Skip to content
Snippets Groups Projects
Commit 49090751 authored by Sun Jin Kim's avatar Sun Jin Kim
Browse files

exit benchmark scripts

parent 01b0b73c
No related branches found
No related tags found
No related merge requests found
[(('ShearY', 0.2, 5), ('Rotate', 0.6, 6)),
(('TranslateX', 0.8, 3), ('Posterize', 0.1, 3)),
(('TranslateY', 0.0, 8), ('Equalize', 0.7, None)),
(('Equalize', 0.3, None), ('Contrast', 0.2, 0)),
(('ShearX', 0.4, 5), ('Contrast', 0.2, 8)),
(('TranslateX', 0.9, 3), ('Solarize', 0.4, 5)),
(('Color', 0.2, 4), ('Solarize', 0.6, 8)),
(('ShearX', 0.1, 8), ('Equalize', 0.4, None)),
(('Posterize', 0.7, 5), ('Solarize', 1.0, 4))][0.6056999564170837, 0.6329999566078186, 0.6171000003814697, 0.62909996509552]original small policys accuracies: [0.6236000061035156, 0.6187999844551086, 0.617900013923645]
\ No newline at end of file
No preview for this file type
[(('Color', 0.9, 3), ('Contrast', 0.8, 3)),
(('Sharpness', 0.9, 0), ('Solarize', 0.3, 7)),
(('Color', 0.0, 6), ('Solarize', 0.4, 3)),
(('Brightness', 0.1, 3), ('Brightness', 0.5, 9)),
(('Solarize', 0.9, 6), ('Rotate', 0.6, 1)),
(('Contrast', 0.7, 3), ('Posterize', 0.9, 4)),
(('Solarize', 0.6, 2), ('Contrast', 0.5, 6)),
(('TranslateX', 0.0, 4), ('AutoContrast', 0.3, None)),
(('Equalize', 0.0, None), ('Brightness', 0.8, 1))][0.7490999698638916, 0.8359999656677246, 0.8394999504089355]original small policys accuracies: [0.8380999565124512, 0.8376999497413635, 0.8376999497413635]
\ No newline at end of file
No preview for this file type
[(('ShearX', 1.0, 0), ('Color', 0.3, 2)),
(('AutoContrast', 0.0, None), ('Brightness', 0.7, 2)),
(('Invert', 0.1, None), ('Contrast', 0.1, 6)),
(('Solarize', 0.4, 2), ('Contrast', 0.9, 2)),
(('Equalize', 0.0, None), ('Contrast', 0.0, 2)),
(('Rotate', 0.4, 0), ('Posterize', 0.5, 9)),
(('Posterize', 0.7, 3), ('Invert', 0.1, None)),
(('Solarize', 0.6, 1), ('Contrast', 0.0, 0)),
(('Color', 0.2, 6), ('Posterize', 0.4, 7))][0.6222999691963196, 0.6868000030517578, 0.8374999761581421, 0.8370999693870544, 0.6934999823570251]original small policys accuracies: [0.8431999683380127, 0.8393999934196472, 0.8377999663352966]
\ No newline at end of file
......@@ -40,6 +40,7 @@ run_benchmark(
child_network_architecture=child_network_architecture,
agent_arch=aal.gru_learner,
config=config,
total_iter=144
)
rerun_best_policy(
......@@ -48,5 +49,6 @@ rerun_best_policy(
train_dataset=train_dataset,
test_dataset=test_dataset,
child_network_architecture=child_network_architecture,
config=config,
repeat_num=5
)
\ No newline at end of file
......@@ -6,7 +6,7 @@ import torch
import MetaAugment.child_networks as cn
import MetaAugment.autoaugment_learners as aal
from pprint import pprint
import pprint
"""
testing gru_learner and randomsearch_learner on
......@@ -75,16 +75,21 @@ def get_mega_policy(history, n):
assert len(history) >= n
# agent.history is a list of (policy(list), val_accuracy(float)) tuples
sorted_history = sorted(history, key=lambda x:x[1]) # sort wrt acc
sorted_history = sorted(history, key=lambda x:x[1], reverse=True) # sort wrt acc
best_history = sorted_history[:n]
megapolicy = []
# we also want to keep track of how good the best policies were
# maybe if we add them all up, they'll become worse! Hopefully better tho
orig_accs = []
for policy,acc in best_history:
for subpolicy in policy:
megapolicy.append(subpolicy)
orig_accs.append(acc)
return megapolicy
return megapolicy, orig_accs
def rerun_best_policy(
......@@ -93,25 +98,30 @@ def rerun_best_policy(
train_dataset,
test_dataset,
child_network_architecture,
config,
repeat_num
):
with open(agent_pickle, 'rb') as f:
agent = torch.load(f, map_location=device)
agent = torch.load(f)
megapol = get_mega_policy(agent.history)
megapol, orig_accs = get_mega_policy(agent.history,3)
print('mega policy to be tested:')
pprint(megapol)
pprint.pprint(megapol)
print(orig_accs)
accs=[]
for _ in range(repeat_num):
print(f'{_}/{repeat_num}')
temp_agent = aal.aa_learner(**config)
accs.append(
agent.test_autoaugment_policy(megapol,
temp_agent.test_autoaugment_policy(megapol,
child_network_architecture,
train_dataset,
test_dataset,
logging=False)
)
with open(accs_txt, 'w') as f:
f.write(pprint.pformat(megapol))
f.write(str(accs))
f.write(f'original small policys accuracies: {orig_accs}')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment