from flask import Blueprint, request, render_template, flash, send_file, current_app import os import torch torch.manual_seed(0) import temp_util.wapp_util as wapp_util bp = Blueprint("training", __name__) @bp.route("/start_training", methods=["GET", "POST"]) def response(): # aa learner auto_aug_learner = current_app.config.get('AAL') # auto_aug_learner = session # search space & problem setting ds = current_app.config.get('ds') ds_name = current_app.config.get('DSN') exclude_method = current_app.config.get('exc_meth') num_funcs = current_app.config.get('NUMFUN') num_policies = current_app.config.get('NP') num_sub_policies = current_app.config.get('NSP') toy_size = current_app.config.get('TS') # child network IsLeNet = current_app.config.get('ISLENET') # child network training hyperparameters batch_size = current_app.config.get('BS') early_stop_num = current_app.config.get('ESN') iterations = current_app.config.get('IT') learning_rate = current_app.config.get('LR') max_epochs = current_app.config.get('ME') wapp_util.parse_users_learner_spec( auto_aug_learner, ds, ds_name, exclude_method, num_funcs, num_policies, num_sub_policies, toy_size, IsLeNet, batch_size, early_stop_num, iterations, learning_rate, max_epochs ) return render_template("progress.html", auto_aug_learner=auto_aug_learner)