from dataclasses import dataclass from flask import Flask, request, current_app, render_template # from flask_cors import CORS import subprocess import os import zipfile import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as data_utils import torchvision import torchvision.datasets as datasets from matplotlib import pyplot as plt from numpy import save, load from tqdm import trange torch.manual_seed(0) import os import sys sys.path.insert(0, os.path.abspath('..')) # # import agents and its functions from MetaAugment.autoaugment_learners import ucb_learner as UCB1_JC from MetaAugment.autoaugment_learners import evo_learner import MetaAugment.controller_networks as cn import MetaAugment.autoaugment_learners as aal print('@@@ import successful') # import agents and its functions # from ..MetaAugment import UCB1_JC_py as UCB1_JC # from ..MetaAugment import Evo_learner as Evo # print('@@@ import successful') app = Flask(__name__) # it is used to collect user input and store them in the app @app.route('/home', methods=["GET", "POST"]) def get_form_data(): print('@@@ in Flask Home') # form_data = request.get_json() # form_data = request.files['ds_upload'] # print('@@@ form_data', form_data) form_data = request.form print('@@@ this is form data', form_data) # required input ds = form_data['select_dataset'] # pick dataset (MNIST, KMNIST, FashionMNIST, CIFAR10, CIFAR100) IsLeNet = form_data["select_network"] # using LeNet or EasyNet or SimpleNet ->> default auto_aug_learner = form_data["select_learner"] # augmentation methods to be excluded print('@@@ required user input:', 'ds', ds, 'IsLeNet:', IsLeNet, 'auto_aug_leanrer:',auto_aug_learner) # advanced input if form_data['batch_size'] != 'undefined': batch_size = form_data['batch_size'] # size of batch the inner NN is trained with else: batch_size = 1 # this is for demonstration purposes if form_data['learning_rate'] != 'undefined': learning_rate = form_data['learning_rate'] # fix learning rate else: learning_rate = 10-1 if form_data['toy_size'] != 'undefined': toy_size = form_data['toy_size'] # total propeortion of training and test set we use else: toy_size = 1 # this is for demonstration purposes if form_data['iterations'] != 'undefined': iterations = form_data['iterations'] # total iterations, should be more than the number of policies else: iterations = 10 exclude_method = form_data['select_action'] print('@@@ advanced search: batch_size:', batch_size, 'learning_rate:', learning_rate, 'toy_size:', toy_size, 'iterations:', iterations, 'exclude_method', exclude_method) # default values max_epochs = 10 # max number of epochs that is run if early stopping is not hit early_stop_num = 10 # max number of worse validation scores before early stopping is triggered num_policies = 5 # fix number of policies num_sub_policies = 5 # fix number of sub-policies in a policy # if user upload datasets and networks, save them in the database if ds == 'Other': ds_folder = request.files['ds_upload'] print('!!!ds_folder', ds_folder) ds_name_zip = ds_folder.filename ds_name = ds_name_zip.split('.')[0] ds_folder.save('./datasets/'+ ds_name_zip) with zipfile.ZipFile('./datasets/'+ ds_name_zip, 'r') as zip_ref: zip_ref.extractall('./datasets/upload_dataset/') if not current_app.debug: os.remove(f'./datasets/{ds_name_zip}') else: ds_name_zip = None ds_name = None # test if uploaded dataset meets the criteria for (dirpath, dirnames, filenames) in os.walk(f'./datasets/upload_dataset/{ds_name}/'): for dirname in dirnames: if dirname[0:6] != 'class_': return None # neet to change render to a 'failed dataset webpage' # save the user uploaded network if IsLeNet == 'Other': childnetwork = request.files['network_upload'] childnetwork.save('./child_networks/'+childnetwork.filename) network_name = childnetwork.filename else: network_name = None print("@@@ user input has all stored in the app") data = {'ds': ds, 'ds_name': ds_name_zip, 'IsLeNet': IsLeNet, 'network_name': network_name, 'auto_aug_learner':auto_aug_learner, 'batch_size': batch_size, 'learning_rate': learning_rate, 'toy_size':toy_size, 'iterations':iterations, 'exclude_method': exclude_method, } current_app.config['data'] = data print('@@@ all data sent', current_app.config['data']) return {'data': 'all stored'} # ======================================================================== @app.route('/confirm', methods=['POST', 'GET']) def confirm(): print('inside confirm page') data = current_app.config['data'] return data # ======================================================================== @app.route('/training', methods=['POST', 'GET']) def training(): # aa learner auto_aug_learner = current_app.config.get('AAL') # search space & problem setting ds = current_app.config.get('ds') ds_name = current_app.config.get('DSN') exclude_method = current_app.config.get('exc_meth') num_funcs = current_app.config.get('NUMFUN') num_policies = current_app.config.get('NP') num_sub_policies = current_app.config.get('NSP') toy_size = current_app.config.get('TS') # child network IsLeNet = current_app.config.get('ISLENET') # child network training hyperparameters batch_size = current_app.config.get('BS') early_stop_num = current_app.config.get('ESN') iterations = current_app.config.get('IT') learning_rate = current_app.config.get('LR') max_epochs = current_app.config.get('ME') # default values max_epochs = 10 # max number of epochs that is run if early stopping is not hit early_stop_num = 10 # max number of worse validation scores before early stopping is triggered num_policies = 5 # fix number of policies num_sub_policies = 5 # fix number of sub-policies in a policy data = current_app.config.get('data') if data.auto_aug_learner == 'UCB': policies = UCB1_JC.generate_policies(num_policies, num_sub_policies) q_values, best_q_values = UCB1_JC.run_UCB1( policies, data.batch_size, data.learning_rate, data.ds, data.toy_size, max_epochs, early_stop_num, data.iterations, data.IsLeNet, data.ds_name ) best_q_values = np.array(best_q_values) elif data.auto_aug_learner == 'Evolutionary Learner': network = cn.evo_controller.evo_controller(fun_num=num_funcs, p_bins=1, m_bins=1, sub_num_pol=1) child_network = aal.evo.LeNet() learner = aal.evo.evo_learner( network=network, fun_num=num_funcs, p_bins=1, mag_bins=1, sub_num_pol=1, ds = ds, ds_name=ds_name, exclude_method=exclude_method, child_network=child_network ) learner.run_instance() elif data.auto_aug_learner == 'Random Searcher': pass elif data.auto_aug_learner == 'Genetic Learner': pass return {'status': 'training done!'} # ======================================================================== @app.route('/results') def show_result(): return {'status': 'results'} @app.route('/api') def index(): return {'status': 'api test'} if __name__ == '__main__': app.run(debug=True)