diff --git a/.DS_Store b/.DS_Store index dc6600646c5fa4ef00941aabeef5bfd0226c9111..baec9d27c833adc893defb9b28fc452512a33b26 100644 Binary files a/.DS_Store and b/.DS_Store differ diff --git a/.gitignore copy b/.gitignore copy deleted file mode 100644 index 6dc91d8183037294b495ac1607c0f4e4e248edcc..0000000000000000000000000000000000000000 --- a/.gitignore copy +++ /dev/null @@ -1,157 +0,0 @@ -# Byte-compiled / optimized / DLL files -__pycache__/ -**/__pycache__/ -**/datasets/ -*.py[cod] -*$py.class -*.pyc -*.pyo - -# C extensions -*.so - -# Distribution / packaging -.Python -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -share/python-wheels/ -*.egg-info/ -.installed.cfg -*.egg -MANIFEST - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.nox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -*.py,cover -.hypothesis/ -.pytest_cache/ -cover/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py -db.sqlite3 -db.sqlite3-journal - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -.pybuilder/ -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# IPython -profile_default/ -ipython_config.py - -# pyenv -# For a library or package, you might want to ignore these files since the code is -# intended to run in multiple environments; otherwise, check them in: -# .python-version - -# pipenv -# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. -# However, in case of collaboration, if having platform-specific dependencies or dependencies -# having no cross-platform support, pipenv may install dependencies that don't work, or not -# install all needed dependencies. -#Pipfile.lock - -# poetry -# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. -# This is especially recommended for binary packages to ensure reproducibility, and is more -# commonly ignored for libraries. -# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control -#poetry.lock - -# PEP 582; used by e.g. github.com/David-OConnor/pyflow -__pypackages__/ - -# Celery stuff -celerybeat-schedule -celerybeat.pid - -# SageMath parsed files -*.sage.py - -# Environments -.env -.venv -env/ -venv/ -ENV/ -env.bak/ -venv.bak/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ -.dmypy.json -dmypy.json - -# Pyre type checker -.pyre/ - -# pytype static type analyzer -.pytype/ - -# Cython debug symbols -cython_debug/ - -# PyCharm -# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can -# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore -# and can be added to the global gitignore or merged into this file. For a more nuclear -# option (not recommended) you can uncomment the following to ignore the entire idea folder. -#.idea/ -MetaAugment/__pycache__/main.cpython-38.pyc diff --git a/MetaAugment/UCB1_JC.py b/MetaAugment/UCB1_JC.py index 6c121a539e69cc8d1ac0cf22b66e8fa1d50738a7..1986368aff7f5d42e966f61e0cf17424d0f2fb7e 100644 --- a/MetaAugment/UCB1_JC.py +++ b/MetaAugment/UCB1_JC.py @@ -230,20 +230,20 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl # open data and apply these transformations if ds == "MNIST": - train_dataset = datasets.MNIST(root='./MetaAugment/train', train=True, download=True, transform=transform) - test_dataset = datasets.MNIST(root='./MetaAugment/test', train=False, download=True, transform=transform) + train_dataset = datasets.MNIST(root='./MetaAugment/datasets/mnist/train', train=True, download=True, transform=transform) + test_dataset = datasets.MNIST(root='./MetaAugment/datasets/mnist/test', train=False, download=True, transform=transform) elif ds == "KMNIST": - train_dataset = datasets.KMNIST(root='./MetaAugment/train', train=True, download=True, transform=transform) - test_dataset = datasets.KMNIST(root='./MetaAugment/test', train=False, download=True, transform=transform) + train_dataset = datasets.KMNIST(root='./MetaAugment/datasets/kmnist/train', train=True, download=True, transform=transform) + test_dataset = datasets.KMNIST(root='./MetaAugment/datasets/kmnist/test', train=False, download=True, transform=transform) elif ds == "FashionMNIST": - train_dataset = datasets.FashionMNIST(root='./MetaAugment/train', train=True, download=True, transform=transform) - test_dataset = datasets.FashionMNIST(root='./MetaAugment/test', train=False, download=True, transform=transform) + train_dataset = datasets.FashionMNIST(root='./MetaAugment/datasets/fashionmnist/train', train=True, download=True, transform=transform) + test_dataset = datasets.FashionMNIST(root='./MetaAugment/datasets/fashionmnist/test', train=False, download=True, transform=transform) elif ds == "CIFAR10": - train_dataset = datasets.CIFAR10(root='./MetaAugment/train', train=True, download=True, transform=transform) - test_dataset = datasets.CIFAR10(root='./MetaAugment/test', train=False, download=True, transform=transform) + train_dataset = datasets.CIFAR10(root='./MetaAugment/datasets/fashionmnist/train', train=True, download=True, transform=transform) + test_dataset = datasets.CIFAR10(root='./MetaAugment/datasets/fashionmnist/test', train=False, download=True, transform=transform) elif ds == "CIFAR100": - train_dataset = datasets.CIFAR100(root='./MetaAugment/train', train=True, download=True, transform=transform) - test_dataset = datasets.CIFAR100(root='./MetaAugment/test', train=False, download=True, transform=transform) + train_dataset = datasets.CIFAR100(root='./MetaAugment/datasets/fashionmnist/train', train=True, download=True, transform=transform) + test_dataset = datasets.CIFAR100(root='./MetaAugment/datasets/fashionmnist/test', train=False, download=True, transform=transform) # check sizes of images img_height = len(train_dataset[0][0][0]) diff --git a/auto_augmentation/.DS_Store b/auto_augmentation/.DS_Store index 423820404538e588d0dd42d7334bc8603eccb1b8..a13c2cd854aa7d796b880950521b62a06b64e87c 100644 Binary files a/auto_augmentation/.DS_Store and b/auto_augmentation/.DS_Store differ diff --git a/auto_augmentation/progress.py b/auto_augmentation/progress.py index 77845a0260cf6c2494e8111f69fce2fdbf3124a8..411e8c5551a7580641008f1943c3d67d248f7629 100644 --- a/auto_augmentation/progress.py +++ b/auto_augmentation/progress.py @@ -17,7 +17,7 @@ from tqdm import trange torch.manual_seed(0) # import agents and its functions -from MetaAugment import UCB1_JC_py as UCB1_JC +from MetaAugment import UCB1_JC as UCB1_JC diff --git a/auto_augmentation/static/.DS_Store b/auto_augmentation/static/.DS_Store index cbf9ce2f5606f2ec8e9da4a923b1306d7d64d602..add86eb83dccdad155dff1db2e1c401c2959f67f 100644 Binary files a/auto_augmentation/static/.DS_Store and b/auto_augmentation/static/.DS_Store differ diff --git a/auto_augmentation/templates/home.html b/auto_augmentation/templates/home.html index 5bb10ef4f5aedb11da5e16aeb90eed9ee98ca851..99a9ecb50b272d08098c28b1c91499c21f7faa20 100644 --- a/auto_augmentation/templates/home.html +++ b/auto_augmentation/templates/home.html @@ -6,8 +6,9 @@ <h3>Choose your dataset</h3> <form action="/user_input"> <!-- upload dataset --> - <label for="dataset_upload">You can upload your dataset here:</label> - <input type="file" name="dataset_upload" class="upload"><br><br> + <label for="dataset_upload">You can upload your dataset folder here:</label> + <!-- <input type="file" name="dataset_upload" class="upload"><br><br> --> + <input type="file" webkitdirectory mozdirectory /><br><br> <!-- dataset radio button --> Or you can select a dataset from our database: <br> @@ -34,7 +35,7 @@ <!-- --------------------------------------------------------------- --> - <h3>Choose the network which the dataset is trained on</h3> + <h3>Choose the network the dataset is trained on</h3> <!-- upload network --> <label for="network_upload">Please upload your network here:</label> <input type="file" name="network_upload" class="upload"><br><br>