) *a €0
I = T[fi = {(P") (ok : QF) (err : Q%y,), (P,) (False) ey

- (yl, FN)

Exact Separation Logic 33

C PROOF OF SOUNDNESS: ESL

In order to prove the soundness result of theorem 4.12, we require three auxiliary lemmas regarding envi-
ronment validity. Their proofs are straightforward and will therefore be omitted. For legacy reasons, this
Appendix and the following Appendices may use an alternative notation for satisfiability: 6, s, h |= P instead
of 6, (s, h) = P, where 6 (referred to as the substitution) is of type: LVar —¢;, Val.

LeEmmA C.1 (AUXILIARY PROPERTIES). The following properties hold:

(1) VO,s,5',h,P.0,5,h = P Aslpypy = 8" lpvp) = 0,8, h [P

(2) VO,s,5",h,h',0,C,y.(s,h),C |y 0: (s',h") = Vx € dom(s) \ mod(C). s(x) = s"(x)
(3) VE,0,5,5",y.slov(E)\{y} = 5 lov(e)\{y} = [EL"(v)/y1lo,s = [Elo,s

Proor oF THEOREM 4.12. By induction on the derivation I' + (P) C (ok : Quk) (err : Qerr). We prove a
representative selection of rules; the proofs for the remaining ones are analogous.

Function Call. We first prove the successfully terminating case of under-approximation. Our hypotheses are:

HY) F (n1),

(H2) 0,5".h" = E[Ey/y] =X * Qokly/ret],

(H3) h" § hy,

(H5) y ¢ fv(Ey),

(H6) (X=X % P) (ok : Qoi)(err : Qerr) € T(f)
Our goal is to show that:

3s,h.0,5,hEy=Eyx E=%xPA (s,hWhyp),y = f(X) Uy ok: (s, 0 W hy)
e From (H6) and (H1), we obtain C and E, such that (H7) f(x){C;return E} € y.

e From (H2), we obtain that (H2a) 0,s” = E[Ey/y] =X, and (H2b) 0,s", 1’ = Qi ly/ret].
e From (H1), (H6) and (H7), we obtain that there exists a specification

(X=X x P*Z=null) (Q(/)k)(Q(/err) € Inty,f((i =X x P) (Qok)(Qerr))

such that (H8) y | (Xx=X*PxZ=null) C (ok : Q:)k) (err : Q7,,), where, from the definition of

the internalisation function, we know that (H9a) Q. < 3p. Q. [p/P] * ret = E[p/p], where Z =
pv(O\{x} and p = {x} @ {Z} = pv(C).

e Given (H2b) and (H9a), we derive the following:

0.5, k= (35. Q1 [/B] * ret = E[5/])[y/ret]
= 0,5, | 3.0’ [B/B] * y = E[p/p]
from which we obtain that there exist values w, such that:
= 0[p > wl.s". k' EQ [p/p] *y =E[p/p]
= 01p — WI.5", i Q' [#/] * y = E[W/p]
= 01p — W], [p— wh b EQ, xy=E
=0,s'[powlLhEQ, *xy=E (H10a)
=0,5'[p > wlLh EQ, (H10b)

¢ Instantiating (H8) with (H10b) and (H3), we obtain that there exist § and h, such that (H11) 6,5, h =
X=X xPxz=null and (H12) (5,h W hy),C Iy ok : (s'[p — W],h W hy).

e Let U = 0(X). Then, since pv(P) = 0 and given Lemma C.1(1), taking s’’ := 0[x — 7][Z — null], we
obtain that (H13) 0,s"",h X = X % P % Z = null and also that (H14) (s”,h W hy),C |y ok : (s'[p —
W], B W hp).

o Leto’ = [E]y 3w = [E[W/Pl]a,s vy = [Eyle,s and (H15) s = s"[y — vy]. Therefore, we also have
that (H16) s’ = s[y — o'].

e We now need to prove that (s, AW hy),y := f(E) Uy ok : (s|y — 0'], K Why). For this, we already have:
fR{CreturnE} €y, pv(O) \ {x} = {Z}, 5" = 0[X — 3][Z — null], (s",hWhy),C |y (s", 0 & h})

and [E]y 5] =0, and we still need [[l_f]]s = ¢. Rewriting (H2a) given (H16), we get 0,s[y — v’] E

34

Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

E[E y/y] = %, that is, (H17) [[E Ey/yllo.s[y—v] = 0. From (H17), the definition of s, and Lemma C.1(3),
we then obtain that [[E]g s = 0, and from there, as E are program expressions, we obtain the desired

[E]s = 5.
e Finally, we need to prove that §,s,h |y = Ey % E = ¥ % P. For the first “starjunct”, we need to show

HYHGS = [[EyHG s*

Ylos = st B (¢ ly - vyD)(y) = vy = [EyJos

For the second starjunct we do:

(H16) (Hs)

[[Ey]]e s[y—d’] [[Ey]]Hs

N N N (H2a) .- (H15) .
[[x]]ﬂ,s = 9(x) = [[x]]B,s’ = [[E[Ey/yﬂ]ﬂ,s’ C.13 =[[E]]9,s

The third starjunct follows from (H13), given that P has no logical variables by construction.

Next, we prove the erroneously terminating case of under-approximation. Our hypotheses are:

(HY) E (.1),)
(H2) 0,5".h' =y =Ey * E=X % Qer,
(H3) K" § hy,

(H4) y ¢ fv(Ey),

(H5) (X=X * P) (Qok)(Qerr) € T(f).

Our goal is to show that:

Is,h0.shEy=EyxE=Zx PA(shWhyp),y = f&) Uy err: (s, Why)
e From (H5) and (H1), we obtain C and E, such that (H7) f(X){C;return E} € y.
e From (H2), we obtain that (H2a) 6,s” |= E = X, (H2b) 0,s", h" |= Qerr and (H2c¢) 0,5" |Fy = Ey.
e From (H1), (H5) and (H7), we obtain that there exists a specification
(X =% % PxZ=null) (Q/,)(Q¢) € Inty r((X =X * P)(Qok) (Qerr))

such that (H8) y | (Xx=X*PxZ=null) C (ok : Q;k) (err : Ql,), where, from the definition of
the internalisation function, we know that (H9a) Qe < 3p. Q% [p/p] with Z = pv(C)\{X} and
p=1{x}w{z}.
e Given (H2b) and (H9a), analogous to the previous case we obtain:
0.5, 1 (3. QU F/A) = 30,5, Qb (HI0)

where s, = s"[p — W]

o Instantiating (H8) with (H1), (H10), and (H3), we obtain that there exist § and h, such that (H11) 6,5, h =
X=X P*z=null and (H12) 5,h W hy),C Uy err: (sp,h" Why).

e Let o = 6(X). Then, since pv(P) = 0 and given Lemma C.1(1), taking s’ := 0[x — 3][Z — null],
we obtain that (H13) 0,s"",h = X = X x P % Z = null and also that (H14) (s”,h W h¢),C |l err :
(sp. B & hy).

e Let ver = [err]y o and (H15) s = s’ \err. Therefore, we also have that (H16) s” = s[err — vey].

e We now need to prove that (s,h W hyr),y := f(E) Uy err: (s[err = vepr], h' W hy). For this, we already
have: f(X) {C;return E} € y, pv(C) \ {X} = {7}, s” = 0[X — 3][Z — null] and (s, h W hy),C |y

rr: (s, WK) and we still need [[E]]s = 0. Rewriting (H2a) given (H16), we get 0,s” |= E = % that is,

(H17) [E] o.s = 0.From (H16) and (H17), we then obtain that [E] 0.s = U, which yields [E]s = & since E
is a program expression.
e Finally, we need to prove that 6,s,h =y = E, * E = X % P. The first starjunct is proven as follows:

(H16) (H16)
[[Y]] 0s = S(Y) = s,(Y) = [[Ey]]a,s [[Ey]]l?s
For the second starjunct we do:
o o o H2) (H15)
[flos = 0®) = [Floy = [Elos = [Elos

Exact Separation Logic 35

The third starjunct follows from (H13), given that P has no logical variables by construction.

We move on to proving the successfully terminating over-approximation soundness. Our hypotheses are:
HY) E (1.1))
(H2) 0,s,h|Fy=Ey*E=X%P
(H3) h hf
(H4) y ¢ fv(Ey)
(H5) (x =X % P) (ok : Qu)(err : Qerr) € T(f).
Our goal is to show that:

Vs B (s, h W hp),y = f(X) Uy ok : (s",h"))
= (o # missAIW K" =h Whp AO,s", 1 | E[Ey/y] = X x Qoly/ret])

e From (H1) and (H5), we obtain C and E such that (H6) f(X){C, return E} € y.

e We define 3 := 0(X) and obtain from (H2) that (H2a) 6,s £ E = ¥ and 0,s,h = P, and hence
(H2b) 0,s[x > o],h EX=X % P.

e Since pv(P) = () we obtain from (H2b) with Lemma 1 that 6,0[Xx — 7],h | X = ¥ x P and hence
(H7) 0,0[x — 3][Z > null],h EX =X % P xZ=null.

e (H1), (H5) and (H6) imply the existence of a specification (X = ¥ * P x Z = null) (ok : Q)(err :
Qqry) € Inty ¢((X =X * P) (0k : Qo) (err : Qerr)) such that

(H9) yk (R=3%*P*7=null) C (ok: Q) (err: Q)
o Instantiating (H9) with (H1), (H7) and (H3) yields
Vs b (s" h W hy),C Uy ok : (s",h"")
= (0 miss NI W =h Whe AO,s" W | Q'k)

(o]

(H11)

e Defining 0" := [E]g ¢, we apply the operation semantics of the successfully termination function call,
which yields

(s, hwhp)y = f(E) Uy (sly = o'].1")
To conclude the proof, it remains to show that 6,s[y — o'],}’ [E[Ey/y] =X % Quly/ret]. (H11)
implies 0,s",h" |= Q' . Defining p = pv(Q!,) and & := s’ (p), we obtain 0[p — d],— " F Q’ [p/p]
where — may denote any variable store, since the assertion does not hold any program variables.
Therefore, 0[p — 3], s,k Q!, [p/p] and hence (H12) 0,s[y — v"],h" £ 3p.Q [p/p] * y = v" hold.
From the definitions of v’, p and p we obtain o’ := [E]gy = [E[§/pl]g,— and therefore 6,s[y —
o) H E 35.Q", [B/p] * y = E[F/p]. Hence 6,5y — o'], ' k= Quly/ret].
From (H2a) and Lemma 3 , we obtain 0,s[y — o] [E[Ey/y] = X and therefore 6,s[y — o'],}’ E
E[Ey /y] = X * Qui[y/ret], which concludes this case of the proof.

Finally, we prove the erroneously terminating over-approximation soundness. Our hypotheses are:
(H1) E ;1))
(H2) 0,s,hFy=Ey*E=X%P
(H3) hithy
(H4) y ¢ fv(Ey)
(H5) (X=X % P) (ok : Qoi)(err : Qerr) € T(f).

Our goal is to show that:
Vs B (s, h W hp),y = f(X) Uy err: (s, h")
= (0# miss AW . H' =h Whp AO,s", B |y =Ey*E=%% Qer)
e From (H1) and (H5), we obtain C and E such that (H6) f(X){C, return E} € y.

e We define 3 := 0(%) and obtain from (H2), that (H2a) 0,s | E = X and 0,s,h | P, and hence
(H2b) 6, s[% —], h £ % = % % P.

36 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

e Since pv(P) = 0 we obtain from (H2b) with Lemma 1 that 6, 0[x — 7],k | X = X x P and (H7) 6, 0[x —
9][Z—= null],h EX=X % P % Z=null.

e (H1), (H5) and (H6) imply the existence of a specification (X = X * P * Z = null) (ok : Q!)(err :
Qerr) € Inty,f((i =X * P)(Qok)(Qerr)) such that

(HY) vl (x=%%P*7=null) C (ok: Q) (err: Q)
e Instantiating (H9) with (H1), (H7) and (H3) yields

Vs B (s h W hy),C Uy err: (s, h")

W) (ot miss A3W K =K Whp A0S, I Q)

o Defining v,y = [[err]s, we apply the operation semantics of the erroneously termination function call,
which yields

(s,hWhp).y = f(E) Uy (s[err = verr].h”)

e To conclude the proof, it remains to show that 8,s[err — verr],h |y = Ey E=2%x Qerr-
6,5 | y = Ey holds trivially and (H11) implies 6,s’, b’ |= Q. Defining p = pv(Qy,,) and 7 := s"(p),
we obtain 0[p — I],—,h’ E QJ,.[p/p] where — may denote any variable store, since the assertion
does not hold any program variables. Therefore, 0[p — 3], s[err — verr],n = QL. [p/P] and hence
0,s[err — verr], 1 | 3p. QL [p/P] and (H12) 0, s[err — verr], ' | Qerr holds.

e (H2) implies 0(X) = [[E]]g)s = [[E]]g,s[err_wm] and hence 6, s[err — veyr] | E = X. Therefore, we obtain

0,slerr > verr K Ey= Ey % E=X%x% Qerr, which concludes the proof.
While. The iterative while rule is:

WHILE-ITERATE
VieN. EP;=E€cB Vie N. T+ (P; AE) C (ok : Pit1) (err: Qi)
Py, = False m = min({i € Nw {co} | E P; = —E})
T+ (Po) while (E) C (ok : Pp) (err: 3n < m.Qp)

We prove the under-approximation case for successful termination; the faulting case is proven analogously.
Our hypotheses are as follows:
(H1) = (y, 1);
(H2a) VieN. P =>E€B
(H2b) Vi e N.T + (Pi A E) C (Ok : Pi+1) (err : Qi)§
(H3) P, = False;
(H4) m £ min({i e Nw {oo} | E P; = —E});
(H5) 0,s",h’ |E Py;
(H6) K’ 4 hf

Our goal is to show that:

3s,h.0,5,h = Po A (s,h W hg),while (E) C |y ok : (s",h" & hy)

e From (H5), we have that (H7) m # oo;
e If m = 0, we have from (H4) and (H5) that 0,s’,h" | Py A =E. Taking s = s’ and h = h’, we have
[E]s = false, and the operational semantics yields the required (s, hWhy),while (E) C |y (s',h" Why);
e Otherwise, we have that m > 0, and (H4) and (H5) imply that (H8) 0,s’, h’ |£ Pp,. Then, by iterative
application of (H2a), (H2b), and the induction hypothesis, we obtain the existence of a state s, h such
that (H9) (0,s,h | Po A E) and (H10) (s,h W h¢),C™ |y, (s", k" ¥ hy). From (HY), it also follows that
0,s, h |= Py. Finally, given (H4), (H10), and the operational semantics of the while loop, we also have
that while (E) C |y ok : (s',h" Why).
Second, we prove the over-approximating case. Our hypotheses are as follows:
HD) E (r.T);
(H2a) VieN. P =>E€B
(H2b) Vi e N.T + (P; AE) C (ok : Piyq) (err: Q;);

Exact Separation Logic 37

(H3) P = False;

(H4) m £ min({i e N {0} | E P; = —E});
(H5) 6,5,h = Py % E € B,

(He) h" # hy.

and our goal is to show that:

Yo,s",h". (s,h W hy),while (E) C Uy 0: (s',h") =
K =R GheA((0=0kAO,s" B EPp)V (o=errAls' b E3In<m Qn))
Taking (H7) (s,h W hy),while (E) C Uy o : (s",h”"), we have the following:
e If m =0, then 0,s,h £ Py A —E, meaning that [E]s = false, and from there, the operational semantics
yields (s,h W hy),while (E) C Iy (s,h & hy) and, trivially, it also holds that 6, s, h | Pp,.
o If (H8) m = oo, then given (H7) we can prove by contradiction that o = err. Then, let k > 0 be the
number of times the while unrolling rule has been applied in the derivation of (H7) (such a k exists due

to the design of the operational semantics). Then, given (H2), (H4), (H8), the inductive hypothesis, and
the semantics of sequencing, we have that

VYo,s', 1. (sshwhp),CK lly o: (' 1) =

(H9a) A h=huy hy A ((0 =0k A0, s EP)V(o=errnd, s I E Qr_1))

and since the final states (s”, h’) coincide for (H9a) and (H7) given the operational semantics of the
while loop, we have the desired goal forn =k —1 < m = co.

e Otherwise, we have that 0 < m < co. Then, given (H2a), (H2b), (H4), (H8), the inductive hypothesis,
and the semantics of sequencing, we have that

Yo, s", b . (s, hWhp),C™ |y 0: (s, h") =

(H9b) 3K =R OheA((0=0kNO,s" K EPy)V(o=ernds' hE \/ﬁgl Qi)

and since the final states (s’, ") coincide for (H9b) and (H7) given the operational semantics of the
while loop, we have the desired goal, where n < m is guaranteed by the bounds of the disjunction.

Frame. The frame rule is:

FRAME
T+ (P) C (ok: Qo) (err: Qerr) mod(C) N fv(R) = 0

T+ (P *R) C (ok: Qo *R) (err: Qerr % R)

To prove the soundness of this rule, our hypotheses are that for arbitrary y:

(H1) E (.1)

(H2) T+ (P) C (ok : Qo) (err: Qerr)

(H3) mod(C) N fv(R) =0

From the inductive hypothesis and (H2), it follows that T = (P) C (ok : Qok) (err : Qerr) (H4). It then suffices to
show thatT |= (P R) C (ok : Qo * R) (err : Qerr % R) holds. We start off by showing the over-approximating
case. For this we assume that for some 9, s, h, h 7,0, s’ kW

(H5) 0,s,hEP xR

(H6) (s;hWhy),Clyo: (s h")

From the definition of the satisfiability relation and (H5), it follows that there exists some heaps, & and .,
such that:

(H7) h=hwh,

(H8) 0,5,h =P

(H9) 0,s,hy ER

Letting fzf =h W hy, from (H6) and the associativity of v, it follows that (s, hw flf), Clyo:(s',h") (H10).
From (H4), (H1), (H8) and (H10), it follows that:

o missANIW. KW' =K Lﬂﬁf AO,s W E Qo

38 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

By applying item 2 and item 1 to (H9), we can infer that 0, ', hy |= R. Then letting b’ = b’ @ h,, given the
definition of the satisfiability relation, it follows that 6,s’,h’" = Q, * R. We can then infer that:
o# missAn3W . KW =h &)F_zf AO,s' W EQo xR
as required. We now show the under-approximating case. For this we assume that for some 0, s’, k', h £, 0
(H11) 6,s",h = Qo xR
(H12) hy i 1
From the definition of the satisfiability relation and (H11), it follows that there exists some heaps, h’ and h’.
such that:
(H13) b’ = h' wh.
(H14) 0,5",h" = Qo
(H15) 9: s' b E R_ o
Letting hy = hy W hy, from (H12) and (H13), it follows that h¢ §f A’ (H16). From (H4), applying (H1), (H14)
and (H16), it follows that:
s, h. 0,5,k EP A (s,}_ltdl_lf),C UY 0: (s',fl' &Jflf)
By applying item 2 and item 1 to (H15), it follows that 6, s, h. = R. Letting h = h ¥ i, by the definition of the
satisfiability relation, it follows that:
3s,h. 6,s,h EP %R A (sshwhyp),Clyo: (s’ 0 Whp)
as required.
Equivalence. The equivalence rule is
EQUIV
T+ (P/) C (Ok : Q;k) (err : Qérr) P, Q;k, Q;rr & P, Qof> Qerr
T+ (P) C (ok: Qo) (err: Qerr)
Our hypotheses for OX-soundness are
(H1) E (y.1)
H2)TE(P)C (ok : Q;k) (err: QL)
(H3) P, Q;k’ Qerr © P, Qoks Qerr
(H4) 0,s,h E P
(H5) (s,h W hy),C Uy (s,h")
and we aim to show that

o# missANIh . h=hw he A 0,s',h E Qo
(H3) and (H4) implies 0, s, |= P’ and with (H2) and (H5) then implies (H6) o # miss A 3h'.h = h" W hg A
0,s',h’ = Q). (H2) then implies the desired result.
For the UX-soundness, the hypotheses are

(H1) E (1.T)
H2) T E (P)C (ok : Q;k) (err: Qbyy)
(H3) '= P,a Q,ok’ Qérr S P, on’ Qerr

(H4) 0,5, 1 | Qo
(H5) I by

(H2) and (H4) implies 0,s’, 1’ = Q. (H2) and (H5) implies 3s, h.0,s,h |E P’ A (s,h & he),C Uy (s',h ¥ hy).
(H3) then implies the desired result.

Existentials. The existential rule is:
EXISTS
T+ (P) C (ok: Qo) (err: Qerr)
T+ (3x.P) C (ok : 3x. Qo) (err : x. Qerr)

To prove the soundness of this rule, our hypotheses are that for arbitrary y:

Exact Separation Logic 39

(H1) E (.D)

(H2) T+ (P) C (ok : Qo) (err: Qerr)

Using the inductive hypothesis and (H2), it follows that (H3) T' |= (P) C (ok : Quk) (err : Qerr). It then suffices
to show that T | (3x.P) C (ok : 3x. Quk) (err : 3x. Qerr). We start off by showing the over-approximating
case. To do so, we assume that for some 0, s, h, hf, o, s h'":

(H4) 6,s,h = 3x.P

(H5) (sshWhe),Clyo: (s',h Why)

From (H4) and the definition of the satisfiability relation, it follows that, for some v, (H6) 0[x + v],s,h |= P
holds. From (H3), (H1), (H6) and (H5), it follows that:

o# missA3IW . h' =W Whe AO[x — 0],s", k" E Qo

This trivially entails:

ot missANIW. W' =hw hg A0, s',h E3x.Q0
as required. We now show the under-approximating case. To do so, we assume that for some 0, s’, h’, h £, 0t
H7) 0,51’ E3Ix Qo
(H8) h £ g h
From (H7) and the definition of the satisfiability relation, it follows that, for some v, (H9) 0[x + 0],s’,h’ |= Q,.
From (H3), (H1), (H9) and (H8), it follows that:

3s,h. O[x = o],k EP A (s,hWhy),C lyo: (s’ h" Why)

and consequently:
3s,h. 0,5, h E3x.P A (s,hWhy),Clyo: (s, Why)

as required.

Disjunction. The disjunction rule is
DIS]
T+ (Py) C (ok: QL) (err:Qp) T (P2)C (ok:Q%) (err: Q%)
T+ (PyVPy)C(ok:Ql v Q%) (err:QL, v Q)
Our hypotheses for OX-soundness are
(H1) E (.1)
(H2) T | (Py) C (ok : Q) (err: QL)
(H3) T = (P2) C (ok : Q%) (err: Q%)
(H4) 0,s,h|=PyV Py
(H5) (sshWhe),Clyo: (s h")
(H4) implies that (6,s,h = P1) V (0,s, h £ P2). If the first case of the disjunct holds, (H2) implies (H6a) o #
miss A 300" = W Why AO,s" B Ql. Otherwise, the second case holds and (H3) yields (H6b) o #
miss N30 . B =h Whe A0, 0 Q2. The disjunction of (H6a) and (H6b) yields the desired result.
For the UX-soundness, our hypotheses are
(H1) E (.1)
(H2) T F (Py) C (ok: QL) (err: QL)
(H3) T = (P2) C (0k : Q%) (err: Q%)
(H4) 6,50 = Q) v Q3
(H5) W' g hy
(H4) implies (8,s", b’ = QL)V(6,s', k' £ Q2). If the first case of the disjunct holds, (H2) yields (H6a) Js, h(s, hw
hf), C Uy (s',h v hf) A 0,s,h |E P;. Otherwise, the second case of the disjunction holds and (H3) implies
(H6b) 3s,h(s,h W hf),C |y (s, W v hf) A 8,5, h |= Pp. The disjunction of (H6a) and (Héb) yields the desired
result.

40 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

Lookup. The Lookup rule is
LOOKUP
x¢pv(E') 0=[E/x]
T+ (x=E *xEr Ey)x:=[E] (E' €Val x x=E10 x EO — E;0)

To prove its OX-soundness, the hypotheses are:
(H1) E (y.1)

(H2) x ¢ pv(E')

(H4) 6,s,hEx=E % E E;

(H5) (s,hWhy),x:=[E] Jyo: (s",h")

and we aim to show
o# missA3h'. K" =h WheAO,s', ' EE €Val xx=Eq[E'/x] % E[E’/x] = Eq[E'/x]

(HS5) yields (H6) o # miss, (H7) [E]s = v and (H8) s" = s[x — 0] and (H9) »"" = h ¥ h¢. Chosing (10)h" = h,
(H4) and (H8) yield (H11) 6, s’ = E’ € Val. (H4), (H9), (H10) and (H11) imply the desired result.
For UX-soundness, our hypotheses are:

H1) E (. T)

(H2) x ¢ pv(E)

(H3) 0,s’,h’ |=E €Val x x = E;[E’/x] % E[E’/x] — E1[E"/x]
(H4) K hf

and we aim to show:
3s,h. (s, hWhp),x = [E] Uy (", Whe) AO,s,hEx=E xE Ey
Letting o = [E']p ¢, s = s'[x > v] and h = h’, then:
(sshwhg),x:=[E] Uy (s, W hy)
holds. Then given (H2), by applying item 3, it is clear that v = [E’]y s, and therefore 6, s |= x = E’. Finally,
similarly, 0, s, h |= E +— Ej, from which we can reach our goal by the definition of the satisfiability relation.
Lookup-err-val. The Lookup-err-val rule is

LOOKUP-ERR-VAL
Eerr 2 [“ExprEval”, str(E)]

Tr(x=E % E/éVa[) x:= [E] (err: Qerr)

where Qerr =x=E' % E % Val % err = Ep. To prove OX-soundness, the hypothese are:

(H1) E (y.1)

(H2) 0,s,hEx=FE *E¢Val

(H3) (s;hWhg),x:=[E] Jyo: (s',h")

It then suffices to show that 6,s”,h”’ |= x = E/ % E ¢ Val x err = E¢y. Given (Hz2) and the definition satisfiability
relation, it follows that [E] ; ¢ Val, and therefore [E]s , = 4. From this we can infer that the only rule from
the big-step operational semantics that can apply is:

[[E]]s = é
Verr = [“ExprEval”, str(E)]

(s,h),x = [E] Uy err: (serr, h)

From this, we can infer that h’” = h and s’ = s[err > v¢]. From (H2) and the definition of the satisfiability
relation, it then follows that 0,s’, i’ |= Qe as required.
For UX-soundness, our hypotheses are:

H1) F (,T)
(H2) 0,5",h" E Qerr
(H3) hy § 1/

Exact Separation Logic 41

It then suffices to show that for some s, h:
O,s,hEx=FE % E;éVaI A (s,hwhf),C Uyo: (s, W &th)))

Letting s = s” \ {err} and h = I/, from (H2) and the definition of the satisfiability relation, it follows that
0,s,hEx=E xE yf Val and by applying the same big-step semantics rule as in the OX case, we derive the
second starjunct of our goal as required.

Lookup-err-use-after-free. The Lookup-err-use-after-free rule is

LOOKUP-ERR-USE-AFTER-FREE
Eerr = [“UseAfterFree”, str(E), E]

Tk (x=E *E 2)x:=[E] (err: Qenr)

where Qerr = x = E/ % E > @ x err = Egpy. To prove OX-soundness, the hypothese are:
(H1) E (1.1)
H2) 0,s,hEx=F xE— @
(H3) (s;hwhg),x:=[E] Jyo: (s",h")
It then suffices to show that 6,s",h”" | x = E/ x E +— @ % err = E¢. Given (H2), we can infer that
h([E]s,n) = @. From this we can infer that the only rule from the big-step operational semantics that can
apply is:
[E]s=n h(n)=2
verr = [“UseAfterFree”, str(E), n]
(s,h),x == [E] Uy err: (serr, h)
From this, we can infer that A"/ = h and s’ = s[err > v¢p,|. From (H2) and the definition of the satisfiability
relation, it then follows that 6,s’, " |= Qe as required. For UX-soundness, our hypotheses are:

(H1) E (r.D)
(H2) 0,5",h" E Qerr
(H3) hf i h

It then suffices to show that for some s, h:

0.5 hEx=E xE @ A (5hWhp),Clyo: (s, Why)))

Letting s = s’ \ {err} and h = I/, from (H2) and the definition of the satisfiability relation, it follows that
0,s,h Ex = E' x E — @ and by applying the same big-step semantics rule as in the OX case, we derive the
second conjunct of our goal as required.

New. The New rule is
NEW
x¢pv(E') 6= [E'/x]
T+ (x=E xE€eN)x:=new(E) (ok : E' € Val x ® g<;<gg((x+1i) - null))

For the OX-soundness, our hypotheses are

HD) E (D)

(H2) x ¢ pv(E’)

(H3) T+ (x = E' % E€N) x:=new(E) (ok : E € Val * & g<;<g[e/x] ((x +1i) = null))
(H4) 0,s,hEx=E xE€N

(H5) (s;hWhg),x:=new(E) [y o0: (s',h")

(H5) implies:

(H6) o # miss

(H7) [[E]]s =n

(H8) Vie {0,..,n—1}.n" +i ¢ dom(h W hy)

(H9) s" =s[x — n’]

(H10) 1"’ = (hWhp)[n’ = null]... [n" +n -1+ null]

42 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

Defining (H11) b’ = h[n" + null]...[n" + n -1 + null] yields with (H10) that (H12) h”" = h" & hy.
(H2), (H4) and (H9) implies (H13) 0,s” £ E’ € Val x x = n’ and (H11) then implies 0,s’,h’ £ E’ € Val %
® o<i<k[F/x] (x +1) = null, which is the desired result.

For the UX direction, the hypotheses are
H1) E (.
(H2) x ¢ pv(E')
(H3) T+ (x = E' x E€N) x:=new(E) (ok : E € Val * @ g<;<g[/x] ((x +1) = null))
(H4) 0,5',h" |F E' € Val x ® g<jcp[p /x] ((x +1) = null)
(H5) W' § hf
(H4) implies that (H5) x € dom(s”) and we define
(H6) n’ =5"(x)
(H7) n = [E[E'/x]]o,s
(H8) h = H|g, where d = dom(W)\{s(x),...,s(x+n)}
(H9) s =s"[x — o] wherev = [E'] ¢
(H5) and (H8) impliy that (H10) n’ +i ¢ dom(h ¥ hf)Vi € {0,...,n — 1} and (H11) B’ W hy = (hW hy)[n'
null]...[n +n—1+ null] and (H9)implies (H12) s’ = s[x — n’]. (H2), (H7) and (H9) imply (H13) [E]g s = n.
(H10),(H11),(H12) and (H13)imply

(s, hWhp),x:=new(E) Jy o: (s, h")

(H2) and (H9) imply [E]s = v, which with (H7) and (H13) implies 0,s E x=E’ x E€ N.
(H9), (H10), (H11) and (H13) imply the desired result.

Free. The free rule is

FREE
I'+ (E— E’) free(E) (ok : E' € Val x E — ©)
For OX-Soundness, the hypotheses are
HD) E (1)
(H2) T+ (E+ E’) free(E) (ok : E € Val x E — @)
(H3) 6,s,h FE— E’
(H4) (s,h W hy), free(E) Uy (s’ h"")
(H4) implies
(H5) [[E]]s =n
(H6) (hWhys)(n) € Val
H7) s=5s
(H8) 1 = (h hp)[n > 2]
(H4) and (H5) impliy that n € dom(h), which with (H8) implies that h” = h[n — @] W hy. (H3) and
(H7) imply 6,5 | E’ € Val. (H5) and (H7) imply [E]s = n and defining ’ = h[n — @], we obtain
0,s’,h’ = E’ € Val x E > @, which is the desired result.
For the UX direction, our hypotheses are
H1) E (. D)
(H2) T+ (E > E') free(E) (ok : E/ € Val % E - @)
(H3) 0,s',h' EE' eValxE— @
(H4) W' 4 hf
Defining s = s’, (H3) yields that n = [E]gy = [E]gs for some n € N. Defining h = h’'[n — o] for
v =[E']gs = [E']g,s, we obtain " = h[n + @] and therefore i’ & hy = (h W hy)[n > @]. The operational
semantics of free then yields
(s;hwhy), free(E) Uy (s",h" Why)

and also obtain 6, s, h | E — E’, which is the desired result.

Exact Separation Logic 43

D BASICS OF SCOTT INDUCTION

The second soundness statement that needs to be proven for ESL is that well-formed environments are valid.
This requires reasoning about the use of function specifications in the context of the environment extension
rule.

In particular, the use of specifications of non-recursive functions is trivially sound. For recursive functions
that always terminate, soundness can be proven by transfinite induction, while establishing a measure on the
function pre-conditions and allowing recursive use of specifications only if they have a strictly lower measure.
Without this requirement, we could prove an unsound specification (emp) f() (ok : ret = 42) for the function
fO{x := f(); return x}, which does not hold since f never terminates and the (satisfiable) post-condition
ret = 42 implies the existence of at least one terminating execution. This soundness issue does not arise in
over-approximating logics, since, due to the meaning of triples, a satisfiable post-condition does not imply the
existence of terminating traces. In these logics, it is always sound to apply a specification to prove itself.

However, for recursive functions with non-terminating branches due to infinite recursion, we also have
to be able to allow recursive use of specifications whose measure does not decrease, and the tool to handle
such use is a form of fixpoint induction called Scott induction [45], which would normally be the tool for also
proving soundness of well-formed environments in over-approximating logics. However, we were not able to
find a corresponding soundness proof in the literature.

In the following, we give the relevant Scott-induction-related definitions (from [45]), together with an
instantiation that will be applied to prove soundness of well-formed environments in Appendix E.

Definition D.1 (Domain). A partially ordered set (D, C) is a domain, iff

(D1) 3L € D.Vd € D. 1 C d (least element)

(D2) Y(dn)nen € D. (Vi e N.d; Cdiy1) = | dn € D (chain-closedness)
neN

where U endy denotes the least upper bound or the supremum of the set {d,, | n € N} with respect to C.

Definition D.2 (Admissible Subset). Given a domain (D, C) with least element L, a subset s C D is called
admissible, iff
(S1) L € s (least element)
(S2) V(sp)nen Cs. (Vi e N.s; Csiv1) = | sp € s (chain-closedness)

neN

Definition D.3 (Continuity on Domains). Assuming two domains (D, Ep) and (E,Cg), a functiong: D — E
is continuous, iff
(C1) Vd,d’ € D.dCp d’ = g(d) Cg g(d’) (monotonicity)
(C2) Y(dn)nen. (Vie N.d; Ediy1) = | g(dn) = g(|l,,en dn) (supremum-preservation)

neN

THEOREM D.4 (LEAST FIXPOINT). Given a domain D and a continuous function g : D — D, the least fixpoint
of g, denoted by Ifp(g), has the identity
fpg) = | | g"(0),
neN
where L denotes the least element of D and g" denotes the n-times application of g.

THEOREM D.5 (ScoTT INDUCTION PRINCIPLE). Given a domain D, an admissible subsets C D, and a continuous
function g : D — D, it holds that

g(s) Ss = Ifp(g) €

Before presenting the instantiation of the Scott induction, we require a pseudo-command scope which
models the function call, and pseudo-commands for non-deterministic choice.

Definition D.6 (The scope pseudo-command). We define a pseudo-command which closely models the
behaviour of a function call:
SCOpe((i, E): C’ (Y’ E,))

whose arguments are

44 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

e a pair (X, I_-f) consisting of a list of distinct program variables and a list of expressions, such that both
are of the same length,

e a command C which is to be executed within the "scope",

e atuple (y, E’) of a program variable and an expression,

and whose semantics (eliding expression-evaluation fault cases) is given by

[Els=3 pv(C)\ {5} = (2}
sp=0[x = 3][Z = null] (sp,h),C Uy (sq. h') [[E’]]sq =0

(s.h), scope((%.E), C, (v.E") Uy (sly = 0’1 1)
[Els =3 pv(O\ {5} = {@)

sp=0[X > 3][Z > null] (sp,h),C Uy err: (sq,h') [err]s, = verr
(s, h), scope((XE), C, (y,E")) Uy err : (s[err — verr], 1)

Definition D.7 (Non-Deterministic Choice (pseudo-commands)). We furthermore add pseudo-commands that
arbitrarily pick a command form a given set and executes it:

0,C1lyo0:0'Va,Cllyo:0’ ImeN.o,Cplyo:o
0,CiUC lyo:o o, J(CnlneN) yo:d

We will now give some general definitions and lemmas, which will later on be instantiated to prove the
soundness of the environment extension via Theorem D.5.

Definition D.8 (Greatest-Fixpoint Closure of Cmd). We define the greatest-fixpoint closure of the set of
commands and pseudo-commands, Cmd U {scope, L, | |}, as the closure of that set under infinite applications
of the command constructors, and denote that closure by C.

Definition D.9 (Behavioural Equivalence on C). Given an arbitrary function implementation context y, we
define the equivalence relation =~y on C as

C1 =y G = {(o, o’) € State? | Jo. 0,Cy Uyo: d}Y={(o,0) € State? | Jo. 0,Cs Uyo: o'}
where C1, C; € C, effectively meaning that ~, relates commands that exhibit the same set of behaviours. We

denote the resulting quotient space as C, and the corresponding equivalence class of a command C by [C].
This relation yields a partial order, denoted by C), and defined as:

CiEy G &= {(o0,0)) € State? | Jo. 0,4 Uyo:0"} c{(o,0") € State? | Jo. 0, Cy Uyo:0"}

Furthermore, we define the join operator on commands in Cy, Uy, as the non-deterministic choice, lift it to
quotient space, overloading notation:

[Ci]U[C] = [C1uC]
and generalise it to countably infinitely many commands/equivalence classes in the standard way.

The relation ~} is an equivalence relation as it inherits reflexivity, symmetry and transitivity from the
equality relation on sets, and Cy is a partial order on Cy as it inherits transitivity and reflexivity from set
inclusion, while =, ensures anti-symmetry.

Furthermore, note that, by design of the language, we do not have to bring the outcome o into the equivalence
relation, as faulting states can be distinguished from successful ones by having the dedicated program variable
err in the store, and language errors can be distinguished from the missing resource errors by the value that
err holds.

LeEmMMA D.10 (DoMAIN PROPERTY). For any function implementation contexty, (Cy,Cy) is a domain.

PRrOOF. Since we have already argued the partial order property, there are only remaining two properties
to show:

Chain-Closedness. For any chain ([Cy])nen S Cy, its supremum is defined as [LI(Cy|nen)]. Per definition
of C we have U(Cp|nen) € C which implies [U(Crlpen)] € Cy.

Exact Separation Logic 45

Least Element. The least element of Cy, denoted by Ly, is the equivalence class of commands which,
given the function implementation context y, do not terminate on any state. One such representative is the
command C = while (true) skip. Since {(c,¢’) € State? | o,while (true) skip Uy ¢’} = 0, we trivially
obtain L, Cy [C], for all [C] € C,. O

LeEmmA D.11 (ScoPE AND FuncTION CALL EQUIVALENCE). Given a function implementation context y and a
function f such that y(f) = (%, Cy, E'), it holds that

scope((% E), Cr, (v.E') =y y:= f(E)

Proor. We show in detail the case of successful execution; the faulting cases are analogous. Let y(f) =
(X, Cr,E’) and (s, h), (s, h’) € State, such that

(s, h), scope((%.E), Cr, (v.E) Uy (s".1).
The operational semantics of scope implies:
o s’ =s[y -]
o [E]s=3
° [[E,ﬂsq -
o sp =0[x = 7][Z = null]
® (sp, 1), Cr Uy (sq.h')
Due to the assumption y(f) = (x,C 'f E’), we fulfil all conditions in the antecedent of the operational
semantics of the function call, and therefore obtain (s, h),y = f (E) Uy (', 1).
Now, let (s, h), (s’, h’) € State such that (s, h),y := f(E) Uy (s',R’). The operational semantics of the function
call implies:
o s’ =s[y -]
o [E]s=3
° [[E,qu - U,
o sp =0[x = 7][Z = null]
® (sp, 1), Cr Uy (sq.h')
o y(f) = R CpE)
Therefore, we fulfil all conditions in the antecedent of the operational semantics of scope, and therefore
obtain

(s, h), scope((%.E), Cy., (y.E")) Uy (s, 1). O

In the following, let C; denote the implementation of the function f;, and C denote the i-th component of a
vector C.

Definition D.12 (Function Call Substitution). Given a command C € Cmd, a vector of n commands C =
(CL,...,C") € C", a vector of n functions F = (fi,..., fy) and a function implementation context y, such
that F € dom(y), we define a function call substitution C[C,y, F] recursively on the structure of C, with
y(fi) = (Xi, — Ei):

o (if (B) C1else Cy)[C,y, F] :=if (B) {C1[C.y,F]} else {C2[C,y,F]}
e (while (B) O)[C,y,F] :==while (B) {C[C,y,F]}
o (C;C)[Cy, F] = Ci[Cy, F; C2[C,y, F]
= scope((Xi, E), C', (y,E;)) iffi=g
* (y=g®)ICy.Fl= { y =g(E) ’ otﬁerwise,
e C[C,y, F] :=C, for all other C.

LEMMA D.13 (SUBSTITUTION PRESERVES =~)). Given I = {1,..,n}, F = (f1,..., fu), and y such that Vi €
Ly(f;) =(-Ci,-),C=(C1,...,Cp), and i € 1, it holds that

Cj ZY C,’[C,)/, F]

46 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

ProOF. We prove the statement by structural induction on C;. Per definition of function implementation
contexts, C; € Cmd and is therefore finite. The only non-trivial cases are the structural commands and the
function call on f;, as the substitution is the identity otherwise.

If-Else. C; = if (E) Ct else Cr. Let 0,0’ € State such that o, if (E) Ct else C¢ |y o', and let o = (s, h).
Then, the operational semantics implies
([EDs = true A (s,h),Ct Uy o) v ([E]s = false A (s, h),Cr U, o)

IH
(4:>) ([EDs = true A (s,h),Ct[C,y, F] Uy o’) v ([E]s = false A (s,h),C¢[C,y, F] Uy o)

which is equivalent to (s, h), if (E) Ct[C,y, F] else C¢[C,y,F] Uy o’. The faulting case is proven analogously
to the successful case, and the while loop and the sequencing are proven analogously to if-else.

Function Call. We have to show that

(y = fi(E)) =, scope((%i, E), Ci, (y,E))

where y(fi) = (X;, Ci, E;), but this holds directly due to Lemma D.11. m|

Before moving on to the Scott instantiation, we define a notion of (recursion) depth, which keeps track of
the maximum number of nested function calls during the execution of commands.

Definition D.14 (Depth). Given a command C € Cmd, a vector of functions F = (fi, ..., fn) and a derivation
0,C |y 0 : o', we define depthg (o, C |y 0 : ¢’) inductively on the structure of big-step derivations of C as
follows, noting that we extend the notion of a maximal element to the empty set by defining it to be zero:

depthp((s,h),if (E) CrelseCs |y 0:0") =
If-Else. max{depthg((s, h),Ct |y 0:0’) | [E]s = true},
N max{depthp((s,h),Cs |y 0: o’) | [E]s = False}

depthp(o,C1;C2 Yy 0:0") =
max{depthr(c,C; |y &), depthp(5,C2 Jy 0:0”) |
max 0,C1ly aA6,C lyo:a'},
max{depthp(c,C1 Uy 0:6") | 0 =err/miss A o,C1 |y 0: 0"}

Sequence.

depthp((s,h),while (E)C |y 0:0") =
_ o .
While. max{depthr(c,C |, 7), depthpi(a, vyhllg (E)Clyo:0") 1
max [Els = true Ac,C |y 6 AG,while (E)C |y 0: 0"},
max{depthp(o,C Uy 0:0") | 0 = err/miss A [E]s = true Ao,C |}y 0: 0"}

Function Call. depthp((s, h),y = g(E),Uy o:(s,n)) 20, ifVielg#f;

depthg((s,h),y := fi(E), Iy o : (s, 1)) £
max{1 + dethF((sp,h),Ci Uy (sq. 1)) |

0= ok [E]s =7, (sp h),Cf Uy (sqr), [E,-]]sq =0},
max{1+depthp((sp,h),Ci Uy 0: (sq,1")) |

o0 = err/miss, [[E]]S =10, (sp, h), Cr Uyo:(sgh)}
max{1+depthp((sp, h),Ci y 0: (sq. h")) |

0 = err, IIE]]S = Zj, (sp) h)) Cf Uy (sqs h/)’ IIEi]]Sq = é}’

max

where y(f;) = (X;,Ci, E;), and sp and s” are defined as in the operational semantics of the function call.

Remaining Commands. depthp(o,C |, 0:0”) £ 0.

Exact Separation Logic 47

D.1 1-dimensional Scott Instantiation

The env-extend rule allows us to add a set of n functions to a given valid environment. Soundness of this
rule is proven in Appendix E through transfinite induction. In each of the cases (zero, successor ordinal, limit
ordinal), a Scott induction is required. In Appendix D.2, we present and prove the Scott induction required to
show soundness of the env-extend rule. Here, we present the Scott induction as required for the case where
only one function is added to a given environment at a time.

The general proof, as presented in Appendix D.2 evolves naturally from and relies heavily on this simpler
case, while introducing heavier notation. To minimize clutter in later definitions, we introduce the over-
approximation quadruple {P} C {ok : on} {err : Qerr} and define its notion of validity.

Definition D.15 (OX-Validity). Given an OX-quadruple {P} C {ok : on} {err : Qerr} and a function we
define for an arbitrary implementation context y

y E{P} C{ok : Qui} {err: Qen} &=
V9,s,h,o,s’,h”,hf.9,s,h EP
= (shWhp),Clyo: (s h")
= o# missAIhW . h' =h L+th/\9,s’,h’ E Qo
and for an arbitrary specification context T’

I'E {P} C {ok : on} {err : Qerr} =
YwET)=7vE {P} C {Ok : on} {err : Qerr}

In the following, we will also write {P} C {Q} as a shorthand for {P} C {ok : on} {err : Qerr}. Onward,
we assume the following:

(A1) avalid environment, = (y,T);

(A2) afunction f(X){Cy;return E'} that is not in the domain of y;

(A3) an arbitrary element a € O;

(A4) a set of terminating (external) specifications for f, {(P(f)) (Q(f)) | < a};

(A5) a set of non-terminating (external) specifications for f, {(Pw(f)) (False) | f < a};
(A6) an extension of y with f:y" = y[f — (X, Cf, E’)]; and

(A7) an extension of I' with the given specifications of f:

T(a) = TLf = {(P(P)) (Q(P)) | < a} U{((Px(P)) (False) | f < a}]
We next define the function g : C;» — C,, to be used in the upcoming Scott induction, as follows:

def

9([C]) = [h(O)]

where h : C — Cis defined as h(C) := C¢[C,y’, f].

Intuitively, h takes an arbitrary command C from C as an argument and substitutes it for any function call
on f in function body Cy. The function g then lifts this operation to the quotient space C,-. The definitions of
h and g trivially yield the following identities for arbitrary C € C and (Cp)pen € C:

(G1) Uy g([Cnl) = [y h(Cn)]

neN neN
(G2) Ly g"(IC]) = [y A"(O)]
neN neN

LemMA D.16. The function g is continuous.
PrRoOF. We begin by proving monotonicity.
Monotonicity. We prove the monotonicity of h. We need to show that for all C1,Cy € C, it holds that
C1 By C2 = Cr[Cry fl Ey CrlCay', f]
Let 0,0 € State such that 0,C¢[C1, 7", f] I} 0 : 0’. We need to show that
0,CrlCa, Y. f1ly 0:0

48 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

and we do so by structural induction on Cy. The only non-trivial cases are the compound commands and the
function call, as the substitution is the identity for all other cases.

If-Else. Cy = if (E) Ct else Cr. Let (s, h),0” € State such that
(s,h),if (E) Ct[Cry', f] else Ce[Cry', f1 Uy 0: 0’

The operational semantics yields (for an appropriate oep):
([EDs = true A (s,h),Ct[C1, ¥, fl Uy 0:0’) v
([EDs = false A (s,h),Ce[Cry, f1 Uy 0: 0”) Vv
(IIE]]S =4 A0 = O'err)
(IH)
= ([E]s = true A (s,h),C¢[Ca, v, fl1 Uy 0:0") v
([E]s = false A (s, h),Cs[Ca,y/, f] Uyo:) v
([[E]]S =4 A0 = Uerr)
which implies the desired
(s,h), if (E) Ct[Cay’, f] else Ce[Coy', f] Uy 02 0
The while loop and the sequencing cases are proven analogously.
Function Call. Cy =y := f (E) Using Lemma D.11 and considering the successful case only as the faulting
cases are proven analogously, let o, 0’ € State such that
o, scope((xE), C1, (v, EN) Uy o
Letting o = (s, h) and ¢’ = (s’, #’), the operational semantics for scope then implies
s =sly > o' A[E]s =5 A [E']s, = 0" Apv(O) \ {K} =
_ 2 2112 /
- Asp=0[x— 7] [z_'—> null] A (sp, h),C1 Uy (sq. h")
" ¥ =sly > o TA [l =8 A[Es, =0 Apv(O)\ (X} =
A sp =0[Xx = T][Z = null] A (sp, h),C2 Uy (sq, 1)
which implies the desired
o, scope((x,E), Ca, (y,E")) U, o
The monotonicity of g follows straightforwardly from the monotonicity of h.

Supremum-Preservation. Assume a chain (Cp)pen in C. First, we show that | | h(Cp) 5y h(LI Cn):
neN neN

o, |_| h(Cn) Uy 0: 0’

EImENO'h(Cm)Uy/o o’
Im eN.o,Cr[Crm, v, fl Uy 0: 0
0.yl L Cu f1 Uy 020’

O'h(|_|C,1)Uy/o o’

Next, we show that h(|| Cn) 5y | h(Cpn). Let o, h(L] Cu) Uy o, ie o.Crl U CnY' . f1 Uy o'
neN neN neN N

LI A

€
Then, since Cf € Cmd, it is a finite command and hence has a finite number ¢ of functic?n calls on f. At each
function call substitution site, the execution will execute some command C,,. Assume ki, ..., k; € N such that
at the i-th execution site, the command Cy, is executed, and let k = max (ky, ..., k;). Since (Cp)pen is a chain,
we have that Cy, E,+ Cy for alli € {1,...,¢} and therefore:

o, Cf[Ck, }’/,f] 'U')// 0-/
= o U ClCnt flly o
neN

= o U hCn)lyo:0o
neN

The supremum preservation of g follows trivially from the supremum preservation of h.]

Exact Separation Logic 49

Next, we introduce the admissible set we will use in this instantiation of the Scott induction.

LEMMA D.17 (ADMISSIBLE SUBSET S%). The set S%, defined as
“:={[C] €Cy | 3C € [C].Vt € (T(@))(f).3(P") (@) € Inty s(1).T £ {P'} C{Q'}}

is an admissible subset of (Cy/,C)/).

ProoF. Least Element. We know that 1, = [while (true) skip] and that this commands trivially seman-

tically satisfies any OX-quadruple. Therefore, 1,/ € S%.
Chain-Closure. We need to show that given an arbitrary chain ([C},])pen € S%, it holds that | |([C}] | n €
N) € S*. Onwards, we will use the following notation:

e (P) (Q) = (P) (ok : Qo) (err : Qerr)

L4 (Pn) (Qn) (Pn) (Ok Q)(err Qerr)
The definition of S* yields the existence of a chain (Cp,)pen C C such that for alln € N, it holds that C, € [C},]
and

Vn e N, (P) (Q) € (T(@)(f)-3(Py) (Qu) € Inty r((P) (Q)).T k {Pn} Cn {Qn}
Per definition of Int, we know that P,, = P x Z = null for all n € N. Together with the definition of choice, we
obtain that
' {PxZ=null} U(Cn|n e N) {ok : Vypen QZk} {err: \VVpen Q2 }

It remains to show that (P x Z = null) (\/,,c;y Qn) is an internalisation of (P) (Q). Since (P % Z = null) (Qp)
are internalisations of (P) (Q), we obtain

VneN.(Qpx & 35- QZk[ﬁ/ﬁ] * ret = E,[ﬁ/ﬁ]) A (Qerr & 35- Qgrr[ﬁ/ﬁ])
This implies
on A4 \/neN (3p on[] * ret = E, 5/5])
& 3p. Vnew (Qy[/P] * ret = E'[p/p])
© 35-(\/neNon[/Pl) % ret = E'[p/p
© 35 (Ve Q) [B/B] * ret = E'[p/p

p/p
p/p
]
]
and analogously
Qerr © Vpew (Hﬁ Qb lp/ 5])
< 35 \/nEN (Qerr 1_5 f’])]

A 31_5' (\/nGN Qerr)[/
Therefore, [LI(Cy|n € N)] € S*, which yields LU([Cp]|n € N) € % and finally U([C},]|n € N) € . |

This concludes the set-up for Scott induction, which allows us to prove the inductive step.

LEmMA D.18 (ScotT CONDITION). Under the assumptions (A1)-(A7) and additionally assuming
Vt € ([(@))(f).3t" € Intys p(t).T(a) F Cp : 1’ (1)
and
3t" € Inty ¢((P()) (Q(@))).T(a) + Cp =t/)
it holds that g(S%) C S7.

Proor. Let [C] € S?. Therefore, there exists a C’ € [C] such that for all t € (T'(a))(f) exists a (P) (Q) €
Intys p(t) such that (H) T E {P} c’ {Q} This implies that C’ does not call on f, because I' holds no
specifications for f. Hence, Cr[C’,}’, f] does not call on f either. We prove the statement by showing the
more general claim

T(a) - (P)Cr (Q = T E{P}CrC.Y. f1{Q}
for arbitrary precondition P and postcondition Q by induction over the structure of Cy.
Base Commands and Function Calls on g # f. In this case, C¢[C’,y", f] = Cf and Cy does not call on f.
Therefore, the proof tree of I'(a) + (P) Cr (Q) uses no specifications on f, which implies that T + (P) Cr (Q).
From (A1) [(y,T), we obtain I |= (P) Cr (Q), which implies T | {P} Cr {Q}

50 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

Compound Command Rules: if-then, if-else, sequence. If-then, if-else and sequence are proven directly,
using the IH.

Compound Command Rules: while-iterate. Given the while rule

WHILE-ITERATE
VieN. EP;=E€B P = False
V¥ie N. T+ (P; AE) C (ok: Pit1) (err: Q;)
m £ min({i € NW {co} | E P; = =E})

T+ (Po) while (E) C (ok : Prm) (err : 3n < m.Qp)

we assume
(W1) 0,s,h E Py
(W2) (s,h W hy),while (E) C[C",y", f] Uy (s, h")
(W3) VieN. P =>E€B
(W4) P = False
(W5) Vie N. T'(a) + (Pi A E) C (Ok : Pi+1) (err : Q,)
(W6) m = min({i e NW {0} | E P; = —E})
Noting that (while (E) C)[C’,y’, f] = while (E) C[C’,y’, f], (W2) implies that
(W7) ([[E]]s,htdhf =false A (s,hWhy) = (s, 1))
v ([[Eﬂs,hwhf =true A (s hWhy),CIC" Y, f] }yy 6 A G,while (E) C[C",y', f] Uy (s",h""))

and (W5) and the inductive hypothesis imply
(W8) VieN.T | {PinE}C[C,Y, f] {ok : Pir1} {err: Qi}

We know that m # oo, as otherwise the loop would be non-terminating, contradicting (W2). If m = 0, then
[E]gs = false, and (W7) trivially yields the desired result.
Otherwise, we have that m > 0. Then, (W8) yields
= {Pi_l A E} cic,y', f1 {ok : Pi} {err : Qi_l}
forall 0 < i < mand (W6) yields T | {Pp,} while (E) C[C",y’, f] {Pm}. From here, applying the operational

semantics of while m times, similarly to the proof in RHL [13], we obtain the desired

T | {Po} while (E) C[C',y’, f] {ok : P} {err : 3n < m.Qn}

Structural rules. All four structural rules (equiv, exists, frame, and disj) are proven trivially, using the
inductive hypothesis. We give the proof for the equivalence rule:

EQUIV
CPe P T(@r (P) ¢y (ok:) (s Qln) F Ol @ Ok Qlyr & Qo
I'(a) + (P) Cf (Ok : on) (err : Qerr)

where the IH gives us T |= {P'} CrlCy'. f] {ok : Q" } {err : Ql,,}. from which the desired claim is obtained
trivially.

Function call on f. (y := f(E))[C".y’. f] = scope((%. E), C’, (y.E’)), where y’(f) = (% Cy., E'). Therefore,
we need to show that

I E {P} scope((% E), C', (v.E") {Q}

The assumption I'(a) + (P) y := f(l_-f) (Q) implies via the fcall rule that P = (y = Ey % E=Xx P*), where
P* is the program-variable-free part either the pre-condition Pw of the non-terminating or the pre-condition P
of the (partially) terminating specification, and that (x = X x P*) (Q) € (T'())(f). We assume the following:
(FO) an arbitrary y such that = (y,T(a))

(F1) 0,5,h Fy=Ey xE=%* P*
(F2) arbitrary hy and h” such that (s,h & hy), scope((X, E) C, (v.E) Uyo: (s n")

Exact Separation Logic 51

We need to show that

(o # miss) A (FW. B =h' v he A ((0=0k A0, s b E Q) V(o=err AO,s' B E Qerr)))
Defining
(F3) := [E],

(F4) 7= pv(C)\{x}.
(F5) sp == 0[X — 7][Z — null],

the operational semantics of scope and (F2) imply
(F6) (sp.hWhy),C" Iy o: (sqh”)
(F7a) 0 = ok = (5’ = sly = [E'],]
(F7b) o =err = (s’ = s[err — [[errﬂsq])

The definition of S* implies existence of a (P”) (ok : Q;k)(err 0 Qur) € Inty p((P*)(Q)) such that
(H8a)T | {P’} ¢’ {Q’}. (A1) and (F0) imply = (7, T), which yields with (H8a) that (H8b) y = {P'} ¢’ {Q"}

Per definition of the internalisation, we know that P’ = X = X * P* x Z = null, which implies with (F3)-(F5)
that (H9) 6, sp, h |£ P’. Then, (F6), (F8b) and (F9) imply

(H10) (0 # miss) A (31 .h" =K Whp A ((0 =0k Ab,sq. i E QL) V (0=err Ab,sq. B E Qpp)))
This yields 0,s",h" £ Qo as Q/, and Qy,, are internalisations of Q. and Qe respectively, which in turn
implies the desired result, i.e.
I {P} scope(((%E)), C', (v.E)) {@}

This concludes the proof of the general statement. Instantiating it with the existentially quantified ¢’ from

(1) and (2) then yields the desired result
[C] € §* = [h(O)] € ¥
i.e., the Scott condition g(S%) C S¢.
o

Finally, we need to show that the function body Cy of f is indeed equivalent to the least fixpoint of g,
denoted by Ifp(g).

LemMA D.19 (ScoTT’s LAST STEP). The function body Cy is in the least fixpoint of g, Le.
Cr € lfp(9)

Again, we prove a slightly different statement first, and then apply it to prove the lemma. Onward, we
write 1+ to denote the least element of C,+ (and also of $%). Onwards, we will use wts as a shorthand for the
command while (true) skip. Keep in mind that L, = [wts].

LeEMMA D.20. Foralln € N, it holds that
Vo,o’" € State. 9,Cy |y o’ A depthp(0,C |y 0') <n & o, ™1 (wts) Uy o
where do not explicitly include the outcome statement o to avoid clutter.
Proor. By induction on n.
Base Case: n = 0.

"="Let 0,Cr Jy 0’ A depthp(o,Cr s 0”) = 0. Since Cy € Cmd, it cannot include the scope command.
Since the depth is zero, the execution path does not reach a function call on f. Hence, this call may be replaced
by any other command, including wts, i.e.

o, cf [Wtsz Y/’f] 'U'Y’ OJ
& o,h(wts) Uy o’

"&": Assuming o, h(wts) Uy’ o’, we obtain o, C ' [wts,y’, f] ny o’. Since wts does not terminate on any state,
this implies that the execution does not reach the command wts, that is, it does not reach any function call
site of f and, therefore, we obtain o, C¢ |Jys o’ and depthrp(o,Cr |y 0”) =0.

52 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

Inductive Step. Assume that the equivalence holds for some n € N, and the goal is then to prove that it holds
forn+ 1.

"="Let 0,Cr ly o’ A depthp(o, Cr Uy o’) < n+ 1. If depthg(o, Cr Uy ¢’) < n+ 1, the inductive
hypothesis yields o, h"*! (wts) Uy ¢, Since h™*1(wts) implies that the execution terminates and therefore
does not reach any instance of the command wts, we may substitute wts for any other command, including
h(wts). This yields o, h"*2(wts) |, o’

Finally, let depthr (o, Cr |y 0’) =n+1andlety := f(X) be an arbitrary function call on f reached by the
execution. That means that there exist states o7 and oy, such that the execution of the initial part of C 'f from
o up to that function call yields o1, that o1,y := f(X) |l;/ 02, and that the execution of the remaining part of
Cy on 03 yields o’. By instantiating the operational semantics of the function call with o1 and o2, we obtain
(sp, 1), Cr Uy (sq, "), where, per definition of the depth function, depthr((sp, h),Cr Iy (sq,h")) = n. The
inductive hypothesis then implies (sp, h), K1 (wts) Uy (sq, 1"). Therefore, o, Cf[h”Jr1 (wts),y’,
fid] Uy o’ and since this command does not call on f and given the definition of h, we obtain o, h™2(wts) Uy

o'.

"<": Assume o, K"+ (wts) |, o’: that is, o, Cf[h”+1 (wts),y’, f1 Uy o’. If there are no substitution sites in
Cy, the desired goal is obtained trivially, as the substitution is vacuous and the considered depth is zero by
definition. Otherwise, consider an arbitrary substitution site in Cy reached by the execution starting from o,
and let the state before the substitution site be some o7. By instantiating the operational semantics of scope, we
obtain sp, sq, 1" and o2, such that (sp, h), R (wts) Uy (sg k") and the remaining part of Cf[h"+1 (wts),y’, f1
executed on oy terminates in ¢’. Per the inductive hypothesis, we have that (sp, h),Cf Uy (sq.H") and
depthr((sp,h),Cr Uy (sg h’)) < n. This implies, given the operational semantics of function call and the
definition of depth, that o, Cr Uy (s h") and depthg(o, Cr Uy ¢’) < n+ 1, which concludes the proof. O

With this in place, we can prove Lemma D.19, concluding the overall proof:

ProoFr oF LEMMA D.19. We know that the least fixpoint of g obeys the following identity:

o) = | | 9" (1) =[] | A" (wts)] 3)

neN neN
To prove the statement of the lemma, we will show that

U R (wts) =y Cp
neN

"=": Assume 0,0’ € State such that o, || h"(wts) |,» o’. Therefore, there exists an n € N such that
neN

o, h™(wts) |y ¢’. Since the command wts does not terminate on any state and since hO(wts) = wts, n must
be strictly positive. Lemma D.20 then implies that o,Cr |}, ¢, which concludes the proof.

"&": Assuming o, ¢’ € State such that o, C 'f Uy/ o', we know that C f terminates when executed on o, and
therefore has a finite execution depth: that is, depthg (o, Crly ¢’) = n holds for some n € N. Lemma D.20

then implies o, K1 (wts) Uy ¢’, and therefore o, || h"(wts) |, o".
neN
This yields Cr € Ifp(g). |

Theorem D.5 and Lemmas D.18 and D.19 finally fnimply that [Cf] € S%.

D.2 n-dimensional Scott Instantiation

The instantiation presented so far suffices to prove soundness for recursive functions which potentially
have both terminating and non-terminating specifications. However, we wish to allow clusters of mutually
recursive functions, and hence require a more general instantiation of the Scott induction. In particular, given
an environment (y,I'), we add on a mutually recursive cluster F := (fi, ...,) of n functions.

We assume the following:

(B1) avalid environment, |= (y,T);
(B2) a set of n functions f;(X;){Cj; return E;} withi € [£ {1, ..., n} that is not in the domain of y;

Exact Separation Logic 53

(B3) an arbitrary element « € O;

(B4) a set of terminating (external) specifications for each f;, {(P(8)) (Q'(B)) | f < a};
(B5) a set of non-terminating (external) specifications for each f;, { (P (8)) (False) | f < a};
(B6) an extension of y: y* £ y[f; — (Xi,Ci, Ei)]ier; and

(B7) an extension of T with the given specifications:

I(a) £ T[fi = {(P(B) (Q(P) | B < a} U{((PL(P)) (False) | f < a}lier

Note on Notation. As most elements we will be using in this section are n-tuples of commands, or chains of
such n-tuples, we use the following notation:

o C;: a subscript i denotes that the commands C; is the implementation of the function f;, as recorded in
the associated function implementation context y’,

e C': a superscript i denotes the i-th component of an n-tuple C € C",

e C(i): an index i denotes the i-th element of a chain (monotonically increasing sequence) (C (m))m N

Lemma D.21 (N-DIMENSIONAL DOMAIN). Given the domain (Cy+, Cy), we lift the equivalence relation, partial
order, and the join operator of Cy to elements ofC)’}, as follows:
Cx2pC & Viel.Cl~y C!
CLnC &= VielC Ly
1 A1
cluy €
cu,C:= :
ctuy C*
The proof that these satisfy the appropriate properties is trivial with the least element nle being the
equivalence class of the n-tuple which holds while (true) skip in every component.
LEmMMA D.22 (N-DIMENSIONAL CONTINUOUs G). The function G : (C)’f, — C)’f,, defined as
G([C]) = [H(O)]
where
h1(C)
H(C) = :
hn(C)
and
h,’ :C"— C, hi(C) = Ci [C,)/I,F],

is continuous.

PRrRoOF. Again, what needs to be proven is monotonicity and supremum-preservation.

Monotonicity. Analogously to the one-dimensional case, it is proven that A; is monotonic for all i € I. This
implies that H and, therefore, G is monotonic as well.

Supremum-Preservation. Given a chain (C(m)) we need to prove:

meN>
| | atecemn =a(| |1cmm)
meN meN

Due to the definition of G, we obtain for the left-hand side
| | ateamn = 1] | HCc@m))
meN meN

and for the right-hand side
G(| | tetm) = ta(| | cm

meN meN

54 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner
It therefore suffices to show the equivalence of | | H(C(m)) and H(|| C(m)),ie.forallieI:
meN meN

|| cilcmy.y’ . Fl =y cilucm)m e),y F]

meN

This is proven analogously to the continuity in lemma D.16. o
Lemma D.23 (ApMISSIBLE SET). Defining ST analogous to lemma D.17 as
§%:={[C] €Cy | 3C € [C].Vt € (T())(f).3(P) (Q) € Int, £ (1).T = {P} C {@}}
then the set S%, defined as
S% = 1—1 SY

i€l
is an admissible subset of(C)’j,, Cn).

Proor. Least Element. The one-dimensional least element Ly, which is equivalent to the command
while (true) skip, trivially semantically satisfies any over-approximating quadruple. We therefore have
1, € 8%

Chain-Closure. Assume a chain ([C] (m))meN C S%. Then, ([C_'i] (m))mEN is a chain in S for all i € I. Since
S is chain-closed (Lemma D.17), we have |_|(([(:‘i] (m))meN|m € N) € S7. The desired result is then obtained
by applying the definition of | |. O
LEMMA D.24 (N-ScoTT CONDITION). Under the assumption that for alli € I:
vt € ([(@))(fi).3t" € Inty £ (1).T(a) F Ci : 1
and
3t € Inty 1 (P'(a) (Q(@))).T(@) F Ci: '
it holds that
G(S8*) c 8%
ProoF. Assume [C] € 8¢, ie. [CI] € S¥, then for all i € I there exists a Ct € [C] such that
vt € (T(@))(f)-3(P) (Q) € Int, £,(1).T [{P} C' {Q}
We aim to show [H(C)] € 8%, ie.foralli eI
[hi(O)] € S
where C := (C L C™). What we prove is the general claim
T(a) F (P) G (Q = T E{P} Gi[Cy . F] {@}

which is shown by induction over the structure of C; analogously to the proof of Lemma D.18. Then, instantia-
tion with the existentially quantified ¢’ yields the desired result.]

LeEmMMA D.25 (AUXILIARY LEMMA). Forallm € N, i € I and 0, ¢’ € State it holds that
depthp(0,Ci Iy 0') <mA0,Ci ly o' & o, CG[H™(C),y,Flly o
This lemma is proven analogously to lemma D.20. We now proceed to the last step of the proof:
LEMMA D.26 (N-DIMENSIONAL LAST STEP). It holds that
C1

€ Ifp(G)
Cn

Exact Separation Logic 55

Proor. Given the known identities about least fixpoints and the definitions of G and H, we obtain:

p(G) = | | 6™(Lw) = || IH™wts™)] = [| | H™(wts™)],
meN meN meN
where wts” denotes the n-tuple whose every component is while (true) skip. For this proof, given a vector
0, we write (0); to denote its i-th component. Assume i € I and 0,0’ € State such that 0,C; |, ¢’. This
implies that the execution terminates and therefore there exists m > 0 such that depthp(c,C; |, o) < m.
Lemma D.25 then yields
o, Ci[H™ 1 (wts™)] Uy o’

= o, (H™(wts")); Uy o
= o L (H™(wts"))i Iy o
meN
= o (LU H™(wts")); Iy o’
meN
which concludes the proof. O

Theorem D.5 and Lemmas D.24 and D.26 then imply for all i € I that [C;] € S7.

56 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

E SOUNDNESS: ENVIRONMENT FORMATION

To prove Theorem 4.13, we first prove the following, slightly weaker, lemma:

LemMma E.1. Assume an environment (y,T), a finite set of indices I = {1,..,n} and let y/ = y[fi —
(%3, Ci, Ej)|i € I], with f; ¢ dom(y) for alli € 1. Then, for any ordinal a, defining
T(@) =T[fi = {(P'(§) (Qi() | f < a} U{(PL(B))(False) | f < a} | i €],

and assuming that A A

VieLa.3t" € Inty r((P'(2) (Q'(2))).T(a) FCi : 4)
and)

VieLa.3t" € Inty ((Py(a)) (False)).T(a) + C; : t/ (5)
it holds that

E.T) = (Va. E (/.T(a).

Proor. By transfinite induction on the ordinal «, reasoning about the zero, successor and limit-ordinal
cases.
Zero case. When a = 0, by definition we have I'(0) = T[f; — {(PL,)(False)}|i € I]. Let f € dom(y’): then, if
f # fi,Vi € Iand for any t € (I'(0))(f), it holds that ¢t € I'(f) and from [(y,T') we obtain the existence of a
t' € Inty ¢(t) such that E C: ¢

Otherwise, f = f; for some i € I, in which case (I'(0))(f) is a singleton set only holding the specification
t = (PL,(0)) (False). We instantiate the n-dimensional Scott induction of
stoD.2 with @ = 0, which yields

Viel.[Ci] €S}
that is, there exists a C € [C;] such that
T |= (PL(0)) C (False)

The assumption |= (y,T) implies y | (PL,(0)) C (False). Therefore, C only calls on functions from dom(y),
allowing us to arbitrarily extend the domain of y, yielding y’ |= (P%,(0)) C (False), that is:
V9,s,h,hf,o,s’,h". 0,s,h = PL(0) *7Z=null =
(s hWhe),Cly o: (s h") =
o# missA (3N . K" =h Whe AO,s', b’ = False)
As C and C; are behaviourally equivalent, we trivially obtain the same statement for C;, i.e.
v E (PL(0)) G (False)
which concludes this case of the proof.
Successor case. In the successor case, we assume the inductive hypothesis (IH) = (y’,T(a)) for an arbitrary
ordinal ¢, and we need to prove that |= (y/,T(« + 1)). By definition, (H1) dom(I'(«)) = dom(I'(« + 1)) and
(H2) (T(a))(f) € (T(ax+1))(f) holds for all f. Now, let f be in dom(T' (a + 1)). From the definition, we obtain
that
T, for f # fi,Viel
(T(a+1)(f) = T (@) (i) U{(P (@) (@ ()}, for f = fi, for somei €]
U {(PL (a+1)) (False)}
We prove the various cases separately. First, if f # f; Vi € I, then the inductive hypothesis |= (y’,I'(«)) implies
that
Vf € dom (T(a)),t € (T(@)(f). f){C;returnE} €y’ = 3t" € Inty ¢(t).y EC: 1’
Since in this case (['(a + 1)) (f) =T(f) = (F(a))(f) and y(f) = y’(f) since the domains of y and I' coincide,
we immediately obtain the desired
vt € (T(a+1)(f).3t" € Inty p(t).y EC: 1.

Next, let f = f; for some i € I and let t € (I'(a))(f;). Then, the inductive hypothesis (y/,T'(«))
immediately implies the existence of a t’ € Int,s ¢(¢) such thaty’ F C; : ¢’

Exact Separation Logic 57

Next, let t = (P! (a)) (Q(a)). From (4), we know that there exists a t’ € Inty 4 (t) such thaty’ + C; : ¢/,
From there, given Theorem 4.12 and the inductive hypothesis |= (Y, T(a)), we obtain that Y ECi:t.

Finally, let t = (P, (+ 1)) (False). Per definition, we have Int)s £ (t) = {(P&(a +1) * Z =null) (False)},
where 7 = pv(C;)\{X;}. We instantiate the n-dimensional Scott induction from Appendix D.2 with « + 1 and
obtain

[Ci] € si*
Analogously to the argumentation in the zero case, we obtain the desired
Y E (PL(a+1)) C; (False)

concluding the successor case.

Limit Ordinal Case. Given an arbitrary limit ordinal a, we assume the inductive hypothesis (IH) VA < a. |=
(y’,T(A)), and our goal is to prove that |= (y/,T(a)).

Let f be an arbitrary element from dom(T'(@)). First, if f # f;, Vi € I, then we have (I'(«))(f) = T'(f) and
Y’ (f) = y(f). The reasoning for this case is the same as for the first part of the successor case. Otherwise, we
have that f = f; for some i € I. For this case, we first prove that the following two sets are equal:

A={(P'(B)) (Q(P) | p < a}U{(PL(P)) (False) | f < a} and
B=(U (T(B)(fi)) U{(P&(a)) (False)}.

p<a
For the left-to-right inclusion, let t € A.

Case 1. t = (P{(1)) (Q*(1)) for some A < a. As « is a limit ordinal, there exists another ordinal § such that
A < f < a. By construction it holds that ¢ € (I'(f))(f;) and hence ¢ € B.

Case 2.t = (PL, (X)) (False) for some A < a. Per construction, we have t € (I'(A))(f;) and therefore t € B.
Case3.t = (PL (a)) (False). Trivially, we have t € B.

For the right-to-left inclusion, let ¢ € B.

Case 1.t € (I'(1))(f;) for some A < a. Then, per construction, t € A.

Case 2.t = (PL (a))(False). Again, per construction, t € A.

This yields the equality of A and B, which gives us that
T())(fi) = (U (T(B))(fi)) U { (P& (a)) (False)}.
p<a
Now, let t € (I'(@))(f;), and consider the following two cases:
Case 1. t € (T'(1))(f;i) for some A < a. The inductive hypothesis implies = (y’,T (1)) and therefore that
Y/ ECi:t’' for somet’ € Int)r £ (1).

Case 2. t = (P, (a))(False). This is proven by instantiating the n-dimensional Scott induction from Appendix
D.2 with @, which analogously to the zero case, yields y’ |= (P ()) C; (False), which conludes the proof. o

Before the final soundness proof, we require one further lemma:

LemMA E.2 (EXISTENTIALISATION). Let = (y,T), y(f) = (X, Cr, E'), and let X = {(P(x)) (ok : Qoi(x))(err :
Qerr(x)) | x € O}. Then, if X € T(f), it holds that |= (y,T), where

L= T[fe T
U{(3x.P(x) * x € O) (ok : Ix. Qor(x) * x € O)(err : x. Qerr(x) *x x € O)} \ X]

Proor. We need to prove that
3t € Inty, p((3x. P(x) * x € O) (ok : Fx. Qo (x) * x € O)(err : Ix. Qerr(x) x x € 0)).y ECp 1 t
Over-approximation. Per construction, we know that the pre-condition of any internalisation of (Jx. P(x) %

x€0) (ok : Tx.Qur(x) * x€O)(err : Ix. Qerr(x) * x€0) equals (Ix.P(x) * x€O) * Z = null,

58 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

where Z = pv(C)\pv(3x. P(x) * x € O), which is equivalent to Jx. P(x) x x € O * Z = null. We assume
0,s,h,s’, b, hy, 0 such that
(01) 0,s,h E3x.P(x) * x€ O xZ=null
(02) (s,hWhy),Crllyo:(s"h")
and aim to show:
ot missANIW. B =hw he A 0,s,h E Oc
where Q¢ is an internal postcondition of (Ix. P(x) * x € O) (ok : Ix. Qo (x) * x € O)(err : Ax. Qerr(x) *
x€0).
e (O1) implies that Jo € 0. 0[x — v],s,h |E P(x) x Z=null.
e The assumptions of the lemma then imply that (03) 0 # missA3h’. k" = K" Whe AO[x — 0], 0" E Q;
for some Q] that is an internal post-condition of (P(x)) (ok : Q. (x))(err : Qerr(x)), where x € O, ie.
we have either

(O4a) (0= 0k) A (Qui(x) & 3p.Q/,[B/p] * ret = E'[B/p])
(O4b) (0=err) A (Qerr(x) & 3p.0/[B/B])

where, without loss of generality, we may assume that x ¢ p.

e (0O3) implies that 6,s",h" | 3x. Q) x x € O.

e To conclude the OX direction of the proof, we show that 3x. Q/, x x € O is an internal post-condition
of (Ix. P(x) x x € O) (ok : Ax. Qur(x) * x € O)(err : Ix. Qerr(x) * x € O) which is implied by (O4a)
in case of successful, and by (O4b) in case of erroneous termination:

3x. Qok(x) * x €0 & 3x.3p. Q! [p/p] * ret = E'[p/p] xx€ O
© 3p.3x. Q) [p/P] * x € O % ret = E'[p/p]
© 3p. (3x. Q) [p/B] * x € O) % ret = E'[p/p])
© 3p. (3x.Q), * x € O)[p/p] * ret = E'[p/p]

3x. Qerr(x) * x € O < Fx. 35' Q,err[ﬁ/a] *xx€0
& 3p.3x. QL [p/pl xx €O
& 3p. (3x. QL x x € 0)[p/P]

This concludes the OX direction.

Under-approximation. We assume 0,s’, 1, hy, o such that h’ﬁhf and 0,s’, 1 |= 3x. Q) x x € O, where Q)
is obtained from the OX case. This implies the existence of a v € O such that
0[x — v],s', 0 E Q)
From the assumptions, we obtain the existence of s, h such that 0[x — v],s,h |= P(x) * Z = null, which
implies
0,s,h E3Jx.P(x) xZ=null xx €O
This concludes the proof as the last assertion is the (only) internal pre-condition of of (Ix. P(x) x x € O) (ok :
Ix. Qo (x) * x € O)(err : Ax. Qerr(x) * x € O).
|

With these lemmas, we can now easily prove theorem 4.13:
THEOREM 4.13. Any well-formed environment is valid:
Vil - (1) = E (D)

ProoF oF THEOREM 4.13. By induction on + (y,I'). When the last rule applied was the base rule for envi-
ronments, we have that (y,T) = (0, 0), meaning that dom(T') is empty, and the statement to prove is trivially
true. Otherwise, we assume the following hypotheses and inductive hypothesis:

Exact Separation Logic 59

(H1) F (y.T)
H2) ¢’ =y[fi — (X3, Ci, Ej)|i € I], with f; ¢ dom(y) foralli €I
(H3) T'(a) =T[fi = {(P'(p)) (ok : QL (B))(err : Qppr(B)) | p < a} U{(Pe(p)) (False) | f < a}lier
(H4) VieL,a € O.3t € Inty«’fi((Pi(a)) (ok : Qf}k(a))(err : Qér,(a))), T(x)+Cj:t
H5)VieLaec 0.3t e Inty/!fi((Péo(a)) (False)).T(a) FCj : t
(IH) F (r,T)
We will first prove that = (y’, UgT'(a)), that is,
dom(UgT (@) € dom(y’) AV, X, CE. f(X){C;returnE} €y’
= (Vt.t € (UgT'(@))(f)
=3t enty p(1).y EC: 1)

where the notation U,I'(r) denotes the function which maps f to the set Ug ((I'(2))(f)). The fist conjunct
holds since Lemma E.1 implies that dom(T'(a)) C y’ for all @. Now, assume f, X, C, E, t such that
(H6) f(x){C;returnE} €y’
(H7) t € (UaT'(a))(f)
By (H7), we have that there exists @’ € O such that (H8) t € (I'(a’))(f). Then, from Lemma E.1 applied to (IH),
(H2), (H4), and (H5), we obtain (H9) |= (y’,T(a”)). By construction, we know that dom(U,I'(«)) = dom(T' (")),
meaning that (H10) f € dom(T'(a’)). Therefore, instantiating (H9) with (H10), (H8), and (H6), we obtain that
there exists t’ € Inty/ () such that | C : ', which implies | (', Ug['(a)). Defining

e Pi=3a.Pi(a) xaeO

e Pl =30.PL (a) xa €O

. Q;k =3a. Q;k(a) *a€0

® Qtr = 3. Qerp(@) x 2 €O) '

o I :=T[fi = {(P") (ok : Q) (err : Q¢ry), (Pe,) (False)}ier,
and applying Lemma E.2 twice to U,T'(a) (once to the set of partially terminating specifications and once to
the set of non-terminating specifications), we obtain |= (y’,T’"’), concluding the soundness proof. m]

60 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

F FURTHER EXAMPLES
F.1 List Reverse

We consider an iterative implementation of list reversal, which takes a singly-linked list, reverses the pointers,
and returns the pointer to the head of the new list. The code of the list reversal function is as follows:

LRev(x){ while (x #null) {z:=[x+1]; [x+ 1] :=y; y:=x; x:=z }; returny}

and the proof sketch of its correctness is given below. To verify this algorithm, we need to apply the iterative
while rule: this means that we have to define the predicates P; for all i € N:

P £ 3B,y list(y,y) * list(x, f) * vs=y - Bxi=|y| AR

where R; £ (i = 0Ax =xAz=null) V(i > 0Ax = zAx € N), and the minimal m for which
P; does not imply the loop condition is |vs|. In the proof of the while loop body, we use the equivalence
(E1) list(y, [0] - y) © Fy.y — 0,y list(y, y) to add the currently processed node to the already reversed part
of the list. Also, we inline the transition from the external to the internal pre-condition, as well as from the
internal to the external post-condition, where R = (|vs| = 0 * x = null) V (Jvs| > 0 % x € N).

T+ (x=xx%list(x, vs))
LRev(x){

(x =x * list(x, vs) x y,z=null)

[[Establish Py]]

(3B, y. list(y,y) * list(x, f) * vszyT PrkO0=|y|*x=x*z=null)

while (x # null) {
(P; *x#null)
(3B, y.list(y,y) * list(x, f) k vs=yT - fxi=|y| xi>0*kx=2z%x€N*x#null)
[[Unfold the list predicate, frame off i > 0 % x e N]]
(Fy, 0,2, f list(y,y) xx = v,z x list(z,) xvs=y - [0] - f/ *x=z%i=]|y|)

z:=[x+1];

(T, 0,2 f list(y,y) * x> v,z * list(z,) x vs=y - [0] - p/ *z=z%i=y|)
[x+1] :=y;

(Fy.0,z,f list(y,y) x x>0,y % list(z, f/) x vs=yT - [0] - f/ xz=2zxi=]y])
y =x;

(Fr0.z.,y.y = v,y * list(y,y) % list(z, f/) * vs=yT - [0] - f/ xx=yxz=z%i=]|y|)
[[Apply equivalence (E1)]]
(.02, ist(y, [o] - y) x list(z,) x vs= ([0] -)T -/ xx=y*z=z%i=y|)
X =1z
(.02, list(y, [v] - y) * list(x, B) x vs= ([0] -)T - xx=z*xi=]y])
[[Frame oni >0 % x € N]]
(Fy, 0,2 B list(y, [0] - y) x list(x, /) x vs= ([o] -)T -/ *x=z*i=|y|*i>0*kxeN)
[[Rename existentials: v - y — y, f” — S]]
(3B, y.list(y,y) x list(x, f) x vs=yT - pox=zxi+1=|y| %xi+1>0xxeN)
(Piy1)
b
(3B, y.list(y,y) * list(x, f) * vs =y - Brx =2z % |vs| = [y| A Rivs))
(list(y, vs') % x,z = null A Riys))
returny
[[Move to external post-condition, collapse existentials]]
(3px. py. pz- list(py, vs') * px, pz = null * ret = py * R)
(list(ret, vs) x R)

Exact Separation Logic 61

(list(ret, vs') x R)

F.2 List Free

We next consider the list-free algorithm, LFree(x), which frees all the nodes of a given singly-linked list
starting at x. The algorithm is implemented as follows:

LFree(x){

if (x =null) {
r:=null

}else{
y =X
x:=[x+1];
free(y); free(y + 1);
r:=LFree(x)

b

returnr

and the proof sketch of the body of the algorithm is given below. As the algorithm is recursive, the measure
that we use is the length of the list, which corresponds to the number of pointers, « = |xs|. As for the list
length algorithm, we assume a valid environment (y, '), extend it with the LFree function, and construct I'(«)
appropriately, and doing the appropriate proof sketch for the function body:

(@) F (x=x % list(x, xs) * @ = |xs| % r,y =null)

if (x = null) {
(x =x % x =null x list(x, xs) * & = |xs| x r,y = null)
(x=x*x=null x xs=€ % a=|xs| xr,y=null)
skip;
(x=x*x=null x xs=€ % a=|xs| xr,y=null)

}else{
(x =x % x #null x list(x, xs) * @ = |xs| *x r,y = null)
(3,0, x5’ . x=x % x> 0,x" *x list(x/,x8") * xs=x: x5’ xa=|xs| xr,y =null)

=x;
{Elx’,’v,xs’.x:x*y:x*x|—>v,x'*Iist(x’,xs’)*xs:x:xs'*a: |xs| * r=null)
x:=[x+1];

(I, o,x5". x=x" xy=xxx > 0,x" % list(x’,x5") x xs =x : x5’ * @ =|xs| x r=null)

(I, o,x8" . x=x"*ky=x*ky > 0,x" xlist(x’,xs") * xs=x: x5 % & =|xs| xr=null)

free(y);

(Fx',xs’ x=x"* y=xxy &,x" *list(x",xs') kx xs=x:x5' *xa—1=|xs'| xr=null)

free(y +1);

[as @ — 1 < a, we can apply the specification for « — 1]

(I, x’ x=x"*y=x*y> B,0 % list(x’,xs') x xs=x:x5' *a—1=|xs'| xr=null)

r:=ListDispose(x)

(I, xs’ x=x"* y=x*x— 0,0 % freed(x” : x5') * xs=x: x5 x &’ =|xs'| x r=null)
I8

(x=x*kx=null xxs=€*r,y=null x a =|xs]) v

(I, xs' x=x"*xy=x*x 3,0 % freed(x” : x5’) *x xs=x: x5 xr=null * a = |xs|)

62 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

We conclude the proof by moving from the internal to the external specification:

Apx, Py pr. ret = pr * (px = x *x x =null x xs =€ * py,py = null x a = |xs]) v
T, x5".px =x" * py=x*x x> 3,0 * freed(x” : x5") * xs=2x: x5" *
pr=null x a = |xs|)

& ret=null x a = |xs| x ((x =null x xs =€)V
(Fx',xs’.x > @, x freed(x” : x5’) * xs = x : x5"))
& freed(x : xs) x ret = null x o = |xs|

F.3 List Algorithm Client

We consider the following client of our three list algorithms

LClient(x) {

| :=LLen(x);

if (I <5) {r:=LFree(x); error(“LTS”) } else {
if (I > 10) { while (true) {skip} } else {

r:=ListReverse(l)

}

b

returnr

}

and prove that it satisfies the following ESL specification:
(x = x * list(x, vs))
LClient(x)
(ok : 5 < |vs| <10 * list(ret, vs') * R)
(‘err:|vs| <5 % (Ixs.freed(x : xs) * |xs| = |vs|) * err = “LTS”)

We prove the three branches separately, exposing the non-terminating case, and then join the obtained
specifications through the admissible disjunction property, to obtain the above specification. We give two of
the three proof sketches below; the third is analogous to the first. We denote the above success post-condition
by Q. the above faulting post-condition by Q,, and assume a specification context I' that has the appropriate
specifications of the called functions.

Ik (x=x % list(x, vs) x |vs| <5)
LClient(x) {
(x =x * list(x, vs) % |vs| <5 % |,r =null)

| :=LLen(x);
(x =x * list(x, vs) * [vs| <5 % | = |vs| x r=null)
if (1<5){
(x =x * list(x, vs) * |vs| <5 % | = |vs| x r =null)
r:=LFree(x);
(x =x % (Ixs.freed(x : xs) * |xs| = |vs]) * |vs| <5 % | =|vs| % r=null)
error(“LTS”)
(err: Qerr xx=x%1=|vs| xr=null))
} else {
(False) ... (False)
|8
(err: Qerr *x=x % | =|vs| xr=null))
returnr
(err:Qem * (a,b,c.a=x % b=|vs| x c=null))
(err:Qerr)

Exact Separation Logic 63

(err:Qer)

Tk (x=x % list(x, vs) x |vs| > 10)
LClient(x) {
(x =x * list(x, vs) * |vs| > 10 x [,r = null)

| :=LLen(x);
(x =x * list(x, vs) * [vs| > 10 x | = |vs| x r = null)
if (I<5){
(False) ... (False)
}else {
(x =x * list(x, vs) * |vs| > 10 % [= |vs| x r = null)
if (I >10){
(x =x * list(x, vs) * |vs| > 10 % | = |vs| * r = null)
while (true) {skip}
(False)
}else {
(False) ... (False)
¥
}; (False)
returnr
(False)
}(False)

The three obtained specifications then yield via disjunction:

(x = x % list(x, vs) % |vs| <5) V

(x = x * list(x, vs) x 5 < |vs| < 10) V | LCLlient(x) (ok : False V Q. V False) (err : False V Qg V False)
(x = x % list(x, vs) % |vs| > 10)

and via equivalence the desired

(x = x * list(x, vs)) LClient(x) (ok : Qo) (err : Qerr)

F.4 Mutual Recursion: even/odd

In addition to reasoning about recursive functions, ESL allows us to reason about mutually recursive function
as well. We illustrate this by using a simple example consisting of two functions which determine whether a
natural number is even or odd, whose implementations are given below.

isEven(n) { is0dd(n) {
if(n=0){ if (n=0){;
b := true b := false
}else { }else {
n:=n-1; n:=n-1;
b := 1s0dd(n) b := isEven(n)
5 I8
returnb returnb
} }

To reason about these two functions, we introduce two (also mutually recursive) predicates:
even(n) =n=0Vodd(n-1)
odd(n) £n=1Veven(n—1).

and give the pre-condition and the external (Qepen (@) and Q,g4()) and internal (Q,., () and Q; d d(a))
post-conditions for the two functions, noting that both share the same pre-condition P(a), and that we again

64 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

use @ = n for the decreasing measure, just as in the list length case:

Pl@)2n=nxneNxn=a

Qeven(a) = (ret = false x odd(n) x n = a) V (ret = true x even(n) x n = «)
Qodd(a) = (ret = false x even(n) x n = a) V (ret = true x odd(n) x n = a)

Qlven(@) 2 (n=nxn=0%xb=truexn=a)
V(h=n-1%b="false x odd(n) x n=a)
V(n=n-1%b=true x even(n) x n=aq)
Q;dd(a)é(n:n*n:O*b:false*n:a)
V(n=n-1%b=true x odd(n) xn=a)
V(n=n-1%b="false x even(n) x n = a)

We further assume a well-formed environment (y,T') such that isEven, is0dd ¢ dom(y) and extend it as
follows:

’

4
I'(a)

ylisEven — ({n}, Cepen, b), is0dd - ({n}, Cpga, b)]
[[isEven — {(P(B)) (ok : Qeven(B)) | B < a},
is0dd — {(P(f)) (ok: Qoqa(B)) | B < a}]

1> 11>

where Ceyen and C, g4 denote the appropriate function bodies. Our goal is to prove

I(a) F (P(@)) Ceven (0k : Qppen(@))
[(a) v (P(a)) Coga (0k : Q! ()

which we do in the proof sketches given below, first for isEven and then for is0dd:

I'(x) F(P(a) *xb=null)
(n=nxneNxn=axb=null)

if (n=0) {
(n=nxn=0xn=ax*xb=null)
b := true
(n=nxn=0xn=ax*xb=true)
}else {
(n=n*xn>0%xn=a*xb=null)
n:=n-1

(n=n—-1%xn>0xn=axb=null)
(n=n—-1xn-1eNxn—-1=a—-1xb=null)

[as @ — 1 < a, we can apply the specification for a — 1]

b := is0dd(n)
(n=n—1*Elb.((bzfalse*even(n—l))v(b:true*odd(n—l)))*n:a*b:b)
(n=n-1% ((b="false x odd(n) x n=a) vV (b= true x even(n) x n=a)))
((n=n-1xb=falsexodd(n)*xn=a)V(n=n—1%xb=true xeven(n) xn=a))
}

(n=nxn=0xb=truexn=a)V(n=n—-1xb="falsexodd(n) xn=a) Vv
(n=n-1%b=true xeven(n) xn=a)

Exact Separation Logic 65

I'(ax) F (P(a) *xb=null)
(n=nxneNxn=axb=null)

if (n=0){
(n=nxn=0xn=a%xb=null)
b := false
(n=nxn=0xn=ax%b="false)
}else {
(n=nxn>0%xn=a%xb=null)
n:=n-1

(n=n—-1%xn>0%xn=a*xb=null)

(n=n—-1xn—-1eNxn—-1=a—-1%xb=null)

[since @ — 1 < a, we can apply the specification for o — 1]

b := isEven(n)

(n=n-1%3b.((b="false xodd(n—1)) vV (b=true xeven(n—1))) xn=axb=">b)

(n=n-1x% ((b="false x even(n) xn=a) vV (b= true x odd(n) x n = a)))

((n=n—-1xb=falsexeven(n) xn=a)V(n=n—1%b=truexodd(n) xn=a))
}

(n=nxn=0xn=ab="false)V(n=n-1%b="false xeven(n) xn=a) Vv

(n=n—-1%b=true xodd(n) xn=a)

To complete the proof, we need to show that Q; & 3p. Q! [p/p] * ret = b[p/p] for i € {even, odd}. As the
two cases are analogous, we only show the even case in detail:

5. Qluen(@) [B/p] * ret = E[3/5]
((pn=nxn=0xp,=truexn=a)V
< Fpn,pp- (pn=n—1%p, =false xodd(n) x n=a) Vv
(pn=n—1% p, = true x even(n) x n = a)) * ret = py
& (n=0%ret=true xeven(n) xn=a)V (n>0*ret=false xodd(n) xn=a) v
(n >0 % ret = true x even(n) x n = «)
(n>0%ret =false x odd(n) x n=a) VvV (n € N x ret = true x even(n) x n = @)
(ret = false x odd(n) * n =) V (ret = true x even(n) x n = @)

Qeven(a)

e8¢

F.5 More Complex Mutual Recursion: even/odd/list length

In the previous examples featuring recursion and mutual recursion, the choice of the measure is straightforward.
For list length and list disposal, we traverse a non-cyclic list, therefore decreasing the distance to the end of
the list in every step. For even/odd, each function decreases the function argument before passing it on to the
other function, therefore also creating a natural measure.

In the real world, however, we might come across clusters of mutually recursive functions where not every
function reduces the obvious measure (e.g., wrapper functions). As long as any function call terminates, we
can still reason about such clusters by defining an appropriate measure. To illustrate this, we will look at a

66 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

collection of three functions, which compute the length of a list in a convoluted, mutually-recursive way:

LL(x) { f(x) { g(x) {
if (x=null){ v = [x]; v = [x];
r:=0; if (even(v)) { if (odd(v)) {
}else { x:=[x+1]; x:=[x+1];
v = [x]; r:=LL(x); r:=LL(x);
if (even(v)) { r=r+1; r=r+1;
r:=g(x); }else { }else {
}else { r:=g(x); r:=f(x);
r:=f(x); b b
|5 returnr returnr
3 } }
returnr
}

Intuitively, whenever either of the functions is called with an argument x, which is the head of a (non-cyclic)
list, it computes the length of the list. The LL function calls g if the first value of the list is even and f otherwise.
The function g, however, does the same test and calls f if the input was even. Otherwise, it moves one element
down the list and calls LL on the now shortened list. The function f moves down the list by one element and
calls LL on the shortened list if the first value is even, and calls g on the initial list, if not.

As the functions branch on whether or not values of the list are divisible by 2, we adjust the list(x, vs)
predicate slightly to include the condition that vs is a list of natural numbers:

listay(x, vs) 2 (x = null * vs =€) V (o, x, vs'. x = 0,x" % v € N % listyy (x”, vs') * vs= 0 : vs')

and furthermore require a trivial property of the previously introduced even() and odd() predicates, stating
that even(v) V odd(v) & v € N. Assuming a valid environment (y,T’), we extend it as follows

’

Y = vyl (LG, £ ((3LCpn), g ({x.Cg. 0]
I(a) = T[LL = {(PLr(B))(ok: Qrp)If < a},
= {(Pr(p))(ok : Qp)If < a}, g = {(Py(B))(0k : Qy)|f < a}]

Furthermore, we define

I 2 T[LL > {(listiy(x, vs) * x = x % (3|vs| +2) € O)
(ok : listyy(x, vs) * ret = vs x (3|vs| +2) € O)},
f o {(listy(x,0 : vs') * x = x % 3o : vs’| + (v mod 2) € O)
(ok : listy(x,0 : vs") x ret = |0 : vs’| x 3|v : vs'| + (v mod 2)) € O},
g {(listy(x,0: vs') * x =x *x 3|v: vs'| + 1 — (v mod 2) € O)
(ok : listyy(x,0 : vs') xret = v : vs'| * 3] : vs'| + 1 — (v mod 2) € O)}]

and wish to prove + (y’,T’’). To this end, we prove the following three specifications:

T(a) F (Prr(e) * v =null) Cpp, (ok : Q) ()
T(a) F (Pp(a) % r,v = null) Cf (ok : Qf(a))
T(a) + (Pg(a) * r,v =null) Cy (ok : Qg(a))

where C 1, Cr, and Cy denote the appropriate function bodies, and the function pre-conditions, capturing the
function pre-conditions (with and without measure) and post-conditions (internal and external), are defined

Exact Separation Logic 67

as follows:

Prp(a) = listyy(x, vs) * x = x * a = 3|vs| + 2
Pr(a) = listy(x,0 : vs') * x =x *x @ =3Jv : vs'| + (v mod 2)
Py(a) = listyy(x,0: vs") *k x =x % a =3Jo: vs'| + 1 — (0 mod 2)

Q@) =(x=null x vs=e€*x=x*r=|vs| xv=null x @ =3|vs| +2) V

(o, vs’ . listjy(x,0: vs') k vs=0v: v’ A x=x*v=0%r=]|vs| x a=3|vs| +2)
Q}(a):EIx’.xl—M),x’*IistN(x’,vs’)*v:v*r:|U:v5’|

* (x = x" x even(v) V x = x *x 0odd(v)) * & = 3]v : vs'| + (v mod 2)
Qé(a):EIx’.va,x’*IistN(x',vs')*v:U*r:kJ:vs'l

* (x =x" % 0dd(v) V x = x x even(v)) x a = 3|v : vs'| + 1 — (v mod 2)

Orr (@) = listy(x, vs) * ret = |vs| x a = 3|vs| + 2
Qr(a) = listy(x,v : vs") * ret = [0 : vs'| * & = 3o : vs'| + (v mod 2)
Qy(a) = listy(x,0: vs") x ret = o : vs'| k @ = 3]o : vs'| + 1 — (v mod 2)

We give the proof sketch for list length and f below. The proof sketch for g is analogous to that of f.

T(a) F (listy(x,vs) *x x =x x a =3|vs| +2 % r,v=null)
if (x=null) {

(listpr(x, vs) * x = x % @ = 3|vs| +2 % r,v,x =null)

r:=0;

(listpr(x, vs) * x =x *k @ =3|vs|+2*r=0x x,v=null)

(x=nullxvs=exx=x*xr=|vs| xa=3|vs|+2*xv=null)

}else {

(Fo,x",vs'.x > v,x’ xveN x listy(x’,vs') x vs=0:vs’ xx=x*a=3|vs|+2xr,v=null)

v = [x];

Fo,x",vs'. x> 0,x" x v €N * listyy(x/, vs') x vs=v : vs’ %

(x:x*vzv*a:3|vs|+2*r:null)

(Fo, vs'. listiy(x,0: vs') *x vs=0v:vs’ xx=x*v=0xa=3|vs|+2*r=null)
(listy(x,0:vs') xvs=v:vs *x=x*kv=ox0v€EN*xa=3|vs|+2*r=null)
if (even(v)) {

listyy(x,0: vs’) * vs =0 : v’ * x =x *x v=0 % even(v)
(*a—1:3|0:vs’|+l—(vm0d2)*r:null)

[[as @ — 1 < a, we can apply g’s specification for a — 1]]

(r=null x x =x * listyy(x,0: vs') xa —1=3v: vs'| +1 - (v mod 2))

r:=g(x);

(x=x % listy(x,0:vs') xr=|o:vs'| xa—1=3]v:vs'| +1— (v mod 2))
(listpy(x,0:vs") x vs=v:vs’ *xx=x*v=0%even(v) xr=|vs| xa =3|vs|+2)
}else {

listy(x,0: V') x vs=0v:vs kXx=x*kV=0%
odd(v) x r =null x a — 1 = 3|vs| + (v mod 2)
[[as @ — 1 < @, we can apply f’s specification for « — 1]]

(listy(x,0:vs8") * x=x x r=null x a — 1 = 3|vs| + (v mod 2))

r:=f(x);

(listy(x,0:vs") *x=x*r=|v:vs'| *xa—1=3|vs| + (v mod 2))
(listp(x,0:vs") *x vs=0: v’ x x=x*v=0%odd(v) *x r=|vs| x @ =3|vs| +2)

o
b5
H

exists, equiv

fr, eq

}
(listy(x,0:vs') *x vs=0v:vs *x=x kv=0%r=|vs| x (even(v) V odd(v)) x & = 3|vs| +2)
(Fo e N, vs' listyy(x,0:vs') x vs=0v: v’ kx=x*v=0*r=|vs| *xa=3vs|+2)

68 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas L66w, and Philippa Gardner

(x=nullxvs=e*xx=x*r=|vs|] xv=null xa=3|vs|+2) V
(Fo e N, vs' . listyg(x,0:vs') k vs=0v:vs’ kx=x*kv=0%r=|vs| ka=3|vs| +2)

T'(a) F (listy(x,0:08") xx=x % a=3|v:0s’| + (v mod 2) *x v,r =null)
(I x> 0,x" xveN x listy(x",05") *x x=x % a=3v:0s"| + (v mod 2) *x v,r =null)
vi= [x];
(I x> 0,x" xveNxlisty(x",08") kx x=x*v=0*a=3|v:0s'| + (v mod 2) * r=null)
(3x".x > 0,x" % listy(x',08") x x=x* v=0*v€eEN*xa=3|v:os|+ (v mod 2) x r=null)
if (even(v)) {
(3Ix".x > v,x" x listy(x",05") *x x=x *v=0xeven(v) x @ =3|v:0s’| *r=null)
x:=[x+1];
(3. x > 0,x" x listy(x",08") *x x=x" x v=0*even(v) xa — 1 =3Jvs’| +2 x r=null)
[as3a — 1 < @, we can apply LL’s specifications for o« — 1]
(listyy(x”,08") * x=x" *r=null xa —1=3vs"| +2)

% r:=LL(x);
+ (listy(x/,08") *x=x" xr=|os’| xa—1=3|vs’| +2)
= r:=r+1;

(listy(x,08") *x x=x" xr=os’|+ 1 xa—1=3vs’| +2)
Ax’ x> 0, x" x listyg(x",08") *x=x" *v=0%
r=|ov:vs'| x even(v) x a = 3|v : vs’| + (v mod 2)
el

}else{
Ax’. x> 0, x" K listyy(x',08") kx=x*xv=0%
(odd(v)*a—1=3|v:vs’|+1—(vm0d2)*r=nu11)
[as @ — 1 < a, we can apply g’s specification for o — 1]

(listy(x,0:08) *x=x*r=null xa—1=3Jv:0s’|+1- (v mod 2))
ri=g(x);
(listy(x,0:08") kxx=x*r=|v:vs’| xa—1=3Jv:0s’|+1— (v mod 2))
(3Ix'.x > 0, x" x listy(x",08") x x=x*v=0%o0dd(v) xr=|v:vs| x @ =3v:0s"|+ (v mod 2))
Ax’.x > 0, x" x listyy(x’,08") *v=oxr=|o:vs| %
}((x=x’*even(v)szx*odd(u))*a=3|v:us’|+(u mod 2))

fr + ex

To conclude the proof, we need to show that QiL((X), Q}(a) and Q;(a) are in the internalisations of their

external counterparts, which is done as follows, again eliding the proof for Q4(a) as it is analogous to that of

Qr(a).

3p. Q7 (@) [p/p] * ret =r[p/p]
€ 3px, propo- ((x =null % vs =€ * px = x % pr = |vs| % pp = null x a = 3|vs| +2) V
(Fo, v’ listy (x,0 : vs') * vs =0 : v’ % px =X * py =0 * pp = |vs]
* a = 3|vs| +2)) % ret = p,
o listyy(x, vs) * ret = |vs| *x & = 3|vs| + 2

3.0/ (@) [/p] * ret = r[3/p]
S 3px, pos Prox . x > 0,57 K listp(x, vs') * py =0 * pr = oz v
* (px = x" x even(v) V px = x *x 0dd(v)) * @ = 3| : vs’| + (v mod 2)
o Ix.x > 0,x" x listyg(x/, vs') * ret = |v : vs'|
* (even(v) x 0dd(v)) * @ = 3|v : vs’'| + (v mod 2)
Ax’.x > 0, x" x listyg(x”, vs’) xret = |v: vs'| xv €N *x a =3|v : vs'| + (v mod 2)
listyy(x, 0 : vs") x ret = |v: vs'| x @ = 3|v : vs'| + (v mod 2)

g e

69

Exact Separation Logic
G COMPOSITIONAL SYMBOLIC EXECUTION
In this appendix, we present an outline of a proof of backward completeness for the below symbolic execution

semantics.
AssIGN (ERROR)
[[E]];r U é’i/ Oerr = [“ExprEval”, str(E)]

Symbolic Execution Semantics
(8. 7).x = Elr err: (Semr, b, ')

G.1
ASSIGN .
SKIP [E)7 b 6™ & =3[xw 9]
o,skip |r ok: o 2 -
(8, h, #),x:=E lr ok: (&, h,#
ERRrROR . ,
[E]Y U&" der = [“Error”, 4]
(8, h, #),error(E) Ur err: (Sem b 2)

NONDET
pfresh A/ =freNA#
(3, h, #),x := nondet |Ir ok : (3[x —], b, #)
IF—THEN’ |
[EIF U™ A" =#"Ab SAT(R”
3 h2"),Crlro: (8,0, 72")
(5, h,#),if (E) C1else Cy Iro: (3,0, #")

ERROR (ERROR)
[[E]];r U éﬁ, Oerr = [“ExprEval”, str(E)]
(3, h, #),error(E) Ur err: (Sem. . #)
Ir-ELsE ,
[E]T Lo A" =#"A-D SAT(#” Ir-ERR-VAL
(8, hA"),Co Jro: (8,0, 72") [EIF U 4™ oo = [“ExprEval’, str(E)]
(5, h,#),if (E) Crelse Cy ro: (8,1, #""") (5,h, #),1if (E) Cy else Cy Ur err: (Serr b, #7)
IF—ER}}—TYI}; SEQ
[E]Z L™ #”=# Ad¢Bool SAT(#” 6,Cy r ok: 6’ SEQ-ERR
derr = [“Type”, str(E), 6, “Bool”] 6,C; lro: 6" 6,C1ro:6" o#ok
(5,h,), if (E) C1 else Cp Ur err: (Ser b, #”7) 6,C1;Cy ro: 6" 6,C1;Cy lro: 6’
Lookup L LOO}(UP-E{RR-VAL
[E]F Uo™ h(d) =0m A" =(5=0) AR SAT(#") [EIF U 4™ oenr = [“ExprEval’, str(E)]
(8 b, #),x:= [E] U ok : (3[x >], b, 7" (8, b, #),x = [E] U err: (Sem b #)
Oerr = [“Type”, str(E), 8, “Nat”]

LOOAKUP-AE:,RR-TYPE
[E]Z L 6" #"=6¢NAR SAT(2")
(8, h,7),x = [E] Ur err: Ser b, #'")

’

Lookup-ERR-USE-AFTER-FREE
[E]f U™ h(g) =@ A" =0eNA(g=0)Ad" SAT(Z")
Oerr = [“UseAfterFree”, str(E), 3]

(8, h,#),x:=[E] Ur err: (Serr b, #")
LOO}(UP-ERR-MISSING . MUTATE . R
[E]Z 6% #”"=6eNAbgdom(h) Az’ SAT(#") [E{]7 Uo7 h(dr) =0 A" = (8 =0)) AR
derr = [“MissingCell”, str(E), 9] SAT(#"”) [E]F U8f K =h[d;— &)
(8, b, 7). x == [E] U miss : (Serr, b #77) (8, h, #), [E1] = E2 Ur ok : (3, ', 2""")
MUT{\TE—ERR—TYPE
[E]7 Uo7 A" =8¢NAR SAT(#")
Oerr = [“Type”, str(Eq), 01, “Nat”]
(5, h, #), [E1] = Ur err : Sers b, #7)

MUT{&TE-E}}R-VAL-l
HElﬂg U4™ Oerr = [“ExprEval”, str(Eq)]

(5, A7), [E1] =3 Ur err : Ser, b, #')

70 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

MUTATE—ER}{—USE—A}:TER—FREE
[EJZ 6™ k(o) =0
= (g =0) AR SAT(#")
Oerr = [“UseAfterFree”, str(E;), 0]

MUT{\TE—E/RR—MISSING .
[[El]]fu,ﬁ;r 7" = ENAﬁl¢d0m(h)Aﬁ,
SAT(#") Berr = [“MissingCell”, str(Ey), 91]

(8, h,), [E1] = E2 Ur miss : (Serr, B, #7)

(8, h,7), [E1] =z Ur err s (Serr, 2

MUT{XTE—E/RR—VAL# »

[E]7 Uo7 [E1F 147 #7=éeNAZ” New
SAT(#""") Derr = [“ExprEval”, str(Ez)] [fresh #’

7 :ZENAigdom(ﬁ)Aﬁ
(5,h,), [E1] =Es Ur err : Ger, b, 7 (5,h, 7),x = new() Ur ok: (§[x — I], h[d; — null], #’

FrREE) Lo
[E]F U™ h(dy) = om
A= (o =0) AR
SAT(2”) K =hlo; — 2]
(5, h,), free(E) Ur ok: (3, i, #")

FRE}AZ—ERRA—,EVAL
[EIZ U 4™ dem = [“ExprEval’, str(E)]
(8, b, 7), free(E) Ur err : (Serr, By 27)

FREI::—Eng,—TYPE FRE]::—ER}}:MISSING .
[E]F Vo™ A" =0¢NAA SAT(2") [E]F Uo* A" =0eNAs¢dom(h) AR’ SAT(#”
Oerr = [“Type”, str(E), 0, “Nat”]

Oerr = [“MissingCell”, str(E), 9]
(8, b, 7), free(E) Ur err : (Serr, By 2) (8, h, 7), free(E) U miss: (Ser, h, #”7)

FRE{S—ERI}/—US}S—AFTER—FRBE
[E]Z Uo™ h(s)=0 #"=6eNA(5=0)Ak
SAT(A"") D = [“UseAfterFree”, str(E), 9]

(5, h,), free(E) Ur err : (Sery, b, #”

FcaLL

[[E]];r L& (3(' = Q?*P) fx (ok : Q(,k) (err : Qm) el O=[%w 3]
matchAndConsume (P, é, (5, h, ') (é’, ﬁp, (8, ﬁf, 7")”k r, F fresh
produce(Qok[r/ret], ' [r = 7], (8, hp, &) ~> (0", hy, (3, 1, #7))%

(8. h #),y = f(E) Ir ok: (§[y — #.B,#")

FcALL-QERR

[E]7 U 3% (} = }*P) £G) (ok : on) (err : Q) €T 0=[%m 3]
matchAndConsume (P, é, (8, h, 7)) (é’, fzp, (8, fzf, ﬁ”))”k r, F fresh
produce(Qer[r/err], @ [r = 71, (8, hp, #7)) ~> (07, hq, (3, B/, 7))k

(8, h, 7).,y = f(E) Ur err: (8[err > 7], B/, #"")

FcALL-ERR-VAL

1<m<n A=4# (lIEi]]?i_l [} {Jlfrl)llrgl_l HEm]]?m_l U éﬁ, derr = [“ExprEval”, str(Epm)]
sk

(8, h#),y:=f(Et,....En) Ur err: (3em B, 7))

where Sepr 2 S[err — Oepr].

G.2 Backward Completeness

In this section, we show that the above symbolic execution semantics is backward complete w.r.t. the simple
programming language used in ESL. This means, we prove the following theorem:

THEOREM G.1 (BACKWARD COMPLETENESS: SYMBOLIC EXECUTION).
6,Clro:6'AfE(y,T) = Vo' € Mod(6").30 € Mod(6).0,Cly0:0

To relate smybolic expression evaluation to concrete evaluation, we require the following property.

Exact Separation Logic 7

PROPERTY 1.

WFz() A [E]IZ LW Ae()) =true A§Ce = [E]o) = e(w)
where w € SVal U {4 }.

Furthermore, we will require a lemma which says that any state that is well-formed w.r.t. a path condition
is also well-formed with respect to a weaker path condition:

LEMMA G.2 (WF IMPLICATION).

WEE AR = 7)) = W)
Proor. This is a straight-forward implication of the definition of well-formedness given in 6. o
With this, we can now prove Theorem G.1.

Proor. We assume
6.Clro:&'AE (D)
and prove by induction over the structure of C that
Yo' € Mod(6’). Ao € Mod(6).0,C Uyo: a

All cases except function calls are straightforward. The successful function call and non-successful func-

tion call cases are similar, we present only the successful function call case here. We include a few simple
representative cases for illustrative purposes.

Fcall. Rule:
FCAI:L L . .
[[E}];T 1o (X=%x P) f(?A) (ok : on)A(eArr : Qefr) el O=[X— 1]
matchAndConsume(P, 0, (3, h, ")) ~ (', hp, (3, hy, #"))°k 7 fresh
produce(Qo[r/ret], 8 [r = 71, (5, hp, 7)) ~ (8, hg, (5, B, 7))
(8, h,#),y = f(E) Ur ok: (§[y — #.A",#""")
We assume
(8, h#),y = f(E) Ur ok: (3[y — FI,A",#""")
which yields

(H1) [E]7 |57
(H2) (i =% *P) f(;) (Ok : on) (err : Qerr) el
(H3) 6=[% 9]
(H4) matchAndConsume(P, 6, (§, h, 7)) ~ (é’,ﬁp, (8, ﬁf, #77)) ok
(H4a) WF((S, hp, 7))
(H4b) h=hp W hy
(Hac) 72" = #’
(H4d) 6’ > 6 and dom(6’) = {} U fv(P)
(Hde) (0,hp, #"") 2pq PO' % 7”7, ie. Ve, hy. £,0,hy | PO’ % 7" = e((0, hp, #'")) = (0, hp)
(H5) r,7 fresh
(H6) produce(Q,x [r/ret],é’[r B L (G, #7)) > (07, hg, (5B, 7777))%
(H6a) WF((5. 1. "))
(H6b) i = hg hy
(Hé6c) 7/ = 7"
(H6d) 6” > 6'[r —] and dom(8”) = {£} U fV(P) U fV(Qu[r/ret])
(H6e) Ve. e(2"") = true A 07,81 Ce = €(0),0,¢(hq) | Qoxlr/ret]

Now, let o’ = (s’,h") € Mod($[y — F],h’,#""’), i.e. there exists an ¢’ such that
(H8a) ¢/ (S[y — F]) =+
(H8b) /(W) =H

72 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

(H8c) &/ (#") = true

(Hsb), (Heb) imply that (H9) &' (i') = ¢'(hg) & ¢ (hs), and we define (H9a) hq = &' (hq) and (HOb)
hy = €' (hy). With (H8b), this yields (H9¢) b’ = hq ¥ hy.

(Ho6e), (H8c), (E—I9a), together with an appropriately (arbitrarily) extc;nded &” > ¢ that covers 0" and §
imply (H10) ¢”(8"), 0, hq = Qi [r/ret], and we define (H10a) 6 = £/ (6").

(H2) and = (y,T) imply that we have a valid UX triple!! (H11) y | [X =X % P *Z = null] C [ok : .l
where (H11a) Qo < 3p. Q! [p/p] * ret = E’[p/p], (H11b) f(X){C, return E'} € y and (H11c) pv(C)\{x} =

z}.

{ }(H5), (H10), (H10a) and (H11a) imply

0.0,hq = 3p. Q) [p/B] * r = E'[p/p]
that is, that there exist w € Val, such that
(H12) 0,0[p — W], hg E Q) *r=F

and we define (H12a) s4 = 0[p — w]. Given (H10a), (H12) and (H6d), we obtain (H13) [[E/]]g,sq =0(r) =" (7).
(H9c), (H11) and (H12) imply

(H14) 355, hy. 0,5p, hy EX =% % P*Z=null A (55.hp Whp),C ly ok: (sq.hg® hy)
(H3), (H4d), (H6d) and (H10a) then imply
(H15) 0(F) = ¢ (6 (%) = ¢ (9)
Since P does not hold any program variables, (H14) implies
(H16) 0,0,k = P
Given ¢ and (H4b), we can pick an ¢/’ > ¢ which covers flp, and obtain
(H17) &' (h) = &' (hy) & &’ (hy)

Lemma 6.3 (2), (H16) and (H10a) then imply

(H18) ¢,0, hy, |= PO
(H8c¢), (H6c) and &'’ > ¢’ > ¢’ also imply that

(H19) "' (") = true
which then, together with (H18), yields

(H20) ¢”,0,hy, £ PO x "
(H4d) and (Héd) yield P6” = P@’, which together with (H4e) and (H20) yield
(H21) ¢ (hp) = hy,

meaning that we have matched the heaps. As C does not include program variables beyond X and 7, (H14) and
(H15) mean that we can restrict §, to 0[x — &” (5)] [z — null] without affecting the execution of C, yielding
(H22) (0[x — g"(g)] [Z — null], fzp Whe),C Uyt (sq. hq @ hy). Finally, (H1) and Property 1 give that (H23)
[[E]]S = " (%), where (H23a) s = ¢/ (5).

The hypotheses needed to apply the concrete function call rule (for successful execution) are given through
the hypotheses (H8a), (H11b), (H11c), (H13), (H22) and (H23). This yields

(H23) (s,hp Why),x:= f(E) Uy (s, hg Why)

(H9b), (H17), (H21) and &’ > ¢’ yield (H25) hy & hy = ¢ (h).
Lastly, (H1) implies #” = #, which together with (H4c), (H6c) and (H8c¢) yields (H26) ¢’/ (#) = true.

1A UX triple is valid when frame-preserving under-approximating validity as defined in Def. 4.5 holds

Exact Separation Logic 73

Finally, (H23a), (H25) and (H26) imply
(s.hp W hy) € Mod((3, h, 7))
which concludes the proof.

Assign. Rule:
ASSIGN X
[E]7 Uo7 & =5[x i d]

(8, b #),x:=E |r ok: (8, b, #)

We assume
(8, h,#),x :=E lp ok : (§[x — 8], h,#")

which yields
(HO) W4 (5)
(HY [E]7 | o
(H2) &' =3[x — 0]

Now, let ¢’ = (s, ') € Mod(3[x — 9], h, #’), i.e. there exists an &’ such that
(H3a) ¢/([x—> 0]) =5’
(H3b) &/(h) =}
(H3c) ¢'(#') = true

(H1) implies (H4) #’ = #.

Furthermore, let ¢ > ¢’ be an extension which covers § and define (H5) s = £(§). (H4) and (H3c) imply (H6)
e(#) = true. Given (H0), (H1), (H5) and (H6), Property 1 imply (H7) £(9) = [E]s

Defining v = [E]s, (H3a), (H5) and (H7) yield (H8) s’ = s[x + o].

The concrete operational semantics therefore yields

(s,h"),x:=E |y (s",h")
and through (H5), (H3b) and (H6), we obtain (s, k') € Mod((S, h, 1)), which concludes the proof.

Mutate. Rule:
MurTATE . .
[[El}]g Ut h(d)) =0 #" =

N

(0
SAT(#") [E2]F" Wof" K =h[o v b2
(3, h,#), [E1] :=E2 Ur ok: 57,7

We assume
(8,h,2), [E1] = Ez Ur ok : (8,4, 2"")
which yields
(HO) Wf(5) and Wf;(h)
(H1) [[El]]gr Uo7
(H2) h(9)) = om
(H3) #”" = (6, =01) A7’
(H4) SAT({%”) A
(H5) [E2]7 U907
(H6) i = h[d; > 6]
Now, let o’ = (s, h’) € Mod(§, ', #"""), i.e. (given (H6)) there exists an ¢’ such that
(H7a) e’(si) =5
(H7b) &' (h[d; — 02]) =1
(H7c) ¢/ (#"") = true

74 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

(This ¢ exists, because (H4) and (H5) imply SAT(#""").)

(H1), (H3) and (H5) imply (H8) '/ = #"” = #’ = # and (H7c) yields (H9) ¢’ (#"") = ¢/ (#"") = ¢/ (#) =
&' () = true.

(HO), (H2) and (H9) implies (H10) ¢’ (4;) € N.

(H3) and (H9) 1mply (H11a) ¢/ (d;) = ¢/ (61) and we define (Hlla) n=¢(6;) = ¢ (01) € N, given (H10).

We extend ¢ > & to cover h and define (H12a) h = £(h) and (H11a) and (H12) then implies (H12b)
h(n) € Val.

(H6), (H7b), (H11a) and (H12a) implies (H13) &’ = h[n — ¢’ (d2)].

Given (H0), (H1), (H7a), (H9) and (H11a), Property 1 implies (H14) [E1]s = n.

Given (HO), (H5) and (H8), G.2 implies (H15) ‘Wf .., (ﬁ)

Given (H5), (H7a), (H9) and (H15), Property 1 yields (H16) [Ez]s = &’ (d2).

Given (H12b), (H13), (H14) and (H16), the concrete semantics yields

(s.h), [E1] :=E2 Uy (s,h)
and since (H7a), (H8) and (H13) implies (o, h) € Mod((8, h, 7)), concluding the proof.

Free. Rule:

FREE X .

[E]F L™ h(d)) =dm
= (0, =0) AR
SAT(#") I =h[é; — @]
(8, h, #), free(E) Ur ok : (8K, #"")
We assume
(8, h, #), free(E) r ok : (5, h[d; — @], 7"")

which yields

(HO) Wf;(3) and WS4 (h)

(H1) [E]7 J 6%

(H2) h(3)) = om

H3) 2" =0 =0) A7’

(H4) SAT(#")

(H5) b’ = h[d; — 2]

Now, let 0’ = (s, h’) € Mod(3, ', #"), i.e. (given (H5)) there exists an ¢’ such that

(H6a) ¢/ (8) =

(Heb) &' (h[d; — @]) = H

(Héc) ¢/ (#') = true

(H1) and (H3) 1mply H7) #"’ = #’ = 7 and through (Hé6c) we obtain (H8) ¢/ (#"') = ¢/ (&) = ¢/ (%) = true.
Extending ¢ > ¢’ to cover h, we define H9) h= E(h)
Given (H0), (H1), (H8) amd (Hé6a), G.2 yields (H10a) [E]s = ¢’ (2). Defining n = ¢’ (&), (H0), (H2), (H3), (H38)

and (H10a) imply (H10b) n = [E]Js = ¢’ (&) = ¢’ (&;). With (H2) and (H9) we obtain (H10c) h(n) € Val.
(H6b), (H9) and (H10b) yield (H11) A’ = h[n — @].
Given (H10b), (H10c) and (H11), the concrete semantics yields

(s,h), free(E) | y(s,n")
and (Hé6a), (H8), (H9) and ¢ > ¢’ imply (s, h) € Mod((3, h, 7)), concluding the proof.

Seq. Rule:
SEQ
(3',C1 U[‘ ok: &6’ 6'/,C2 Jl[‘ 0:6"

6,C;;Co ro: 6"

We assume
A Al
6,C;;C2 ro: 6

Exact Separation Logic 75

which yields
(H1) 6,C1 Ur ok: 6’
(H2) 6',C2 Jro:6"
Now, let ¢’ € Mod(6), i.e. there exists some ¢ such that ¢ = ¢’ (&). The inductive hypothesis and (H2) imply
that there exists some ¢’ € Mod(6") such that (H3) ¢’,Cz |y € (7) : o’. The inductive hypothesis and (H1)
imply that there exists some o € Mod(6) such that (H4) 0,C; |y o”.

Given (H3) and (H4), the concrete semantics imply

0,Ci;Ca Uy &' (A : 0’

As 0 € Mod(6), the proof is concluded.

Mutate-Err-Val-1. Rule:
MUT@TE—El}R—VAL— 1

[E4]7 U 4% e = [“ExprEval”, str(E)]
(8, h, 7). [E1] = Ez Ur err: (Sepr, o 7/

We assume
(3, h, 7), [E1] = E2 Ur err: (e, :7%/)
which yields
(H) Wf ()
(H2) [E,]7 | 47
(H3) d¢rr = [“ExprEval”, str(E1)]
Now, let (s”, h) € Mod((Serr b, 7)), i.e. there exists some ¢ such that
(H4a) ¢ (3[err — bepr]) = 57
(H4b) ¢/(h) =h
(H4c) &' (#') = true
(H2) implies (H5) #’ = #, which implies with (H4c) that (H6) ¢’ (#") = ¢/ (#) = true.
Define (H7) s = £/ (3).
Given (H1), (H2), (H6) and (H7), Property 1 yields (H8) [E]s = 4
As G has no symbolic variables, we have (H9) verr = € (Oerr) = Derr-
(H4a), (H7) and (H9) implies that (H10) s’ = s[err — vgpr].
Given (H10), (H8), (H9) and (H3), the operational semantics implies

(s,h), [E1] == Eax |y err: (s, h)
(H7), (H4b) and (Hé6) imply that (s, h) € Mod(s, h, 1), concluding the proof.

Mutate-Err-Use-After-Free. Rule:
MUTATE-ER}{-USEt/AFTAIiR-FREE
[EJZ U6 Ao =o
A= (0 =0) A& SAT(#")
Oerr = [“UseAfterFree”, str(Ey), 9]

(5, h,7), [E1] = E2 U err: Geprs by 2”)

We assume
(8. h, %), [E1] = E2 Ur err: (Serr, b 7"7)
which yields
(HO) Wf,(5)
(H1) [E4]7 U o
(H2) h(3)) =@
H3) 2”7 =0 =0) A&
(H4) SAT(#")
(H5) ey = [“UseAfterFree”, str(Eq), 9]

76 Petar Maksimovi¢, Caroline Cronjager, Julian Sutherland, Andreas Lo6w, and Philippa Gardner

Now, let (s, h) € Mod((Serr h, 7#’")), i.e. there exists some ¢’ such that
(H6a) ¢ (3[err > depr]) =8’
(Heb) ¢/ (h) =h
(Héc) ¢/ (#') = true
(H1) and (H3) imply (H7) #”" = #’ = #, which implies with (H6c) that (H8) ¢’ (#") = ¢/ (%) = ¢/ (#) = true
and (H9) ¢’ (9;) = & (9).
Define (H10) s = ¢ (3).
Given (H0), (H1), (H8), (H10) and (Hé6a), Property 1 yields (H11) [E1]s = ¢’ (6) € N.
(H2), (H3) and (Héb) imply (H12) h(¢’(9))) = @.
(H5) implies (H13) ¢’ (d¢rr) = [“UseAfterFree”, str(Ey), ¢/ (9)].
(H6a), (H10) and (H13) imply (H14) s” = s[err — &’ (derr)].
Given (H9), (H11), (H12), (H13) and (H14), the concrete semantics imply

(s,h), [E1] :=E2 Uy err: (s, h)
(H10), (H6b), and (H8) and imply that (s, h) € Mod((5, h, 7)), concluding the proof.

	Abstract
	1 Introduction
	2 Related Work
	3 The Programming Language
	4 Exact Separation Logic
	4.1 Assertion Language
	4.2 Specifications
	4.3 Program Logic
	4.4 Soundness

	5 Examples: List Algorithms
	6 Compositional Symbolic Execution with ESL Specifications
	7 Conclusions and Further Work
	References
	A Complete Operational Semantics
	B Exact Separation Logic
	C Proof of Soundness: ESL
	D Basics of Scott Induction
	D.1 1-dimensional Scott Instantiation
	D.2 n-dimensional Scott Instantiation

	E Soundness: Environment Formation
	F Further Examples
	F.1 List Reverse
	F.2 List Free
	F.3 List Algorithm Client
	F.4 Mutual Recursion: even/odd
	F.5 More Complex Mutual Recursion: even/odd/list length

	G Compositional Symbolic Execution
	G.1 Symbolic Execution Semantics
	G.2 Backward Completeness

