diff --git a/04_22_evo.py b/04_22_evo.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b84237c38c4f1af7a4853bfcc9acc956ea0dd49
--- /dev/null
+++ b/04_22_evo.py
@@ -0,0 +1,209 @@
+import torchvision.datasets as datasets
+import torchvision
+import torch
+
+import autoaug.child_networks as cn
+import autoaug.autoaugment_learners as aal
+
+
+controller = cn.EasyNet(img_height=32, img_width=32, num_labels=16*10, img_channels=3)
+
+config = {
+        'sp_num' : 5,
+        'learning_rate' : 1e-1,
+        'batch_size' : 32,
+        'max_epochs' : 100,
+        'early_stop_num' : 10,
+        'controller' : controller,
+        'num_solutions' : 10,
+        }
+
+
+
+
+import torch
+
+import autoaug.autoaugment_learners as aal
+
+import pprint
+
+"""
+testing GruLearner and RsLearner on
+
+  fashionmnist with simple net
+
+ and 
+
+  cifar10 with lenet
+
+"""
+if torch.cuda.is_available():
+    device = torch.device('cuda')
+else:
+    device = torch.device('cpu')
+
+
+
+
+
+
+def run_benchmark(
+    save_file,
+    train_dataset,
+    test_dataset,
+    child_network_architecture,
+    agent_arch,
+    config,
+    total_iter=150,
+    ):
+    try:
+        # try to load agent
+        with open(save_file, 'rb') as f:
+            agent = torch.load(f, map_location=device)
+    except FileNotFoundError:
+        # if agent hasn't been saved yet, initialize the agent
+        agent = agent_arch(**config)
+
+
+    # if history is not length total_iter yet(if total_iter
+    # different policies haven't been tested yet), keep running
+    
+    print("agent history: ", agent.history)
+    while len(agent.history)<total_iter:
+        print(f'{len(agent.history)} / {total_iter}')
+        # run 1 iteration (test one new policy and update the GRU)
+        agent.learn(
+                    train_dataset=train_dataset,
+                    test_dataset=test_dataset,
+                    child_network_architecture=child_network_architecture,
+                    iterations=1
+                    )
+        # save agent every iteration
+        with open(save_file, 'wb+') as f:
+            torch.save(agent, f)
+
+    print('run_benchmark closing')
+
+
+def get_mega_policy(history, n):
+        """
+        we get the best n policies from an agent's history,
+        concatenate them to form our best mega policy
+
+        Args:
+            history (list[tuple])
+            n (int)
+        
+        Returns:
+            list[float]: validation accuracies
+        """
+        assert len(history) >= n
+
+        # agent.history is a list of (policy(list), val_accuracy(float)) tuples 
+        sorted_history = sorted(history, key=lambda x:x[1], reverse=True) # sort wrt acc
+
+        best_history = sorted_history[:n]
+
+        megapolicy = []
+        # we also want to keep track of how good the best policies were
+        # maybe if we add them all up, they'll become worse! Hopefully better tho
+        orig_accs = []
+
+        for policy,acc in best_history:
+            for subpolicy in policy:
+                megapolicy.append(subpolicy)
+            orig_accs.append(acc)
+        
+        return megapolicy, orig_accs
+
+
+def rerun_best_policy(
+    agent_pickle,
+    accs_txt,
+    train_dataset,
+    test_dataset,
+    child_network_architecture,
+    config,
+    repeat_num
+    ):
+
+    with open(agent_pickle, 'rb') as f:
+        agent = torch.load(f)
+    
+    megapol, orig_accs = get_mega_policy(agent.history,3)
+    print('mega policy to be tested:')
+    pprint.pprint(megapol)
+    print(orig_accs)
+
+    accs=[]
+    for _ in range(repeat_num):
+        print(f'{_}/{repeat_num}')
+        temp_agent = aal.AaLearner(**config)
+        accs.append(
+                temp_agent._test_autoaugment_policy(megapol,
+                                    child_network_architecture,
+                                    train_dataset,
+                                    test_dataset,
+                                    logging=False)
+                    )
+        with open(accs_txt, 'w') as f:
+            f.write(pprint.pformat(megapol))
+            f.write(str(accs))
+            f.write(f'original small policys accuracies: {orig_accs}')
+
+
+
+
+# # CIFAR10 with LeNet
+train_dataset = datasets.CIFAR10(root='./datasets/cifar10/train',
+                        train=True, download=True, transform=None)
+test_dataset = datasets.CIFAR10(root='./datasets/cifar10/train',
+                        train=False, download=True, 
+                        transform=torchvision.transforms.ToTensor())
+child_network_architecture = cn.LeNet(
+                                    img_height=32,
+                                    img_width=32,
+                                    num_labels=10,
+                                    img_channels=3
+                                    )
+
+# save_dir='./benchmark/pickles/04_22_cf_ln_rssad'
+
+# # evo
+# run_benchmark(
+#     save_file=save_dir+'.pkl',
+#     train_dataset=train_dataset,
+#     test_dataset=test_dataset,
+#     child_network_architecture=child_network_architecture,
+#     agent_arch=aal.EvoLearner,
+#     config=config,
+#     )
+
+# # rerun_best_policy(
+# #     agent_pickle=save_dir+'.pkl',
+# #     accs_txt=save_dir+'.txt',
+# #     train_dataset=train_dataset,
+# #     test_dataset=test_dataset,
+# #     child_network_architecture=child_network_architecture,
+# #     config=config,
+# #     repeat_num=5
+# #     )
+
+
+
+megapol = [(('ShearY', 0.5, 5), ('Posterize', 0.6, 5)), (('Color', 1.0, 9), ('Contrast', 1.0, 9)), (('TranslateX', 0.5, 5), ('Posterize', 0.5, 5)), (('TranslateX', 0.5, 5), ('Posterize', 0.5, 5)), (('Color', 0.5, 5), ('Posterize', 0.5, 5))]
+
+
+accs=[]
+for _ in range(10):
+    print(f'{_}/{10}')
+    temp_agent = aal.evo_learner(**config)
+    accs.append(
+            temp_agent.test_autoaugment_policy(megapol,
+                                child_network_architecture,
+                                train_dataset,
+                                test_dataset,
+                                logging=False)
+                )
+
+print("CIPHAR10 accs: ", accs)
diff --git a/autoaug/autoaugment_learners/AaLearner.py b/autoaug/autoaugment_learners/AaLearner.py
index c0566d4edba29079f70e1d3e0334393894796a03..638b92237e463f035792c3157b08a9100d9fa02c 100644
--- a/autoaug/autoaugment_learners/AaLearner.py
+++ b/autoaug/autoaugment_learners/AaLearner.py
@@ -349,7 +349,7 @@ class AaLearner:
                                 train_dataset,
                                 test_dataset,
                                 logging=False,
-                                print_every_epoch=False):
+                                print_every_epoch=True):
         """
         Given a policy (using AutoAugment paper terminology), we train a child network
         using the policy and return the accuracy (how good the policy is for the dataset and 
diff --git a/autoaug/autoaugment_learners/EvoLearner.py b/autoaug/autoaugment_learners/EvoLearner.py
index c78d0bb87e8951c52afba14855e5e1d7d6018b4a..c01aafa857a654072d129b8a724552e1adc1a7bc 100644
--- a/autoaug/autoaugment_learners/EvoLearner.py
+++ b/autoaug/autoaugment_learners/EvoLearner.py
@@ -10,28 +10,85 @@ import autoaug.controller_networks as cont_n
 
 
 class EvoLearner(AaLearner):
-    """evo algorithm
+    """Evolutionary Strategy learner
     
-    long explanatino here
+    This learner generates neural networks that predict optimal augmentation
+    policies. Hence, there is no backpropagation or gradient descent. Instead,
+    training is done by randomly changing weights of the 'parent' networks, where
+    parents are determined by their ability to produce policies that 
+    increase the accuracy of the child network.
 
     Args:
-        AaLearner (_type_): _description_
+        AaLearner: 
+            Base class of all-auto augmentation learners.
     
-        
+        sp_num: int, default 5
+            Number of subpolicies to keep in the final policy
+
+        p_bins: int, default 1
+            Number of probability bins for the controller network.
+
+        m_bins: int, default 1
+            Number of magnitude bins for the controller network
+
+        discrete_p_m: bool, default False
+            Boolean value to set if there are discrete or continuous
+            probability and mangitude bins (if False; p_bins, m_bins = 1)
+
+        exclude_method: list, default []
+            List of augmentations to be excluded from the search space
+
+        (Child Network Args)
+
+        learning_rate: float, default 1e-6
+            Learning rate of the child network
+
+        max_epochs: float, default float('inf')
+            Theoretical maximum number of epochs that the child network 
+            can be trained on 
+
+        early_stop_num: int, default 20
+            Criteria for early stopping. I.e. if the network has not improved 
+            after early_stop_num iterations, the training is stopped
+
+        batch_size: int, default 8
+            Batch size for the datasets
+
+        toy_size: float, default 1
+            If a toy dataset is created, it will be of size toy_size compared
+            to the original dataset
+
+        (Evolutionary learner specific settings)
+
+        num_solutions: int, default 5
+            Number of offspring spawned at each generation of the algorithm 
+
+        num_parents_mating: int, default 3
+            Number of networks chosen as parents for the next generation of networks 
+
+        controller: Torch Network, default cont_n.EvoController
+            Controller network for the evolutionary algorithm
+
+
     See Also
     --------
 
 
     Notes
     -----
+    The Evolutionary algorithm runs in generations, and so batches of child networks
+    are trained at specific time intervals.
 
 
     References
     ----------
+
     
 
     Examples
     --------
+    from autoaug.autoaugment_learners.EvlLearner import EvoLearner
+    evo_learner = EvoLearner()
 
 
     """
@@ -67,12 +124,13 @@ class EvoLearner(AaLearner):
                     )
 
         # evolutionary algorithm settings
-        self.controller = controller(
-                        fun_num=self.fun_num, 
-                        p_bins=self.p_bins, 
-                        m_bins=self.m_bins, 
-                        sub_num_pol=self.sp_num
-                        )
+        # self.controller = controller(
+        #                 fun_num=self.fun_num, 
+        #                 p_bins=self.p_bins, 
+        #                 m_bins=self.m_bins, 
+        #                 sub_num_pol=self.sp_num
+        #                 )
+        self.controller = controller
         self.num_solutions = num_solutions
         self.torch_ga = torchga.TorchGA(model=self.controller, num_solutions=num_solutions)
         self.num_parents_mating = num_parents_mating
@@ -184,6 +242,7 @@ class EvoLearner(AaLearner):
 
             Solution_idx -> Int
         """
+        print("learn0")
         self.num_generations = iterations
         self.history_best = []
 
@@ -244,6 +303,7 @@ class EvoLearner(AaLearner):
             self.train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=100)
             count = 0
             for idx, (test_x, label_x) in enumerate(self.train_loader):
+                print("here idx: ", idx)
                 count += 1
                 sub_pol = self._get_single_policy_cov(test_x)
 
@@ -254,8 +314,9 @@ class EvoLearner(AaLearner):
                 if idx == 0:
                     break
 
-
+            print("start test")
             fit_val = self._test_autoaugment_policy(sub_pol,child_network_architecture,train_dataset,test_dataset)
+            print("end test")
 
 
             self.running_policy.append((sub_pol, fit_val))
diff --git a/autoaug/autoaugment_learners/GenLearner.py b/autoaug/autoaugment_learners/GenLearner.py
index 349d71d3846da122360fff7579da96da950c9a87..b93d106b5a6aa72195a894965c5ae8ca47fc4507 100644
--- a/autoaug/autoaugment_learners/GenLearner.py
+++ b/autoaug/autoaugment_learners/GenLearner.py
@@ -195,6 +195,7 @@ class Genetic_learner(AaLearner):
                 policy = [self.gen_random_subpol()]
             else:
                 policy = self.bin_to_subpol(random.choice(self.generate_children()))
+            print("Policy: ", policy)
             
             reward = self._test_autoaugment_policy(policy,
                                                 child_network_architecture,
diff --git a/autoaug/main.py b/autoaug/main.py
index fd83f72d7e71e6a670335c8aafc9fc07c93c397b..5a2c0adca63d6327e3386cc9d1f040789105b931 100644
--- a/autoaug/main.py
+++ b/autoaug/main.py
@@ -50,7 +50,7 @@ def train_child_network(child_network,
                         early_stop_flag=True,
                         average_validation=[15,25],
                         logging=False,
-                        print_every_epoch=True):
+                        print_every_epoch=False):
     if torch.cuda.is_available():
         device = torch.device('cuda')
     else:
@@ -125,8 +125,8 @@ def train_child_network(child_network,
             best_acc = total_val / (average_validation[1] - average_validation[0] + 1)
             break
         
-        if print_every_epoch:
-            print('main.train_child_network best accuracy: ', best_acc)
+        # if print_every_epoch:
+        #     print('main.train_child_network best accuracy: ', best_acc)
         acc_log.append(acc)
 
         _epoch+=1
diff --git a/extract_gen.py b/extract_gen.py
new file mode 100644
index 0000000000000000000000000000000000000000..9633cdf032d39c379da604d406bb514d88cb0fb9
--- /dev/null
+++ b/extract_gen.py
@@ -0,0 +1,12 @@
+import pickle 
+
+with open('genetic_logs.pkl', 'rb') as f:
+    y = pickle.load(f)
+
+accs = [x[1] for x in y]
+
+print("accs: ", accs)
+print("len accs: ", len(accs))
+
+with open("genetic_accs.txt", "w") as output:
+    output.write(str(accs))
\ No newline at end of file
diff --git a/genetic_accs.txt b/genetic_accs.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5e3df47598d4275aa4d860e52ccbe589bf86493c
--- /dev/null
+++ b/genetic_accs.txt
@@ -0,0 +1 @@
+[0.6100000143051147, 0.7799999713897705, 0.6700000166893005, 0.1599999964237213, 0.7200000286102295, 0.7400000095367432, 0.550000011920929, 0.5600000023841858, 0.6000000238418579, 0.550000011920929, 0.699999988079071, 0.3700000047683716, 0.699999988079071, 0.7699999809265137, 0.6800000071525574, 0.38999998569488525, 0.7400000095367432, 0.5799999833106995, 0.3700000047683716, 0.4699999988079071, 0.7099999785423279, 0.6399999856948853, 0.6200000047683716, 0.6200000047683716, 0.6899999976158142, 0.7099999785423279, 0.1599999964237213, 0.49000000953674316, 0.7099999785423279, 0.3700000047683716, 0.699999988079071, 0.6299999952316284, 0.75, 0.6700000166893005, 0.6600000262260437, 0.7400000095367432, 0.6299999952316284, 0.5099999904632568, 0.5099999904632568, 0.1599999964237213, 0.6700000166893005, 0.38999998569488525, 0.6600000262260437, 0.5699999928474426, 0.5799999833106995, 0.3400000035762787, 0.5400000214576721, 0.6100000143051147, 0.09000000357627869, 0.75, 0.7900000214576721, 0.6800000071525574, 0.1599999964237213, 0.5099999904632568, 0.6800000071525574, 0.5, 0.6299999952316284, 0.7300000190734863, 0.6399999856948853, 0.7400000095367432, 0.5799999833106995, 0.7699999809265137, 0.6399999856948853, 0.7099999785423279, 0.49000000953674316, 0.30000001192092896, 0.7200000286102295, 0.46000000834465027, 0.6200000047683716, 0.4399999976158142, 0.1599999964237213, 0.23000000417232513, 0.6899999976158142, 0.1599999964237213, 0.7300000190734863, 0.7099999785423279, 0.800000011920929, 0.46000000834465027, 0.7099999785423279, 0.7300000190734863, 0.2199999988079071, 0.6700000166893005, 0.7099999785423279, 0.4000000059604645, 0.5400000214576721, 0.4300000071525574, 0.75, 0.1599999964237213, 0.6399999856948853, 0.6399999856948853, 0.6499999761581421, 0.7900000214576721, 0.7400000095367432, 0.6399999856948853, 0.5899999737739563, 0.7099999785423279, 0.5199999809265137, 0.5, 0.7099999785423279, 0.6299999952316284]
\ No newline at end of file
diff --git a/genetic_logs.pkl b/genetic_logs.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..3b78e572c81572887c4eb3cbdc19d19870637040
Binary files /dev/null and b/genetic_logs.pkl differ
diff --git a/ttest_gen.py b/ttest_gen.py
index 3dd462dac9e2f544498a218537e80fc2a939990d..26f7ffa3a067ff8fdeb359403bdf1603ebf1f2ba 100644
--- a/ttest_gen.py
+++ b/ttest_gen.py
@@ -9,19 +9,35 @@ from autoaug.autoaugment_learners.AaLearner import AaLearner
 from autoaug.autoaugment_learners.GenLearner import Genetic_learner
 
 import random
+import pickle
     
 # train_dataset = datasets.MNIST(root='./datasets/mnist/train',
 #                                 train=True, download=True, transform=None)
 # test_dataset = datasets.MNIST(root='./datasets/mnist/test', 
 #                         train=False, download=True, transform=torchvision.transforms.ToTensor())
-train_dataset = datasets.FashionMNIST(root='./datasets/fashionmnist/train',
+# train_dataset = datasets.FashionMNIST(root='./datasets/fashionmnist/train',
+#                         train=True, download=True, transform=None)
+# test_dataset = datasets.FashionMNIST(root='./datasets/fashionmnist/test', 
+#                         train=False, download=True,
+#                         transform=torchvision.transforms.ToTensor())
+
+
+train_dataset = datasets.CIFAR10(root='./datasets/cifar10/train',
                         train=True, download=True, transform=None)
-test_dataset = datasets.FashionMNIST(root='./datasets/fashionmnist/test', 
-                        train=False, download=True,
+test_dataset = datasets.CIFAR10(root='./datasets/cifar10/train',
+                        train=False, download=True, 
                         transform=torchvision.transforms.ToTensor())
+
 child_network_architecture = cn.lenet
 # child_network_architecture = cn.lenet()
 
+child_network_architecture = cn.LeNet(
+                                    img_height=32,
+                                    img_width=32,
+                                    num_labels=10,
+                                    img_channels=3
+                                    )
+
 agent = Genetic_learner(
                             sp_num=2,
                             toy_size=0.01,
@@ -38,6 +54,12 @@ agent.learn(train_dataset,
             child_network_architecture=child_network_architecture,
             iterations=100)
 
-# with open('genetic_logs.pkl', 'wb') as file:
-#                 pickle.dump(agent.history, file)
-print(sorted(agent.history, key = lambda x: x[1]))
\ No newline at end of file
+with open('genetic_logs.pkl', 'wb') as file:
+                pickle.dump(agent.history, file)
+print(sorted(agent.history, key = lambda x: x[1], reverse = True))
+
+print("ACCURACIES IN TIME: ")
+
+for iter, (pol, acc) in enumerate(agent.history):
+    print("pol: ", pol)
+    print("acc: ", acc)
\ No newline at end of file