diff --git a/.DS_Store b/.DS_Store
index baec9d27c833adc893defb9b28fc452512a33b26..e6f5e7034d6775317445e189de9a5c05cd29a9ba 100644
Binary files a/.DS_Store and b/.DS_Store differ
diff --git a/MetaAugment/.DS_Store b/MetaAugment/.DS_Store
index a48940a7b5f1285196b9a33f1f3f865b9ff7c9e3..51dae9e39fbd6258bc399e1b0eaf45c1f48a6c61 100644
Binary files a/MetaAugment/.DS_Store and b/MetaAugment/.DS_Store differ
diff --git a/MetaAugment/UCB1_JC_py.py b/MetaAugment/UCB1_JC_py.py
index 66bacb32e8896f486422bd4661c4c1f5699589ce..252a2551a68b3a0494736ec14c242e21960a6bb4 100644
--- a/MetaAugment/UCB1_JC_py.py
+++ b/MetaAugment/UCB1_JC_py.py
@@ -252,9 +252,6 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl
             len_train = int(0.8*len(dataset))
             train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len_train, len(dataset)-len_train])
 
-        print('train_dataset', len(train_dataset), 'test_dataset', len(test_dataset))
-
-
         # check sizes of images
         img_height = len(train_dataset[0][0][0])
         img_width = len(train_dataset[0][0][0][0])
@@ -335,7 +332,7 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl
         best_q_value = max(q_values)
         best_q_values.append(best_q_value)
 
-        if (policy+1) % 1 == 0:
+        if (policy+1) % 5 == 0:
             print("Iteration: {},\tQ-Values: {}, Best Policy: {}".format(policy+1, list(np.around(np.array(q_values),2)), max(list(np.around(np.array(q_values),2)))))
 
         # update counts
@@ -347,6 +344,7 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl
             for i in range(num_policies):
                 q_plus_cnt[i] = q_values[i] + np.sqrt(2*np.log(total_count)/cnts[i])
 
+        # yield q_values, best_q_values
     return q_values, best_q_values
 
 
diff --git a/MetaAugment/child_networks/assessment (13).pdf b/MetaAugment/child_networks/assessment (13).pdf
deleted file mode 100644
index b03eef50c54bdce4130b92a7acbb4f8ad1cf7ba7..0000000000000000000000000000000000000000
Binary files a/MetaAugment/child_networks/assessment (13).pdf and /dev/null differ
diff --git a/app.py b/app.py
index 7ce0ae47eee0afa3e6d978ae7e59557407d6af1a..e7f2352e42c9df32fed17eb90b7002fee345ca72 100644
--- a/app.py
+++ b/app.py
@@ -19,6 +19,5 @@ port = int(os.environ.get("PORT", 5000))
 
 
 
-
 if __name__ == '__main__':
     app.run(debug=True)
\ No newline at end of file
diff --git a/auto_augmentation/progress.py b/auto_augmentation/progress.py
index c6fa0081a0b0457a41849affe51e984a0c45e1a7..a641964994eee434f497fcb131e84922cca9aad5 100644
--- a/auto_augmentation/progress.py
+++ b/auto_augmentation/progress.py
@@ -39,7 +39,7 @@ def response():
         early_stop_num = 10   # max number of worse validation scores before early stopping is triggered
         num_policies = 5      # fix number of policies
         num_sub_policies = 5  # fix number of sub-policies in a policy
-        iterations = 10      # total iterations, should be more than the number of policies
+        iterations = 5      # total iterations, should be more than the number of policies
         IsLeNet = request.form.get("network_selection")   # using LeNet or EasyNet or SimpleNet ->> default 
 
         print(f'@@@@@ dataset is: {ds}, network is :{IsLeNet}')
@@ -66,6 +66,11 @@ def response():
         # generate random policies at start
         policies = UCB1_JC.generate_policies(num_policies, num_sub_policies)
         q_values, best_q_values = UCB1_JC.run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, early_stop_num, iterations, IsLeNet, ds_name)
+        print("q_values: ", q_values)
+
+        plt.figure()
+        plt.plot(q_values)
+        plt.savefig('/static/image/test.png')
 
         # plt.plot(best_q_values)
 
diff --git a/auto_augmentation/templates/basic.html b/auto_augmentation/templates/basic.html
index db609ea5f49ca101d3394b2e1219c1488160908b..9c47ba6a00c5cf9920c4f3f96f8810b2bd530018 100644
--- a/auto_augmentation/templates/basic.html
+++ b/auto_augmentation/templates/basic.html
@@ -1,5 +1,18 @@
 <!doctype html>
 <html>
+  <style>
+    #myProgress {
+      width: 100%;
+      background-color: #ddd;
+    }
+    
+    #myBar {
+      width: 1%;
+      height: 30px;
+      background-color: #04AA6D;
+    }
+    </style>
+
   <head>
     {% block head %}
     <title>{% block title %}{% endblock %} - Meta Reinforcement Learning for Data Augmentation</title>
diff --git a/auto_augmentation/templates/home.html b/auto_augmentation/templates/home.html
index 010cdfd89c7e2681926467af0f2444cd922c9992..4e423f21ad6d36df55cf1d9b7c58b3e7466da8de 100644
--- a/auto_augmentation/templates/home.html
+++ b/auto_augmentation/templates/home.html
@@ -129,32 +129,105 @@
   <label for="Invert">Invert</label><br><br><br>
 
 
-  <!-- <div id="exclude_augments" class="dropdown-check-list" tabindex="100">
-    <span class="anchor">Select data augmentation method(s) to exclude:</span>
-    <ul class="items">
-      <input type="checkbox" />Translate 
-      <input type="checkbox" />Rotate
-      <input type="checkbox" />AutoContrast 
-      <input type="checkbox" />Equalize 
-      <br>
-      <input type="checkbox" />Solarize
-      <input type="checkbox" />Posterize 
-      <input type="checkbox" />Contrast
-      <input type="checkbox" />Brightness
-    </ul>
-  </div> -->
-
-  <div id="exclude_augments">
-    <span class="anchor">Hyperparameter (Learning Rate):</span>
-    <ul class="items">
-      Automatic: <input type="checkbox" /> <div></div>
-      Manual: <input type="number" />
-    </ul>
-  </div>
-
   
+  <div id="like_button_container"></div>
+  <script src="https://unpkg.com/react@18/umd/react.development.js" crossorigin></script>
+
+  <script src="https://unpkg.com/react-dom@18/umd/react-dom.development.js" crossorigin></script>
+  <!-- <script src="metarl/auto_augmentation/templates/like_button.js"></script> -->
+
+  <script type = 'module'> 
+  // 'use strict';
+    import React from 'react';
+    import ReactDOM from 'react-dom';
+
+  </script>
+   
+
+  <script>
+   const e = React.createElement;
+
+   class LikeButton extends React.Component {
+     constructor(props) {
+       super(props);
+       this.state = { liked: false };
+     }
+   
+     render() {
+       if (this.state.liked) {
+         return 'You liked this.';
+       }
+   
+       return e(
+         'button',
+         { onClick: () => this.setState({ liked: true }) },
+         'Like'
+       );
+     }
+   }
+   
+  
+   const domContainer = document.querySelector('#like_button_container');
+   const root = ReactDOM.createRoot(domContainer);
+   root.render(e(LikeButton));
+   </script>
+  
+
+
+
+
+
+
+
+  <!-- 3
+  <div id="mydiv"></div>
+
+    <script type="text/babel" type="javascript">
+      import ReactDOM from 'react-dom';
+      function Hello() {
+        return <h1>Hello World!</h1>;
+      }
+
+      ReactDOM.render(<Hello />, document.getElementById('mydiv'))
+    </script>
+  3 -->
+
+
+  <!-- ----------------- -->
+
+
+  <!-- <script
+    src="https://unpkg.com/react@16/umd/react.production.min.js"
+    crossorigin
+    type="javascript"
+  ></script>
+  <script
+    src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"
+    crossorigin
+  ></script>
+  <script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>
+
+  <script type="text/babel" src="WelcomeBack.js"></script>
+  <script type="text/babel" src="CoolButton.js"></script>
+
+  <script type="text/babel">
+    ReactDOM.render(<WelcomeBack />, document.querySelector(".welcome-back"));
+  </script> -->
+
+
+
+
+
+
+
+
+
+
 
   <input type="submit">
+
+
 </form>
-  
+ 
+
 {% endblock %}
diff --git a/auto_augmentation/templates/like_button.js b/auto_augmentation/templates/like_button.js
new file mode 100644
index 0000000000000000000000000000000000000000..2e45150f6e4c1c2752910065dd4cc9c1e29fc9ca
--- /dev/null
+++ b/auto_augmentation/templates/like_button.js
@@ -0,0 +1,29 @@
+'use strict';
+ import React from 'react';
+ import ReactDOM from 'react-dom';
+
+const e = React.createElement;
+console.log('hello')
+class LikeButton extends React.Component {
+  constructor(props) {
+    super(props);
+    this.state = { liked: false };
+  }
+
+  render() {
+    if (this.state.liked) {
+      return <p>'You liked this.'</p>;
+    }
+
+    return e(
+      'button',
+      { onClick: () => this.setState({ liked: true }) },
+      'Like'
+    );
+  }
+}
+
+
+const domContainer = document.querySelector('#like_button_container');
+const root = ReactDOM.createRoot(domContainer);
+root.render(e(LikeButton));
\ No newline at end of file
diff --git a/auto_augmentation/templates/progress.html b/auto_augmentation/templates/progress.html
index ea4c33d713224bd889f147ddcb5f8d2e6fb0b6f7..7228b06b1c398e6d55b5472b47dd0db2d304bea8 100644
--- a/auto_augmentation/templates/progress.html
+++ b/auto_augmentation/templates/progress.html
@@ -5,10 +5,39 @@ Training the model...
 
 <div>
     <img src="{{url_for('static', filename='image/training_plot.png')}}" class="img-thumbnail" />
+
+  
+    <div id="myProgress">
+        <div id="myBar"></div>
+    </div>
+      
+    <br>
+    <button onclick="move()">Click Me</button> 
+    
+    <script>
+    var i = 0;
+    function move() {
+        if (i == 0) {
+            i = 1;
+            var elem = document.getElementById("myBar");
+            var width = 1;
+            var id = setInterval(frame, 10);
+            function frame() {
+                if (width >= 100) {
+                    clearInterval(id);
+                    i = 0;
+                } else {
+                    width++;
+                    elem.style.width = width + "%";
+                }
+            }
+        }
+    }
+    </script>
+
     <form action="/show_result">
         <input type="submit" value='Show Result'>
     </form>
-
 </div>
  
 {% endblock %}
\ No newline at end of file