From 083be6414a4d4b4dfb7aaa97858cb701bd9d931c Mon Sep 17 00:00:00 2001 From: Sun Jin Kim <sk2521@ic.ac.uk> Date: Wed, 16 Feb 2022 10:43:26 +0000 Subject: [PATCH] move all datasets to /datasets/mnist folder. MAKE SURE TO USE PARAMETER DOWNLOAD=TRUE TO DOWNLOAD MNIST DATA AGAIN --- MetaAugment/CP2_Max.py | 8 ++++---- MetaAugment/UCB1_JC.ipynb | 4 ++-- MetaAugment/__pycache__/main.cpython-38.pyc | Bin 1949 -> 2843 bytes MetaAugment/main.py | 7 ++++--- 4 files changed, 10 insertions(+), 9 deletions(-) diff --git a/MetaAugment/CP2_Max.py b/MetaAugment/CP2_Max.py index df325504..1ed7b470 100644 --- a/MetaAugment/CP2_Max.py +++ b/MetaAugment/CP2_Max.py @@ -90,8 +90,8 @@ def train_model(transform_idx, p): batch_size = 32 n_samples = 0.005 - train_dataset = datasets.MNIST(root='./MetaAugment/train', train=True, download=False, transform=transform_train) - test_dataset = datasets.MNIST(root='./MetaAugment/test', train=False, download=False, transform=torchvision.transforms.ToTensor()) + train_dataset = datasets.MNIST(root='./datasets/mnist/train', train=True, download=False, transform=transform_train) + test_dataset = datasets.MNIST(root='./datasets/mnist/test', train=False, download=False, transform=torchvision.transforms.ToTensor()) # create toy dataset from above uploaded data train_loader, test_loader = create_toy(train_dataset, test_dataset, batch_size, 0.01) @@ -142,8 +142,8 @@ def callback_generation(ga_instance): # ORGANISING DATA # transforms = ['RandomResizedCrop', 'RandomHorizontalFlip', 'RandomVerticalCrop', 'RandomRotation'] -train_dataset = datasets.MNIST(root='./MetaAugment/train', train=True, download=True, transform=torchvision.transforms.ToTensor()) -test_dataset = datasets.MNIST(root='./MetaAugment/test', train=False, download=True, transform=torchvision.transforms.ToTensor()) +train_dataset = datasets.MNIST(root='./datasets/mnist/train', train=True, download=True, transform=torchvision.transforms.ToTensor()) +test_dataset = datasets.MNIST(root='./datasets/mnist/test', train=False, download=True, transform=torchvision.transforms.ToTensor()) n_samples = 0.02 # shuffle and take first n_samples %age of training dataset shuffled_train_dataset = torch.utils.data.Subset(train_dataset, torch.randperm(len(train_dataset)).tolist()) diff --git a/MetaAugment/UCB1_JC.ipynb b/MetaAugment/UCB1_JC.ipynb index ac88adec..d3bbda39 100644 --- a/MetaAugment/UCB1_JC.ipynb +++ b/MetaAugment/UCB1_JC.ipynb @@ -144,8 +144,8 @@ " torchvision.transforms.ToTensor()])\n", "\n", " # open data and apply these transformations\n", - " train_dataset = datasets.MNIST(root='./MetaAugment/train', train=True, download=True, transform=transform)\n", - " test_dataset = datasets.MNIST(root='./MetaAugment/test', train=False, download=True, transform=torchvision.transforms.ToTensor())\n", + " train_dataset = datasets.MNIST(root='./datasets/mnist/train', train=True, download=True, transform=transform)\n", + " test_dataset = datasets.MNIST(root='./datasets/mnist/test', train=False, download=True, transform=torchvision.transforms.ToTensor())\n", "\n", " # create toy dataset from above uploaded data\n", " train_loader, test_loader = create_toy(train_dataset, test_dataset, batch_size, toy_size)\n", diff --git a/MetaAugment/__pycache__/main.cpython-38.pyc b/MetaAugment/__pycache__/main.cpython-38.pyc index 213ba2380b9f4137ea09f7c7fbea31a8aca33345..73b244741637ddc13240976d7760041aa3ac49ea 100644 GIT binary patch delta 1156 zcmZuw-EY)J5clrcKA-d11k#YE(n_d8r=paPR|q)~L6K0Z7V%;sRvYj7&dBka-8E4n zANP<vgQ9z^kl-IcAl~{1@X8~S{}Z0tSzo?db);F(?9BXTcK7EubAK+)KAxEg9gwfu z+m>@jv#aRU(a$e_47tzShbUUO@9=<k4jtY(z|kT{kDTt*#}5g*R4?g4nIxIu)F_tb zlrzJ$F!lHs{L^xM@hmE|ISXdEhnC0hF-I$(7F*8{S{=W1zxYcqg8F{^$op$**_zFA zX}s(|9o+^$2K|>{@HRm8DlEc@5O*TL<oM8uTD-+w_`2MKY5h9v_2@&vR4!C(>rTYl zR_}spdkGb)9O`ffs?b&!)nP1iGg30kgzDnj)gnvO9Y~yvH<=OKI-oSoQ$y(=7OLri z_7~6EuARhV7ZOgS14bLP>HjMj91Y#d)ti;`%z2C6IYZCjYJ@7UY8|wm;GsWkn^uJ@ zziJ!Tc*Z~Qhe4Cvu7b*YhmrH#H35u|_rHbYST=>!WOu*}Nj1?z<Rs0>y|iB{L9Scd z3<T+wM)u17j>ruuSRvF}cnmNi<cbpd3ekq;T$4m90=~>jlggaPq^akrj+HQ}X6JV` z+<H79x?r(bBM%ITWtnlZEl!7H#FRxQu9Dr<3`mkHZ3xVu_Mk_fDW2w|J}H#kX4`3& zn!T%V0(cdE8t#)F)`z<<`5EZFZl`&sC@f?_3z?<yUNl!IQ7|P=sW>&E?T+LkQ#auH z)lFDxPZTm9)P7k2p+z(`>PyLwK>&Bd=CqHwuC9X@1xD`CBxC*PyK}iTk!8+nf6`t} z2yTmgC3fLt|K*UES&BY}3_S~r({{0oLOegh3wR#y&!1ycleyLPEbnr*BPgvyO5q@7 zX6<Q8pO-9~L{ty3lx5eshNsL`>k#-IR9j*OC}=f1U95hv753-qbT6ni>s%hc_CNo& oVom!?Hi`d-SqHZ!qpTxH)3yMBQHZ9|0%%~r?O*}6{|>MH0}W>;L;wH) delta 232 zcmbO&HkY3-l$V!_0SMZQSd;#8PvnzfY?!EB#?O($mcrh`7$ua#7|fu_xp7|_qhyp= zaYkucT25+8d`VGaW?p<sVo73gYDv^&TP9VBC{cuLYH<ldvWm%(QDpKSrW8i8&5F!f zjEoYKdsxo12>~rF5}usMx{F%`!~_$flhxSbBrSn_O{OAokgx=ZEnK7pV#`lv<2t4* i24aGgK(ruf28!L{u*uC&Da}c>V+8VwB_{vlk_G@ppE!R2 diff --git a/MetaAugment/main.py b/MetaAugment/main.py index c68f4b1a..1f2de939 100644 --- a/MetaAugment/main.py +++ b/MetaAugment/main.py @@ -82,7 +82,7 @@ class AA_Learner: def __init__(self, controller): self.controller = controller - def learn(self, dataset, child_network, toy_flag): + def learn(self, train_dataset, test_dataset, child_network, toy_flag): ''' Deos what is seen in Figure 1 in the AutoAugment paper. @@ -94,9 +94,10 @@ class AA_Learner: while not good_policy_found: policy = self.controller.pop_policy() - train_loader, test_loader = prepare_dataset(dataset, policy, toy_flag) + train_loader, test_loader = create_toy(train_dataset, test_dataset, + batch_size=32, n_samples=0.005) - reward = train_model(child_network, train_loader, test_loader, sgd, cost, epoch) + reward = train_child_network(child_network, train_loader, test_loader, sgd, cost, epoch) self.controller.update(reward, policy) -- GitLab