diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index df6506e28a7767cd17b4c6e4ea15ebb3c4416d85..9d829da36400d8e3f5b33efa0197f101747a34b3 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -1,14 +1,17 @@
-build-job:
-  stage: build
-  script:
-    - python3 -m venv venv
-    - . venv/bin/activate
-    - pip3 install wheel
-    - pip3 install -r requirements.txt --no-cache-dir
+# build-job:
+#   stage: build
+#   script:
+#     - python3 -m venv venv
+#     - . venv/bin/activate
+#     - pip3 install wheel
+#     - pip3 install -r requirements.txt --no-cache-dir
 
 test-job:
   stage: test
   script:
+    - python3 -m venv venv
+    - . venv/bin/activate
+    - pip3 install -r requirements.txt --no-cache-dir
     - pytest
 
 # deploy-job:
diff --git a/MetaAugment/UCB1_JC_py.py b/MetaAugment/UCB1_JC_py.py
index 8ba8c93d7cfd6fb5fad91499e5a46faad7c1d91a..27322463dc6b679751aac4b2483f0e12f4352cdb 100644
--- a/MetaAugment/UCB1_JC_py.py
+++ b/MetaAugment/UCB1_JC_py.py
@@ -102,7 +102,7 @@ def sample_sub_policy(policies, policy, num_sub_policies):
 
 
 """Sample policy, open and apply above transformations"""
-def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, early_stop_num, iterations, IsLeNet, ds_name=None):
+def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, early_stop_num, early_stop_flag, average_validation, iterations, IsLeNet, ds_name=None):
 
     # get number of policies and sub-policies
     num_policies = len(policies)
@@ -172,12 +172,13 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl
         train_loader, test_loader = create_toy(train_dataset, test_dataset, batch_size, toy_size)
 
         # create model
+	device = 'cuda' if torch.cuda.is_available() else 'cpu'
         if IsLeNet == "LeNet":
-            model = LeNet(img_height, img_width, num_labels, img_channels)
+            model = LeNet(img_height, img_width, num_labels, img_channels).to(device) # added .to(device)
         elif IsLeNet == "EasyNet":
-            model = EasyNet(img_height, img_width, num_labels, img_channels)
+            model = EasyNet(img_height, img_width, num_labels, img_channels).to(device) # added .to(device)
         elif IsLeNet == 'SimpleNet':
-            model = SimpleNet(img_height, img_width, num_labels, img_channels)
+            model = SimpleNet(img_height, img_width, num_labels, img_channels).to(device) # added .to(device)
         else:
             model = pickle.load(open(f'datasets/childnetwork', "rb"))
 
@@ -185,8 +186,8 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl
         cost = nn.CrossEntropyLoss()
 
         best_acc = train_child_network(model, train_loader, test_loader, sgd,
-                         cost, max_epochs, early_stop_num, logging=False,
-                         print_every_epoch=False)
+                         cost, max_epochs, early_stop_num, early_stop_flag,
+			 average_validation, logging=False, print_every_epoch=False)
 
         # update q_values
         if policy < num_policies:
@@ -222,6 +223,8 @@ if __name__=='__main__':
     toy_size = 0.02       # total propeortion of training and test set we use
     max_epochs = 100      # max number of epochs that is run if early stopping is not hit
     early_stop_num = 10   # max number of worse validation scores before early stopping is triggered
+    early_stop_flag = True        # implement early stopping or not
+    average_validation = [15,25]  # if not implementing early stopping, what epochs are we averaging over
     num_policies = 5      # fix number of policies
     num_sub_policies = 5  # fix number of sub-policies in a policy
     iterations = 100      # total iterations, should be more than the number of policies
@@ -230,7 +233,7 @@ if __name__=='__main__':
     # generate random policies at start
     policies = generate_policies(num_policies, num_sub_policies)
 
-    q_values, best_q_values = run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, early_stop_num, iterations, IsLeNet)
+    q_values, best_q_values = run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, early_stop_num, early_stop_flag, average_validation, iterations, IsLeNet)
 
     plt.plot(best_q_values)
 
diff --git a/MetaAugment/main.py b/MetaAugment/main.py
index b9642879b5896f8f874b230267a36384acd38291..61dec50cc98134d6931d721c79b2d53fd11c750f 100644
--- a/MetaAugment/main.py
+++ b/MetaAugment/main.py
@@ -41,6 +41,8 @@ def train_child_network(child_network,
                         cost,
                         max_epochs=2000,
                         early_stop_num=10,
+                        early_stop_flag=True,
+                        average_validation=[15,25],
                         logging=False,
                         print_every_epoch=True):
     if torch.cuda.is_available():
@@ -94,17 +96,26 @@ def train_child_network(child_network,
                 # correct += torch.sum(_.numpy(), axis=-1)
                 _sum += _.shape[0]
         
-        # update best validation accuracy if it was higher, otherwise increase early stop count
+        
         acc = correct / _sum
 
+        if average_validation[0] <= _epoch <= average_validation[1]:
+            total_val += acc
+
+	# update best validation accuracy if it was higher, otherwise increase early stop count
         if acc > best_acc :
             best_acc = acc
             early_stop_cnt = 0
         else:
             early_stop_cnt += 1
 
-        # exit if validation gets worse over 10 runs
-        if early_stop_cnt >= early_stop_num:
+        # exit if validation gets worse over 10 runs and using early stopping
+        if early_stop_cnt >= early_stop_num and early_stop_flag:
+            break
+
+        # exit if using fixed epoch length
+        if _epoch >= average_validation[1] and not early_stop_flag:
+            best_acc = total_val / (average_validation[1] - average_validation[0] + 1)
             break
         
         if print_every_epoch:
diff --git a/requirements.txt b/requirements.txt
index 6892830fe80aef2d9340766deb85b60815f117f7..a19a95d5bc34cbf5c929cdc214e7ed249757ea16 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -2,8 +2,9 @@ torch
 torchvision
 numpy
 Flask
+wheel
 react
 pytest
 tqdm
 pygad
-matplotlib
\ No newline at end of file
+matplotlib