Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
Dense Contrastive Learning for Semantic Segmentation - Public
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Seince, Maxime
Dense Contrastive Learning for Semantic Segmentation - Public
Commits
239abd9f
Commit
239abd9f
authored
1 year ago
by
Seince, Maxime
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
1e978035
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
data.py
+422
-0
422 additions, 0 deletions
data.py
with
422 additions
and
0 deletions
data.py
0 → 100644
+
422
−
0
View file @
239abd9f
import
os
import
glob
import
logging
import
numpy
as
np
import
random
import
torch
import
torch.nn.functional
as
F
from
torch.utils.data
import
Dataset
import
torchio
as
tio
import
utils
class
ACDC_dataset
:
def
__init__
(
self
,
data_folder_path
):
self
.
data_folder_path
=
data_folder_path
def
retrieve_patients_infos
(
self
)
:
"""
Retrieve a dictionary with patients information
"""
patients_info
=
{
'
training
'
:
{},
'
testing
'
:
{}}
for
train_or_test_folder
in
os
.
listdir
(
self
.
data_folder_path
)
:
train_or_test_folder_path
=
os
.
path
.
join
(
self
.
data_folder_path
,
train_or_test_folder
)
if
os
.
path
.
isdir
(
train_or_test_folder_path
)
:
for
patient_folder
in
os
.
listdir
(
train_or_test_folder_path
)
:
patient_folder_path
=
os
.
path
.
join
(
train_or_test_folder_path
,
patient_folder
)
if
os
.
path
.
isdir
(
patient_folder_path
)
:
infos
=
{}
patient_id
=
patient_folder
.
lstrip
(
'
patient
'
)
#Get the patient informations
for
line
in
open
(
os
.
path
.
join
(
patient_folder_path
,
'
Info.cfg
'
)):
label
,
value
=
line
.
split
(
'
:
'
)
infos
[
label
]
=
value
.
rstrip
(
'
\n
'
).
lstrip
(
'
'
)
patients_info
[
train_or_test_folder
][
patient_id
]
=
infos
return
patients_info
def
retrieve_all_files_path
(
self
)
:
files_paths
=
{
'
training
'
:
[],
'
testing
'
:
[]}
for
train_or_test_folder
in
os
.
listdir
(
self
.
data_folder_path
)
:
train_or_test_folder_path
=
os
.
path
.
join
(
self
.
data_folder_path
,
train_or_test_folder
)
if
os
.
path
.
isdir
(
train_or_test_folder_path
)
:
for
patient_folder
in
os
.
listdir
(
train_or_test_folder_path
)
:
patient_folder_path
=
os
.
path
.
join
(
train_or_test_folder_path
,
patient_folder
)
if
os
.
path
.
isdir
(
patient_folder_path
)
:
for
patient_file
in
glob
.
glob
(
os
.
path
.
join
(
patient_folder_path
,
f
'
patient???_frame??.nii.gz
'
)):
files_paths
[
train_or_test_folder
].
append
(
patient_file
)
return
files_paths
def
extract_and_preprocess_slices
(
self
)
:
subjects
=
{
'
training
'
:
[],
'
testing
'
:
[]}
all_slices
=
{
'
training
'
:
{
'
mri_slices
'
:
[],
'
masks
'
:
[],
'
patient_id
'
:
[]},
'
testing
'
:
{
'
mri_slices
'
:
[],
'
masks
'
:
[],
'
patient_id
'
:
[]}}
files_paths
=
self
.
retrieve_all_files_path
()
for
train_or_test
in
files_paths
.
keys
()
:
for
file_path
in
files_paths
[
train_or_test
]
:
base_file
=
file_path
.
split
(
'
.nii.gz
'
)[
0
]
mask_file
=
base_file
+
'
_gt.nii.gz
'
patient_id
=
int
(
file_path
.
split
(
'
/
'
)[
7
].
split
(
'
patient
'
)[
1
])
img_mri
,
img_affine
,
img_header
=
utils
.
load_nii
(
file_path
)
mask
=
utils
.
load_nii
(
mask_file
)[
0
]
pixel_size
=
img_header
.
structarr
[
'
pixdim
'
][:
4
]
### PROCESSING LOOP FOR SLICE-BY-SLICE 2D DATA ###################
cropped_volume_mask
,
cropped_volume_img
=
utils
.
crop_slice_zone_of_interest
(
mask
,
img_mri
,
margin
=
10
)
volume_img_normalized
=
utils
.
normalize_extreme_values
(
cropped_volume_img
)
volume_mask_normalized
=
utils
.
normalize_extreme_values
(
cropped_volume_mask
)
volume_img
=
F
.
interpolate
(
volume_img_normalized
.
unsqueeze
(
0
).
permute
(
3
,
0
,
1
,
2
),
size
=
(
64
,
64
))
volume_mask
=
F
.
interpolate
(
volume_mask_normalized
.
unsqueeze
(
0
).
permute
(
3
,
0
,
1
,
2
),
size
=
(
64
,
64
))
for
slice_index
in
range
(
volume_img
.
shape
[
0
])
:
mri_slice
=
volume_img
[
slice_index
:
slice_index
+
1
,
...]
mask_slice
=
volume_mask
[
slice_index
:
slice_index
+
1
,
...]
if
not
np
.
array
(
mask_slice
==
torch
.
zeros
((
1
,
1
,
64
,
64
))).
all
()
:
all_slices
[
train_or_test
][
'
mri_slices
'
].
append
(
mri_slice
)
all_slices
[
train_or_test
][
'
masks
'
].
append
(
mask_slice
)
all_slices
[
train_or_test
][
'
patient_id
'
].
append
(
patient_id
)
patient
=
tio
.
Subject
(
mri_slice
=
tio
.
ScalarImage
(
tensor
=
mri_slice
),
mask
=
tio
.
LabelMap
(
tensor
=
mask_slice
))
subjects
[
train_or_test
].
append
(
patient
)
return
subjects
,
all_slices
class
Partially_Supervised_Loaders
()
:
def
__init__
(
self
,
dataset
,
all_slices
,
subjects
,
loaders_parameters
)
:
self
.
dataset
=
dataset
self
.
all_slices
=
all_slices
self
.
subjects
=
subjects
self
.
loaders_parameters
=
loaders_parameters
self
.
patients_groups_ids
=
self
.
get_patients_ids_per_group
()
self
.
slices_per_groups
=
self
.
get_slices_per_groups
()
def
get_patients_ids_per_group
(
self
)
:
patients_infos
=
self
.
dataset
.
retrieve_patients_infos
()[
'
training
'
]
patients_groups_ids
=
{
'
MINF
'
:
[],
'
NOR
'
:
[],
'
RV
'
:
[],
'
DCM
'
:
[],
'
HCM
'
:
[]}
for
patient_id
in
patients_infos
.
keys
()
:
patient_info
=
patients_infos
[
patient_id
]
patients_groups_ids
[
patient_info
[
'
Group
'
]].
append
(
patient_id
)
return
patients_groups_ids
def
get_slices_per_groups
(
self
):
groups
=
[
'
MINF
'
,
'
NOR
'
,
'
RV
'
,
'
DCM
'
,
'
HCM
'
]
slices_per_groups
=
{
'
mri_slices
'
:
{
'
MINF
'
:
[],
'
NOR
'
:
[],
'
RV
'
:
[],
'
DCM
'
:
[],
'
HCM
'
:
[]},
'
masks
'
:
{
'
MINF
'
:
[],
'
NOR
'
:
[],
'
RV
'
:
[],
'
DCM
'
:
[],
'
HCM
'
:
[]}}
for
group
in
groups
:
for
patient_id
in
self
.
patients_groups_ids
[
group
]
:
patient_mris
=
[]
patient_masks
=
[]
patient_id
=
int
(
patient_id
)
slices_idx
=
(
torch
.
tensor
(
self
.
all_slices
[
'
training
'
][
'
patient_id
'
])
==
patient_id
).
nonzero
()
slices
=
torch
.
stack
(
self
.
all_slices
[
'
training
'
][
'
mri_slices
'
])[
slices_idx
,
0
,
0
,
...]
masks
=
torch
.
stack
(
self
.
all_slices
[
'
training
'
][
'
masks
'
])[
slices_idx
,
0
,
0
,
...]
for
img_idx
in
range
(
slices
.
shape
[
0
])
:
patient_mris
.
append
(
slices
[
img_idx
:
img_idx
+
1
,
...])
patient_masks
.
append
(
masks
[
img_idx
:
img_idx
+
1
,
...])
slices_per_groups
[
'
mri_slices
'
][
group
].
append
(
patient_mris
)
slices_per_groups
[
'
masks
'
][
group
].
append
(
patient_masks
)
return
slices_per_groups
def
build_subjects_list
(
self
)
:
subjects
=
[]
groups
=
[
'
MINF
'
,
'
NOR
'
,
'
RV
'
,
'
DCM
'
,
'
HCM
'
]
patients_ids_tracking
=
{
key
:
[
i
for
i
in
range
(
20
)]
for
key
in
groups
}
# Randomly choose n volumes
if
self
.
loaders_parameters
[
'
num_patients
'
]
<
len
(
groups
)
:
for
nb_patient
in
range
(
self
.
loaders_parameters
[
'
num_patients
'
])
:
group
=
groups
.
pop
(
random
.
randint
(
0
,
len
(
groups
)
-
1
))
random_patient_id
=
random
.
randint
(
0
,
19
)
patient_mri_slices
=
self
.
slices_per_groups
[
'
mri_slices
'
][
group
][
random_patient_id
]
patient_mask_slices
=
self
.
slices_per_groups
[
'
masks
'
][
group
][
random_patient_id
]
for
slice_idx
in
range
(
len
(
patient_mri_slices
))
:
mri_slice
=
patient_mri_slices
[
slice_idx
]
mask_slice
=
patient_mask_slices
[
slice_idx
]
patient
=
tio
.
Subject
(
mri_slice
=
tio
.
ScalarImage
(
tensor
=
mri_slice
),
mask
=
tio
.
LabelMap
(
tensor
=
mask_slice
))
subjects
.
append
(
patient
)
# Pick the same number of volumes for each group
else
:
nb_patients_per_group
=
self
.
loaders_parameters
[
'
num_patients
'
]
//
len
(
groups
)
for
group
in
groups
:
for
nb_patient
in
range
(
nb_patients_per_group
)
:
random_patient_id
=
patients_ids_tracking
[
group
].
pop
(
random
.
randint
(
0
,
len
(
patients_ids_tracking
[
group
])
-
1
))
patient_mri_slices
=
self
.
slices_per_groups
[
'
mri_slices
'
][
group
][
random_patient_id
]
patient_mask_slices
=
self
.
slices_per_groups
[
'
masks
'
][
group
][
random_patient_id
]
for
slice_idx
in
range
(
len
(
patient_mri_slices
))
:
mri_slice
=
patient_mri_slices
[
slice_idx
]
mask_slice
=
patient_mask_slices
[
slice_idx
]
patient
=
tio
.
Subject
(
mri_slice
=
tio
.
ScalarImage
(
tensor
=
mri_slice
),
mask
=
tio
.
LabelMap
(
tensor
=
mask_slice
))
subjects
.
append
(
patient
)
return
subjects
def
build_loaders
(
self
)
:
########### Preprocessing ###########
subjects_training
=
self
.
build_subjects_list
()
num_subjects
=
len
(
subjects_training
)
num_training_subjects
=
int
(
self
.
loaders_parameters
[
'
training_split_ratio
'
]
*
num_subjects
)
num_validation_subjects
=
num_subjects
-
num_training_subjects
num_split_subjects
=
num_training_subjects
,
num_validation_subjects
training_subjects
,
validation_subjects
=
torch
.
utils
.
data
.
random_split
(
subjects_training
,
num_split_subjects
)
testing_subjects
=
self
.
subjects
[
'
testing
'
]
########### Building Datasets ###########
# Training Dataset
training_dataset
=
CustomDataset_Supervised
(
training_subjects
,
transforms
=
self
.
loaders_parameters
[
'
training_transform
'
])
# Validation Dataset
validation_dataset
=
CustomDataset_Supervised
(
validation_subjects
,
# transform=validation_transform
)
# Testing Dataset
testing_dataset
=
CustomDataset_Supervised
(
testing_subjects
)
# print('Training set:', len(training_dataset), 'subjects')
# print('Validation set:', len(validation_dataset), 'subjects')
# print('Testing set:', len(testing_dataset), 'subjects')
########### Building Loaders ###########
training_loader
=
torch
.
utils
.
data
.
DataLoader
(
training_dataset
,
batch_size
=
self
.
loaders_parameters
[
'
batch_size
'
],
shuffle
=
True
,
)
validation_loader
=
torch
.
utils
.
data
.
DataLoader
(
validation_dataset
,
batch_size
=
self
.
loaders_parameters
[
'
batch_size
'
],
shuffle
=
True
,
)
testing_loader
=
torch
.
utils
.
data
.
DataLoader
(
testing_dataset
,
batch_size
=
self
.
loaders_parameters
[
'
batch_size
'
],
shuffle
=
True
,
)
return
training_loader
,
validation_loader
,
testing_loader
def
build_loaders_for_CL_pretraining
(
self
)
:
########### Preprocessing ###########
subjects
=
[]
all_mri_slices
=
self
.
all_slices
[
'
training
'
][
'
mri_slices
'
]
for
mri_index
,
mri_slice
in
enumerate
(
all_mri_slices
)
:
view_1
=
mri_slice
.
clone
().
detach
()
view_2
=
mri_slice
.
clone
().
detach
()
patient
=
tio
.
Subject
(
mri_slice_view_1
=
tio
.
ScalarImage
(
tensor
=
view_1
),
mri_slice_view_2
=
tio
.
ScalarImage
(
tensor
=
view_2
))
subjects
.
append
(
patient
)
num_subjects
=
len
(
subjects
)
num_training_subjects
=
int
(
self
.
loaders_parameters
[
'
training_split_ratio
'
]
*
num_subjects
)
num_validation_subjects
=
num_subjects
-
num_training_subjects
num_split_subjects
=
num_training_subjects
,
num_validation_subjects
training_subjects
,
validation_subjects
=
torch
.
utils
.
data
.
random_split
(
subjects
,
num_split_subjects
)
########### Building Datasets ###########
# Training Dataset
training_dataset
=
CustomDataset_CL
(
training_subjects
,
transforms
=
self
.
loaders_parameters
[
'
training_transform
'
])
# Validation Dataset
validation_dataset
=
CustomDataset_CL
(
validation_subjects
)
# print('Training set:', len(training_dataset), 'subjects')
# print('Validation set:', len(validation_dataset), 'subjects')
########### Building Loaders ###########
training_loader
=
torch
.
utils
.
data
.
DataLoader
(
training_dataset
,
batch_size
=
self
.
loaders_parameters
[
'
batch_size_CL
'
],
shuffle
=
True
,
# drop_last = True
)
validation_loader
=
torch
.
utils
.
data
.
DataLoader
(
validation_dataset
,
batch_size
=
self
.
loaders_parameters
[
'
batch_size_CL
'
],
shuffle
=
True
,
# drop_last = True
)
return
training_loader
,
validation_loader
def
build_test_volume_loader
(
self
)
:
subjects_volume_test
=
[]
for
patient_id
in
range
(
101
,
151
)
:
slices_idx
=
(
torch
.
tensor
(
self
.
all_slices
[
'
testing
'
][
'
patient_id
'
])
==
patient_id
).
nonzero
()
slices
=
torch
.
stack
(
self
.
all_slices
[
'
training
'
][
'
mri_slices
'
])[
slices_idx
,
0
,
0
,
...]
masks
=
torch
.
stack
(
self
.
all_slices
[
'
training
'
][
'
masks
'
])[
slices_idx
,
0
,
0
,
...]
patient
=
tio
.
Subject
(
mri_slice
=
tio
.
ScalarImage
(
tensor
=
slices
),
mask
=
tio
.
ScalarImage
(
tensor
=
masks
))
subjects_volume_test
.
append
(
patient
)
testing_dataset_volume
=
CustomDataset_Supervised
(
subjects_volume_test
)
testing_loader_volume
=
torch
.
utils
.
data
.
DataLoader
(
testing_dataset_volume
,
batch_size
=
1
,
shuffle
=
False
,
)
return
testing_loader_volume
class
CustomDataset_Supervised
(
Dataset
):
def
__init__
(
self
,
subjects
,
transforms
=
None
):
self
.
subjects
=
subjects
self
.
transform
=
transforms
def
__len__
(
self
):
return
len
(
self
.
subjects
)
def
__getitem__
(
self
,
idx
):
subject
=
self
.
subjects
[
idx
]
mri_slice
=
subject
[
'
mri_slice
'
].
data
mask
=
subject
[
'
mask
'
].
data
if
self
.
transform
is
not
None
:
mri_slice
=
self
.
transform
(
mri_slice
)
return
mri_slice
,
mask
class
CustomDataset_CL
(
Dataset
):
def
__init__
(
self
,
subjects
,
transforms
=
None
):
self
.
subjects
=
subjects
self
.
transform
=
transforms
def
__len__
(
self
):
return
len
(
self
.
subjects
)
def
__getitem__
(
self
,
idx
):
subject
=
self
.
subjects
[
idx
]
view_1
=
subject
[
'
mri_slice_view_1
'
].
data
view_2
=
subject
[
'
mri_slice_view_2
'
].
data
if
self
.
transform
is
not
None
:
view_1
=
self
.
transform
(
view_1
)
view_2
=
self
.
transform
(
view_2
)
return
view_1
,
view_2
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment