-
- Downloads
Implemented BoW feature vector achieving 0.664 on tweets.
Showing
- ADA/SA/data/acl-14-short-data/prep_data.py 63 additions, 0 deletionsADA/SA/data/acl-14-short-data/prep_data.py
- ADA/SA/data/acl-14-short-data/tweet_test_with_labelled_parse_trees.xml 5993 additions, 0 deletions...cl-14-short-data/tweet_test_with_labelled_parse_trees.xml
- ADA/SA/data/acl-14-short-data/tweet_train_with_labelled_parse_trees.xml 54517 additions, 0 deletions...l-14-short-data/tweet_train_with_labelled_parse_trees.xml
- ADA/SA/feature_vector.py 0 additions, 34 deletionsADA/SA/feature_vector.py
- ADA/SA/instance.py 8 additions, 0 deletionsADA/SA/instance.py
- ADA/SA/sentiment_analyzer.py 33 additions, 29 deletionsADA/SA/sentiment_analyzer.py
- ADA/SA/vectorizer.py 58 additions, 0 deletionsADA/SA/vectorizer.py
ADA/SA/data/acl-14-short-data/prep_data.py
0 → 100644
This diff is collapsed.
This diff is collapsed.
ADA/SA/feature_vector.py
deleted
100644 → 0
ADA/SA/instance.py
0 → 100644
ADA/SA/vectorizer.py
0 → 100644
Please register or sign in to comment