# We can initialize the train_dataset with its transform as None. # Later on, we will change this object's transform attribute to the policy # that we want to test import torchvision.datasets as datasets import torchvision import autoaug.child_networks as cn from autoaug.autoaugment_learners.AaLearner import AaLearner from autoaug.autoaugment_learners.GenLearner import Genetic_learner import random # train_dataset = datasets.MNIST(root='./datasets/mnist/train', # train=True, download=True, transform=None) # test_dataset = datasets.MNIST(root='./datasets/mnist/test', # train=False, download=True, transform=torchvision.transforms.ToTensor()) train_dataset = datasets.FashionMNIST(root='./datasets/fashionmnist/train', train=True, download=True, transform=None) test_dataset = datasets.FashionMNIST(root='./datasets/fashionmnist/test', train=False, download=True, transform=torchvision.transforms.ToTensor()) child_network_architecture = cn.lenet # child_network_architecture = cn.lenet() agent = Genetic_learner( sp_num=2, toy_size=0.01, batch_size=4, learning_rate=0.05, max_epochs=float('inf'), early_stop_num=10, num_offspring=10 ) agent.learn(train_dataset, test_dataset, child_network_architecture=child_network_architecture, iterations=100) # with open('genetic_logs.pkl', 'wb') as file: # pickle.dump(agent.history, file) print(sorted(agent.history, key = lambda x: x[1]))