diff --git a/MetaAugment/autoaugment_learners/evo_learner.py b/MetaAugment/autoaugment_learners/evo_learner.py
index b4c2e4be596c9ce9f9b1dec0e7772f58cce72168..92347c767098d033eb0afeecd2f640a1f016e142 100644
--- a/MetaAugment/autoaugment_learners/evo_learner.py
+++ b/MetaAugment/autoaugment_learners/evo_learner.py
@@ -196,15 +196,15 @@ class evo_learner():
             Solution_idx -> Int
         """
         self.num_generations = iterations
-        self.running_best = [0 for i in range(iterations)]
-        self.running_avg = [0 for i in range(iterations)]
+        self.history_best = [0 for i in range(iterations)]
+        self.history_avg = [0 for i in range(iterations)]
         self.gen_count = 0
         self.best_model = 0
 
         self.set_up_instance()
 
         self.ga_instance.run()
-        self.running_avg = self.running_avg / self.num_solutions
+        self.history_avg = self.history_avg / self.num_solutions
 
         solution, solution_fitness, solution_idx = self.ga_instance.best_solution()
         if return_weights:
@@ -250,10 +250,11 @@ class evo_learner():
             fit_val = ((self.test_autoaugment_policy(full_policy, train_dataset, test_dataset)[0]) /
                         + self.test_autoaugment_policy(full_policy, train_dataset, test_dataset)[0]) / 2
 
-            if fit_val > self.running_best[self.gen_count]:
-                self.running_best[self.gen_count] = fit_val 
+            if fit_val > self.history_best[self.gen_count]:
+                self.history_best[self.gen_count] = fit_val 
+                self.best_model = model_weights_dict
             
-            self.running_avg[self.gen_count] += fit_val
+            self.history_avg[self.gen_count] += fit_val
             
 
             return fit_val