Newer
Older
import autoaug.child_networks as cn
from autoaug.autoaugment_learners.AaLearner import AaLearner
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import random
class Genetic_learner(AaLearner):
def __init__(self,
# search space settings
sp_num=5,
p_bins=11,
m_bins=10,
discrete_p_m=False,
exclude_method=[],
# child network settings
learning_rate=1e-1,
max_epochs=float('inf'),
early_stop_num=20,
batch_size=8,
toy_size=1,
num_offspring=1,
):
super().__init__(
sp_num=sp_num,
p_bins=p_bins,
m_bins=m_bins,
discrete_p_m=discrete_p_m,
batch_size=batch_size,
toy_size=toy_size,
learning_rate=learning_rate,
max_epochs=max_epochs,
early_stop_num=early_stop_num,
exclude_method=exclude_method
)
self.bin_to_aug = {}
for idx, augmentation in enumerate(self.augmentation_space):
bin_rep = '{0:b}'.format(idx)
while len(bin_rep) < len('{0:b}'.format(len(self.augmentation_space))):
bin_rep = '0' + bin_rep
self.bin_to_aug[bin_rep] = augmentation[0]
self.just_augs = [x[0] for x in self.augmentation_space]
self.mag_to_bin = {
'0': "0000",
'1': '0001',
'2': '0010',
'3': '0011',
'4': '0100',
'5': '0101',
'6': '0110',
'7': '0111',
'8' : '1000',
'9': '1001',
'10': '1010',
}
self.prob_to_bin = {
'0': "0000",
'0.0' : '0000',
'0.1': '0001',
'0.2': '0010',
'0.3': '0011',
'0.4': '0100',
'0.5': '0101',
'0.6': '0110',
'0.7': '0111',
'0.8' : '1000',
'0.9': '1001',
'1.0': '1010',
'1' : '1010',
}
self.bin_to_prob = dict((value, key) for key, value in self.prob_to_bin.items())
self.bin_to_mag = dict((value, key) for key, value in self.mag_to_bin.items())
self.aug_to_bin = dict((value, key) for key, value in self.bin_to_aug.items())
self.num_offspring = num_offspring
def gen_random_subpol(self):
choose_items = [x[0] for x in self.augmentation_space]
trans1 = str(random.choice(choose_items))
trans2 = str(random.choice(choose_items))
prob1 = float(random.randrange(0, 11, 1) / 10)
prob2 = float(random.randrange(0, 11, 1) / 10)
if self.aug_space_dict[trans1]:
mag1 = int(random.randrange(0, 10, 1))
else:
mag1 = None
if self.aug_space_dict[trans2]:
mag2 = int(random.randrange(0, 10, 1))
else:
mag2 = None
subpol = ((trans1, prob1, mag1), (trans2, prob2, mag2))
return subpol
def gen_random_policy(self):
pol = []
for _ in range(self.sp_num):
pol.append(self.gen_random_subpol())
return pol
def bin_to_subpol(self, subpol):
pol = []
for idx in range(2):
if subpol[idx*12:(idx*12)+4] in self.bin_to_aug:
trans = self.bin_to_aug[subpol[idx*12:(idx*12)+4]]
else:
trans = random.choice(self.just_augs)
mag_is_none = not self.aug_space_dict[trans]
if subpol[(idx*12)+4: (idx*12)+8] in self.bin_to_prob:
prob = float(self.bin_to_prob[subpol[(idx*12)+4: (idx*12)+8]])
else:
prob = float(random.randrange(0, 11, 1) / 10)
if subpol[(idx*12)+8:(idx*12)+12] in self.bin_to_mag:
mag = int(self.bin_to_mag[subpol[(idx*12)+8:(idx*12)+12]])
else:
mag = int(random.randrange(0, 10, 1))
if mag_is_none:
mag = None
pol.append((trans, prob, mag))
pol = [tuple(pol)]
return pol
def subpol_to_bin(self, subpol):
pol = ''
trans1, prob1, mag1 = subpol[0]
trans2, prob2, mag2 = subpol[1]
pol += self.aug_to_bin[trans1] + self.prob_to_bin[str(prob1)]
if mag1 == None:
pol += '1111'
else:
pol += self.mag_to_bin[str(mag1)]
pol += self.aug_to_bin[trans2] + self.prob_to_bin[str(prob2)]
if mag2 == None:
pol += '1111'
else:
pol += self.mag_to_bin[str(mag2)]
return pol
def choose_parents(self, parents, parents_weights):
parent1 = random.choices(parents, parents_weights, k=1)[0][0]
parent2 = random.choices(parents, parents_weights, k=1)[0][0]
while parent2 == parent1:
parent2 = random.choices(parents, parents_weights, k=1)[0][0]
parent1 = self.subpol_to_bin(parent1)
parent2 = self.subpol_to_bin(parent2)
return (parent1, parent2)
def generate_children(self):
parent_acc = sorted(self.history, key = lambda x: x[1], reverse=True)
parents = [x[0] for x in parent_acc]
parents_weights = [x[1] for x in parent_acc]
new_pols = []
for _ in range(self.num_offspring):
parent1, parent2 = self.choose_parents(parents, parents_weights)
cross_over = random.randrange(1, int(len(parent2)/2), 1)
cross_over2 = random.randrange(int(len(parent2)/2), int(len(parent2)), 1)
child += parent2[cross_over:int(len(parent2)/2)]
child += parent1[int(len(parent2)/2):int(len(parent2)/2)+cross_over2]
child += parent2[int(len(parent2)/2)+cross_over2:]
def learn(self, train_dataset, test_dataset, child_network_architecture, iterations = 100):
print("ITERATION: ", idx)
if len(self.history) < self.num_offspring:
policy = [self.gen_random_subpol()]
else:
policy = self.bin_to_subpol(random.choice(self.generate_children()))
reward = self._test_autoaugment_policy(policy,
child_network_architecture,
train_dataset,
test_dataset)