Newer
Older
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.metrics import fbeta_score, accuracy_score
import pandas as pd
import numpy as np
import json
import optuna
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
###############################################################################
# 1. Data Processing
###############################################################################
class DataProcessor:
"""
Handles data loading, feature engineering, and normalization for AKI data.
"""
def __init__(self):
self.normalization_constants = {}
def preprocess(self, filenames, save_constants=False, final_model=False):
"""
Preprocess one or more CSV files (merge if multiple). Extract relevant features:
- age
- sex
- (optionally) aki
- latest_creatinine_value
- median_previous, mean_previous, std_dev_previous (within 365 days)
- abs_percentage_diff = |(latest - mean_previous)/mean_previous|
Args:
filenames (list of str): CSV files to load and combine.
save_constants (bool): If True, compute and save normalization constants.
final_model (bool): If True, we do NOT assume an 'aki' column (for unlabeled test).
Returns:
pd.DataFrame: Preprocessed DataFrame with standardized columns.
"""
dfs = []
for filename in filenames:
df = pd.read_csv(filename)
date_cols = [c for c in df.columns if "creatinine_date_" in c]
res_cols = [c for c in df.columns if "creatinine_result_" in c]
# Convert date columns to datetime
for c in date_cols:
df[c] = pd.to_datetime(df[c], errors='coerce')
# Build new rows with summary features for each row in the CSV
new_rows = []
for _, row in df.iterrows():
age = row['age']
sex = 1 if str(row['sex']).lower() == 'm' else 0
if not final_model:
aki = 1 if str(row['aki']).lower() == 'y' else 0
latest_date = None
latest_value = None
prev_values = []
# Find the latest creatinine value, plus any within 365 days
for date_col, result_col in zip(date_cols, res_cols):
if pd.notna(row[date_col]):
if (latest_date is None) or (row[date_col] > latest_date):
# If there's an old "latest_value" within 365 days, treat it as "previous"
if (latest_value is not None) and ((latest_date - row[date_col]).days <= 365):
prev_values.append(latest_value)
latest_date = row[date_col]
latest_value = row[result_col]
else:
# If within 365 days of the current latest date
if (latest_date - row[date_col]).days <= 365:
prev_values.append(row[result_col])
if prev_values:
median_prev = float(pd.Series(prev_values).median())
mean_prev = float(pd.Series(prev_values).mean())
std_prev = float(pd.Series(prev_values).std(ddof=0))
else:
median_prev = latest_value
mean_prev = latest_value
std_prev = 0.0
if mean_prev != 0:
abs_pct_diff = abs((latest_value - mean_prev) / mean_prev)
else:
abs_pct_diff = 0
if not final_model:
new_rows.append([
age, sex, aki, latest_value, median_prev,
mean_prev, std_prev, abs_pct_diff
])
else:
new_rows.append([
age, sex, latest_value, median_prev,
mean_prev, std_prev, abs_pct_diff
])
if not final_model:
dfs.append(pd.DataFrame(new_rows, columns=[
'age', 'sex', 'aki', 'latest_creatinine_value',
'median_previous', 'mean_previous', 'std_dev_previous',
'abs_percentage_diff'
]))
else:
dfs.append(pd.DataFrame(new_rows, columns=[
'age', 'sex', 'latest_creatinine_value',
'median_previous', 'mean_previous',
'std_dev_previous', 'abs_percentage_diff'
]))
df_final = pd.concat(dfs, ignore_index=True)
# Normalize numeric columns
numeric_cols = [
'age', 'latest_creatinine_value', 'median_previous',
'mean_previous', 'std_dev_previous', 'abs_percentage_diff'
]
if save_constants:
for col in numeric_cols:
mean_ = df_final[col].mean()
std_ = df_final[col].std()
self.normalization_constants[col] = {'mean': mean_, 'std': std_}
df_final[col] = (df_final[col] - mean_) / std_
with open('normalization_constants.json', 'w') as f:
json.dump(self.normalization_constants, f)
else:
base_dir = os.path.dirname(os.path.abspath(__file__))
constants_path = os.path.join(base_dir, 'normalization_constants.json')
with open(constants_path, 'r') as f:
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
self.normalization_constants = json.load(f)
for col in numeric_cols:
mean_ = self.normalization_constants[col]['mean']
std_ = self.normalization_constants[col]['std']
df_final[col] = (df_final[col] - mean_) / std_
return df_final
def handle_class_imbalance(self, df: pd.DataFrame):
"""
Oversample minority class by random sampling with added noise.
"""
aki_counts = df['aki'].value_counts()
if len(aki_counts) < 2:
# If there's only one class, nothing to balance
return df
imbalance_ratio = aki_counts.min() / aki_counts.max()
if imbalance_ratio < 0.5:
minority_class = df[df['aki'] == aki_counts.idxmin()]
num_samples = aki_counts.max() - aki_counts.min()
oversampled_minority = minority_class.sample(n=num_samples, replace=True, random_state=42)
numeric_cols = [
'age', 'latest_creatinine_value', 'median_previous',
'mean_previous', 'std_dev_previous', 'abs_percentage_diff'
]
noise = np.random.normal(0, 0.5, size=oversampled_minority[numeric_cols].shape)
oversampled_minority[numeric_cols] += noise
df = pd.concat([df, oversampled_minority], ignore_index=True)
return df
###############################################################################
# 2. PyTorch Dataset and Model
###############################################################################
class AKIDataset(Dataset):
"""
PyTorch Dataset for AKI data, returning (features, label).
"""
def __init__(self, data: pd.DataFrame):
"""
data should have an 'aki' column.
If you want to do inference on unlabeled data,
you can pass a DataFrame with a dummy 'aki' column = 0 or np.nan.
"""
self.data = data
self.features = data.drop(columns=['aki']).values
self.labels = data['aki'].values
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = self.features[idx]
y = self.labels[idx]
return torch.tensor(x, dtype=torch.float32), torch.tensor(y, dtype=torch.float32)
class AKINet(nn.Module):
"""
A simple feed-forward neural network for AKI classification.
"""
def __init__(self, input_size, num_hidden_layers, hidden_layer_size):
super(AKINet, self).__init__()
layers = []
for i in range(num_hidden_layers):
in_features = input_size if i == 0 else hidden_layer_size
layers.append(nn.Linear(in_features, hidden_layer_size))
layers.append(nn.ReLU())
layers.append(nn.Linear(hidden_layer_size, 1))
layers.append(nn.Sigmoid())
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x)
###############################################################################
# 3. Trainer Class
###############################################################################
class Trainer:
"""
Encapsulates the training and validation loop, including early stopping
based on best F3.
"""
def __init__(self, model, optimizer, criterion, device):
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.device = device
def train_and_validate(
self,
train_loader,
val_loader,
threshold=0.5,
patience=20,
max_epochs=500
):
"""
Train and validate the model with early stopping on best F3 score.
Returns:
(nn.Module, float): The best model (state) and the best F3 achieved.
"""
best_val_f3 = 0.0
patience_counter = 0
best_model_state = None
for epoch in range(max_epochs):
# Training
self.model.train()
for x_batch, y_batch in train_loader:
x_batch = x_batch.to(self.device)
y_batch = y_batch.to(self.device)
self.optimizer.zero_grad()
preds = self.model(x_batch).squeeze()
loss = self.criterion(preds, y_batch)
loss.backward()
self.optimizer.step()
# Validation
val_f3 = self._evaluate_f3(val_loader, threshold)
if val_f3 > best_val_f3:
best_val_f3 = val_f3
patience_counter = 0
best_model_state = self.model.state_dict()
else:
patience_counter += 1
if patience_counter >= patience:
print(f"Early stopping at epoch {epoch+1}. Best F3 = {best_val_f3:.4f}")
break
# Load the best state
if best_model_state:
self.model.load_state_dict(best_model_state)
return self.model, best_val_f3
def _evaluate_f3(self, data_loader, threshold):
"""
Compute F3 on a given DataLoader.
"""
self.model.eval()
preds, labels = [], []
with torch.no_grad():
for x_batch, y_batch in data_loader:
x_batch = x_batch.to(self.device)
y_batch = y_batch.to(self.device)
out = self.model(x_batch).squeeze()
preds.extend((out > threshold).cpu().numpy())
labels.extend(y_batch.cpu().numpy())
return fbeta_score(labels, preds, beta=3)
###############################################################################
# 4. Helper Functions for Training / Evaluation
###############################################################################
def cross_validate_model(
data: pd.DataFrame,
num_hidden_layers: int,
hidden_layer_size: int,
learning_rate: float,
batch_size: int,
threshold: float,
device: torch.device,
n_splits=5
):
"""
Perform n-fold cross-validation, returning average F3 across folds.
This is used by the objective function during hyperparam tuning.
"""
skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)
f3_scores = []
for train_idx, val_idx in skf.split(data, data['aki']):
train_fold = data.iloc[train_idx].copy()
val_fold = data.iloc[val_idx].copy()
train_loader = DataLoader(AKIDataset(train_fold), batch_size=batch_size, shuffle=True)
val_loader = DataLoader(AKIDataset(val_fold), batch_size=batch_size, shuffle=False)
model = AKINet(
input_size=train_fold.shape[1] - 1,
num_hidden_layers=num_hidden_layers,
hidden_layer_size=hidden_layer_size
).to(device)
criterion = nn.BCELoss()
optimizer = Adam(model.parameters(), lr=learning_rate)
trainer = Trainer(model, optimizer, criterion, device)
_, best_f3 = trainer.train_and_validate(
train_loader,
val_loader,
threshold=threshold,
patience=20,
max_epochs=500
)
f3_scores.append(best_f3)
return np.mean(f3_scores)
def train_model(
data: pd.DataFrame,
hyperparams: dict,
device: torch.device,
val_split=0.2
):
"""
Train a final model (no hyperparameter search) using the given hyperparams.
Splits `data` into (train, val) by `val_split` ratio for early stopping.
Saves the entire model to 'best_model.pth' (so we don't need to re-instantiate later).
Returns the trained model.
"""
# Unpack hyperparams
num_hidden_layers = hyperparams["num_hidden_layers"]
hidden_layer_size = hyperparams["hidden_layer_size"]
learning_rate = hyperparams["learning_rate"]
batch_size = hyperparams["batch_size"]
threshold = hyperparams["threshold"] # for early stopping measurement
# Train-val split
train_df, val_df = train_test_split(data, test_size=val_split, stratify=data['aki'], random_state=42)
# Create loaders
train_loader = DataLoader(AKIDataset(train_df), batch_size=batch_size, shuffle=True)
val_loader = DataLoader(AKIDataset(val_df), batch_size=batch_size, shuffle=False)
# Instantiate model
model = AKINet(
input_size=train_df.shape[1] - 1,
num_hidden_layers=num_hidden_layers,
hidden_layer_size=hidden_layer_size
).to(device)
criterion = nn.BCELoss()
optimizer = Adam(model.parameters(), lr=learning_rate)
trainer = Trainer(model, optimizer, criterion, device)
# Train with early stopping
best_model, best_f3 = trainer.train_and_validate(
train_loader,
val_loader,
threshold=threshold,
patience=20,
max_epochs=500
)
print(f"Final model after training. Best F3 on validation: {best_f3:.4f}")
# Save entire model (no need for separate architecture instantiation later)
torch.save(best_model, "best_model.pth")
print("Saved entire model to best_model.pth")
return best_model
def evaluate(model, data: pd.DataFrame, device: torch.device, threshold=0.5):
"""
Evaluate a model on a dataset. If data contains 'aki' column, compute F3 & accuracy.
Otherwise, just return predictions.
Args:
model (nn.Module): The trained model (already loaded onto device).
data (pd.DataFrame): Data to evaluate or infer. Must contain 'aki' if you want metrics.
device (torch.device): 'cpu' or 'cuda'.
threshold (float): Classification threshold.
Returns:
dict with possible keys:
- 'predictions': List/array of 0/1 predictions
- 'f3': F3 score (if 'aki' in data)
- 'accuracy': Accuracy score (if 'aki' in data)
"""
# If 'aki' is missing, create a dummy column for Dataset
has_labels = 'aki' in data.columns
if not has_labels:
data = data.copy()
data['aki'] = 0 # dummy
loader = DataLoader(AKIDataset(data), batch_size=64, shuffle=False)
model.eval()
model.to(device)
all_preds = []
all_labels = []
with torch.no_grad():
for x_batch, y_batch in loader:
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
out = model(x_batch).squeeze()
batch_preds = (out > threshold).float().cpu().numpy()
all_preds.extend(batch_preds)
all_labels.extend(y_batch.cpu().numpy())
result = {
"predictions": np.array(all_preds, dtype=int).tolist()
}
if has_labels:
f3 = fbeta_score(all_labels, all_preds, beta=3)
acc = accuracy_score(all_labels, all_preds)
result["f3"] = f3
result["accuracy"] = acc
return result
###############################################################################
# 5. Hyperparameter Tuning (Optuna)
###############################################################################
def objective(trial, data, device):
"""
A minimal objective function for Optuna. Performs cross-validation on `data`
with the hyperparameters sampled by `trial`.
"""
# Suggest hyperparameters
num_hidden_layers = trial.suggest_int("num_hidden_layers", 1, 5)
hidden_layer_size = trial.suggest_categorical(
"hidden_layer_size", [32, 64, 128, 256, 512, 1024]
)
learning_rate = trial.suggest_categorical(
"learning_rate", [0.001, 0.005, 0.01, 0.02, 0.05]
)
batch_size = trial.suggest_categorical(
"batch_size", [32, 64, 128, 256, 512, 1024]
)
threshold = trial.suggest_categorical(
"threshold", [0.25, 0.375, 0.5, 0.625, 0.75]
)
# Perform cross-validation
avg_f3 = cross_validate_model(
data=data,
num_hidden_layers=num_hidden_layers,
hidden_layer_size=hidden_layer_size,
learning_rate=learning_rate,
batch_size=batch_size,
threshold=threshold,
device=device,
n_splits=5
)
return avg_f3
def tune_hyperparameters(data: pd.DataFrame, n_trials=10):
"""
Run Optuna hyperparameter tuning on `data`, maximizing F3 via cross-validation.
Saves best hyperparameters to best_hyperparameters.json.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
study = optuna.create_study(direction="maximize")
study.optimize(lambda trial: objective(trial, data, device), n_trials=n_trials)
# Print best results
print("\nBest trial:")
print(f"Hyperparameters: {study.best_trial.params}")
print(f"Avg F3 Score (CV): {study.best_trial.value:.4f}")
# Save best hyperparameters
with open("best_hyperparameters.json", "w") as f:
json.dump(study.best_trial.params, f)
print("Saved best hyperparameters to best_hyperparameters.json")
return study.best_trial
###############################################################################
# 6. Example Usage Notes
###############################################################################
"""
How to use:
1) Hyperparameter Tuning:
data_processor = DataProcessor()
train_data = data_processor.preprocess(["training.csv"], save_constants=True)
train_data = data_processor.handle_class_imbalance(train_data)
# tune:
best_trial = tune_hyperparameters(train_data, n_trials=10)
2) Train Final Model (using best hyperparameters):
# load best hyperparams:
with open("best_hyperparameters.json", "r") as f:
best_hparams = json.load(f)
final_model = train_model(train_data, best_hparams, device=torch.device("cpu"))
# This saves "best_model.pth" to disk, containing the entire model.
3) Evaluate on a separate test set:
test_data = data_processor.preprocess(["test.csv"], save_constants=False)
# Make sure test_data also has an 'aki' column if you want metrics.
results = evaluate(final_model, test_data, device=torch.device("cpu"), threshold=best_hparams["threshold"])
print(results) # => {'predictions': [...], 'f3': ..., 'accuracy': ...}
4) Final Inference (unlabeled):
# If 'aki' column is missing, evaluate(...) won't compute metrics, but returns predictions only.
test_data_unlabeled = data_processor.preprocess(["test.csv"], save_constants=False, final_model=True)
model = torch.load("best_model.pth") # load once
inference_results = evaluate(model, test_data_unlabeled, device=torch.device("cpu"), threshold=best_hparams["threshold"])
print(inference_results) # => {'predictions': [...]}
5) Single-Row Prediction:
# Just pass a single-row DataFrame (with a dummy 'aki' if necessary).
# Or slice the test_data_unlabeled at row i, then evaluate.
"""