diff --git a/MetaAugment/autoaugment_learners/evo_learner.py b/MetaAugment/autoaugment_learners/evo_learner.py
index 34cc2d44555423475914a1ba2528cfddb71aad57..c1ba5ed47f54b86d2a11ce4dac887608733eda7c 100644
--- a/MetaAugment/autoaugment_learners/evo_learner.py
+++ b/MetaAugment/autoaugment_learners/evo_learner.py
@@ -1,12 +1,12 @@
 import torch
-torch.manual_seed(0)
 import torch.nn as nn
 import pygad
 import pygad.torchga as torchga
-import copy
+import torchvision
 import torch
 
 from MetaAugment.autoaugment_learners.aa_learner import aa_learner
+import MetaAugment.controller_networks as cont_n
 
 
 class evo_learner(aa_learner):
@@ -14,7 +14,7 @@ class evo_learner(aa_learner):
     def __init__(self, 
                 # search space settings
                 sp_num=5,
-                p_bins=10, 
+                p_bins=11, 
                 m_bins=10, 
                 discrete_p_m=False,
                 exclude_method=[],
@@ -27,7 +27,7 @@ class evo_learner(aa_learner):
                 # evolutionary learner specific settings
                 num_solutions=5,
                 num_parents_mating=3,
-                controller=None
+                controller=cont_n.evo_controller
                 ):
 
         super().__init__(
@@ -43,14 +43,19 @@ class evo_learner(aa_learner):
                     exclude_method=exclude_method
                     )
 
+        # evolutionary algorithm settings
+        self.controller = controller(
+                        fun_num=self.fun_num, 
+                        p_bins=self.p_bins, 
+                        m_bins=self.m_bins, 
+                        sub_num_pol=self.sp_num
+                        )
         self.num_solutions = num_solutions
-        self.controller = controller
         self.torch_ga = torchga.TorchGA(model=self.controller, num_solutions=num_solutions)
         self.num_parents_mating = num_parents_mating
         self.initial_population = self.torch_ga.population_weights
-        self.p_bins = p_bins 
-        self.sub_num_pol = sp_num
-        self.m_bins = m_bins
+
+        # store our logs
         self.policy_dict = {}
         self.policy_result = []
 
@@ -77,7 +82,7 @@ class evo_learner(aa_learner):
         section = self.fun_num + self.p_bins + self.m_bins
         y = self.controller.forward(x)
         full_policy = []
-        for pol in range(self.sub_num_pol):
+        for pol in range(self.sp_num):
             int_pol = []
             for _ in range(2):
                 idx_ret = torch.argmax(y[:, (pol * section):(pol*section) + self.fun_num].mean(dim = 0))
@@ -277,6 +282,7 @@ class evo_learner(aa_learner):
                                                             weights_vector=solution)
 
             self.controller.load_state_dict(model_weights_dict)
+            train_dataset.transform = torchvision.transforms.ToTensor()
             self.train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size)
 
             for idx, (test_x, label_x) in enumerate(self.train_loader):
diff --git a/temp_util/wapp_util.py b/temp_util/wapp_util.py
index cde572f7f1e0ba1590fb5685b7212f4d0b3b173a..bb10113311f77d32f3f0b996e76d71f16fa0d184 100644
--- a/temp_util/wapp_util.py
+++ b/temp_util/wapp_util.py
@@ -54,6 +54,7 @@ def parse_users_learner_spec(
                         p_bins=11,
                         m_bins=10,
                         discrete_p_m=True,
+                        exclude_method=exclude_method,
                         # hyperparameters for when training the child_network
                         batch_size=batch_size,
                         toy_size=toy_size,
@@ -63,52 +64,55 @@ def parse_users_learner_spec(
                         # ucb_learner specific hyperparameter
                         num_policies=num_policies
                         )
-        pprint(learner.policies)
-        
-        learner.learn(
-            train_dataset=train_dataset,
-            test_dataset=test_dataset,
-            child_network_architecture=child_archi,
-            iterations=5
-            )
     elif auto_aug_learner == 'Evolutionary Learner':
-        network = cont_n.evo_controller(fun_num=num_funcs, p_bins=1, m_bins=1, sub_num_pol=1)
-        child_network = cn.LeNet()
         learner = aal.evo_learner(
-                                network=network, 
-                                fun_num=num_funcs, 
-                                p_bins=1, 
-                                mag_bins=1, 
-                                sub_num_pol=1, 
-                                ds = ds, 
-                                ds_name=ds_name, 
-                                exclude_method=exclude_method, 
-                                child_network=child_network
-                                )
+                        # parameters that define the search space
+                        sp_num=num_sub_policies,
+                        p_bins=11,
+                        m_bins=10,
+                        discrete_p_m=True,
+                        exclude_method=exclude_method,
+                        # hyperparameters for when training the child_network
+                        batch_size=batch_size,
+                        toy_size=toy_size,
+                        learning_rate=learning_rate,
+                        max_epochs=max_epochs,
+                        early_stop_num=early_stop_num,
+                        )
         learner.run_instance()
     elif auto_aug_learner == 'Random Searcher':
         agent = aal.randomsearch_learner(
-                                        sp_num=num_sub_policies,
-                                        batch_size=batch_size,
-                                        learning_rate=learning_rate,
-                                        toy_size=toy_size,
-                                        max_epochs=max_epochs,
-                                        early_stop_num=early_stop_num,
-                                        )
-        agent.learn(train_dataset,
-                    test_dataset,
-                    child_network_architecture=child_archi,
-                    iterations=iterations)
+                        # parameters that define the search space
+                        sp_num=num_sub_policies,
+                        p_bins=11,
+                        m_bins=10,
+                        discrete_p_m=True,
+                        exclude_method=exclude_method,
+                        # hyperparameters for when training the child_network
+                        batch_size=batch_size,
+                        toy_size=toy_size,
+                        learning_rate=learning_rate,
+                        max_epochs=max_epochs,
+                        early_stop_num=early_stop_num,
+                        )
     elif auto_aug_learner == 'GRU Learner':
         agent = aal.gru_learner(
-                                sp_num=num_sub_policies,
-                                batch_size=batch_size,
-                                learning_rate=learning_rate,
-                                toy_size=toy_size,
-                                max_epochs=max_epochs,
-                                early_stop_num=early_stop_num,
-                                )
-        agent.learn(train_dataset,
-                    test_dataset,
-                    child_network_architecture=child_archi,
-                    iterations=iterations)
\ No newline at end of file
+                        # parameters that define the search space
+                        sp_num=num_sub_policies,
+                        p_bins=11,
+                        m_bins=10,
+                        discrete_p_m=True,
+                        exclude_method=exclude_method,
+                        # hyperparameters for when training the child_network
+                        batch_size=batch_size,
+                        toy_size=toy_size,
+                        learning_rate=learning_rate,
+                        max_epochs=max_epochs,
+                        early_stop_num=early_stop_num,
+                        )
+
+
+    agent.learn(train_dataset,
+                test_dataset,
+                child_network_architecture=child_archi,
+                iterations=iterations)
\ No newline at end of file