diff --git a/MetaAugment/autoaugment_learners/autoaugment.py b/MetaAugment/autoaugment_learners/autoaugment.py index 6baa28cd51c6a9c2a584aea0f3c772a42e55f92c..4ad1c4ebe574c53d3b11e03b39d531efc440ae66 100644 --- a/MetaAugment/autoaugment_learners/autoaugment.py +++ b/MetaAugment/autoaugment_learners/autoaugment.py @@ -238,8 +238,6 @@ class AutoAugment(torch.nn.Module): if probs[i] <= p: op_meta = self._augmentation_space(10, F.get_image_size(img)) magnitudes, signed = op_meta[op_name] - print("magnitude_id: ", magnitude_id) - print("magnitudes[magnitude_id]: ", magnitudes[magnitude_id]) magnitude = float(magnitudes[magnitude_id].item()) if magnitude_id is not None else 0.0 if signed and signs[i] == 0: magnitude *= -1.0 diff --git a/MetaAugment/autoaugment_learners/evo_learner.py b/MetaAugment/autoaugment_learners/evo_learner.py index 6bf682c1595b0b731c4a68bfc8f619f953b31d29..d5a076b5bb9bad66a76b5346a8f79e5e36c48e2f 100644 --- a/MetaAugment/autoaugment_learners/evo_learner.py +++ b/MetaAugment/autoaugment_learners/evo_learner.py @@ -297,7 +297,7 @@ class evo_learner(aa_learner): full_policy = self.get_single_policy_cov(test_x)[0] - fit_val = self.test_autoaugment_policy(full_policy,child_network_architecture,train_dataset,test_dataset) #) / + fit_val = self._test_autoaugment_policy(full_policy,child_network_architecture,train_dataset,test_dataset) #) / # + self.test_autoaugment_policy(full_policy, train_dataset, test_dataset)) / 2 self.policy_result.append([full_policy, fit_val])