Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# %%
import numpy as np
import matplotlib.pyplot as plt
from itertools import count
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.distributions import Categorical
from torch.utils.data import TensorDataset, DataLoader
from collections import namedtuple, deque
import math
import random
from MetaAugment.main import *
batch_size = 128
test_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=False, download=True, transform=torchvision.transforms.ToTensor())
train_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=True, download=True, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
print('test_loader', len(test_loader))
print('train_loader',len(train_loader))
def create_toy(train_dataset, test_dataset, batch_size, n_samples):
# shuffle and take first n_samples %age of training dataset
shuffled_train_dataset = torch.utils.data.Subset(train_dataset, torch.randperm(len(train_dataset)).tolist())
indices_train = torch.arange(int(n_samples*len(train_dataset)))
reduced_train_dataset = torch.utils.data.Subset(shuffled_train_dataset, indices_train)
# shuffle and take first n_samples %age of test dataset
shuffled_test_dataset = torch.utils.data.Subset(test_dataset, torch.randperm(len(test_dataset)).tolist())
indices_test = torch.arange(int(n_samples*len(test_dataset)))
reduced_test_dataset = torch.utils.data.Subset(shuffled_test_dataset, indices_test)
# push into DataLoader
train_loader = torch.utils.data.DataLoader(reduced_train_dataset, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(reduced_test_dataset, batch_size=batch_size)
return train_loader, test_loader
# train_loader, test_loader = create_toy(train_dataset, test_dataset, batch_size, 10)
class LeNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(256, 120)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(120, 84)
self.relu4 = nn.ReLU()
self.fc3 = nn.Linear(84, 10)
self.relu5 = nn.ReLU()
def forward(self, x):
y = self.conv1(x)
y = self.relu1(y)
y = self.pool1(y)
y = self.conv2(y)
y = self.relu2(y)
y = self.pool2(y)
y = y.view(y.shape[0], -1)
y = self.fc1(y)
y = self.relu3(y)
y = self.fc2(y)
y = self.relu4(y)
y = self.fc3(y)
y = self.relu5(y)
return y
# %% [markdown]
# ## collect reward
# %%
def collect_reward(train_loader, test_loader, max_epochs=100, early_stop_num=10):
child_network = LeNet()
sgd = optim.SGD(child_network.parameters(), lr=1e-1)
cost = nn.CrossEntropyLoss()
best_acc=0
early_stop_cnt = 0
# train child_network and check validation accuracy each epoch
print('max_epochs', max_epochs)
for _epoch in range(max_epochs):
print('_epoch', _epoch)
# train child_network
child_network.train()
for t, (train_x, train_label) in enumerate(train_loader):
label_np = np.zeros((train_label.shape[0], 10))
sgd.zero_grad()
predict_y = child_network(train_x.float())
loss = cost(predict_y, train_label.long())
loss.backward()
sgd.step()
# check validation accuracy on validation set
correct = 0
_sum = 0
child_network.eval()
for idx, (test_x, test_label) in enumerate(test_loader):
predict_y = child_network(test_x.float()).detach()
predict_ys = np.argmax(predict_y, axis=-1)
label_np = test_label.numpy()
_ = predict_ys == test_label
correct += np.sum(_.numpy(), axis=-1)
_sum += _.shape[0]
# update best validation accuracy if it was higher, otherwise increase early stop count
acc = correct / _sum
if acc > best_acc :
best_acc = acc
early_stop_cnt = 0
else:
early_stop_cnt += 1
# exit if validation gets worse over 10 runs
if early_stop_cnt >= early_stop_num:
break
# if _epoch%30 == 0:
# print('child_network accuracy: ', best_acc)
return best_acc
# %%
for t, (train_x, train_label) in enumerate(test_loader):
print(train_x.shape)
print(train_label)
break
len(test_loader)
# %%
collect_reward(train_loader, test_loader)
# %% [markdown]
# ## Policy network
# %%
class Policy(nn.Module):
"""
implements both actor and critic in one model
"""
def __init__(self):
super(Policy, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5 , stride=2)
self.conv2 = nn.Conv2d(6, 12, 5, stride=2)
self.maxpool = nn.MaxPool2d(4)
# actor's layer
self.action_head = nn.Linear(12, 2)
# critic's layer
self.value_head = nn.Linear(12, 1)
# action & reward buffer
self.saved_actions = []
self.rewards = []
def forward(self, x):
"""
forward of both actor and critic
"""
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.maxpool(x)
x = x.view(x.size(0), -1)
# print('x', x.shape)
# actor: choses action to take from state s_t
# by returning probability of each action
# print('self.action_head(x)', self.action_head(x).shape)
action_prob = F.softmax(self.action_head(x), dim=-1)
# print('action_prob', action_prob.shape)
# critic: evaluates being in the state s_t
state_values = self.value_head(x)
# return values for both actor and critic as a tuple of 2 values:
# 1. a list with the probability of each action over the action space
# 2. the value from state s_t
return action_prob, state_values
# %%
test_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=False, download=True, transform=torchvision.transforms.ToTensor())
train_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=True, download=True, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
policy_model = Policy()
# for t, (x, y) in enumerate(train_loader):
# # print(x.shape)
# policy_model(x)
# %% [markdown]
# ## select action
# %%
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
def select_action(train_loader, policy_model):
probs_list = []
value_list = []
for t, (x, y) in enumerate(train_loader):
probs_i, state_value_i = policy_model(x)
probs_list += [probs_i]
value_list += [state_value_i]
probs = torch.mean(torch.cat(probs_list), dim=0)
state_value = torch.mean(torch.cat(value_list))
# print('probs_i', probs_i)
# print('probs', probs)
# create a categorical distribution over the list of probabilities of actions
m = Categorical(probs)
# print('m', m)
# and sample an action using the distribution
action = m.sample()
# print('action', action)
# save to action buffer
policy_model.saved_actions.append(SavedAction(m.log_prob(action), state_value))
# the action to take (left or right)
return action.item()
# %%
torch.tensor([1, 2, 3])
# %% [markdown]
# ## take action
# %%
def take_action(action_idx):
# Define actions (data augmentation policy) --- can be improved
action_list = [
torchvision.transforms.Compose([torchvision.transforms.RandomVerticalFlip(),
torchvision.transforms.ToTensor()]),
torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor()]),
torchvision.transforms.Compose([torchvision.transforms.RandomGrayscale(),
torchvision.transforms.ToTensor()]),
torchvision.transforms.Compose([torchvision.transforms.RandomAffine(30),
torchvision.transforms.ToTensor()])]
# transform
transform = action_list[action_idx]
test_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=False, download=True, transform=transform)
train_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=True, download=True, transform=transform)
train_loader, test_loader = create_toy(train_dataset, test_dataset, batch_size, n_samples=0.0002)
return train_loader, test_loader
# %% [markdown]
# ## finish episode
# %%
policy_model = Policy()
optimizer = optim.Adam(policy_model.parameters(), lr=3e-2)
eps = np.finfo(np.float32).eps.item()
gamma = 0.9
def finish_episode():
"""
Training code. Calculates actor and critic loss and performs backprop.
"""
R = 0
saved_actions = policy_model.saved_actions
policy_losses = [] # list to save actor (policy) loss
value_losses = [] # list to save critic (value) loss
returns = [] # list to save the true values
# calculate the true value using rewards returned from the environment
for r in policy_model.rewards[::-1]:
# calculate the discounted value
R = r + gamma * R
returns.insert(0, R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
for (log_prob, value), R in zip(saved_actions, returns):
advantage = R - value.item()
# calculate actor (policy) loss
policy_losses.append(-log_prob * advantage)
# calculate critic (value) loss using L1 smooth loss
value_losses.append(F.smooth_l1_loss(value, torch.tensor([R])))
# reset gradients
optimizer.zero_grad()
# sum up all the values of policy_losses and value_losses
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
# perform backprop
loss.backward()
optimizer.step()
# reset rewards and action buffer
del policy_model.rewards[:]
del policy_model.saved_actions[:]
# %% [markdown]
# ## run
# %%
running_reward = 10
episodes_num = 100
policy_model = Policy()
for i_episode in range(episodes_num) :
# initiate a new state
train_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=True, download=True, transform=torchvision.transforms.ToTensor())
# train_dataset = torchvision.datasets.MNIST(root='test_dataset/', train=True, download=True, transform=torchvision.transforms.ToTensor())
train_loader_state = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# select action from policy
action_idx = select_action(train_loader, policy_model)
print('>>> action_idx', action_idx)
# take the action -> apply data augmentation
train_loader, test_loader = take_action(action_idx)
reward = collect_reward(train_loader, test_loader)
print('>>> reward', reward)
# if args.render:
# env.render()
policy_model.rewards.append(reward)
# perform backprop
finish_episode()
# # log result
if i_episode % 10 == 0:
print('Episode {}\tLast reward (val accuracy): {:.2f}'.format(i_episode, reward))
# %%