Skip to content
Snippets Groups Projects
Commit b69aeb2d authored by Sun Jin Kim's avatar Sun Jin Kim
Browse files

Delete AutoAugmentDemo folder; Didn't seem to need it

parent 364f36ef
No related branches found
No related tags found
No related merge requests found
Showing with 0 additions and 425 deletions
MIT License
Copyright (c) 2018 Philip Popien
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
# AutoAugment - Learning Augmentation Policies from Data
Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by [AutoAugment](https://arxiv.org/abs/1805.09501v1), described in this [Google AI Blogpost](https://ai.googleblog.com/2018/06/improving-deep-learning-performance.html).
__Update July 13th, 2018:__ Wrote a [Blogpost](https://towardsdatascience.com/how-to-improve-your-image-classifier-with-googles-autoaugment-77643f0be0c9) about AutoAugment and Double Transfer Learning.
##### Tested with Python 3.6. Needs pillow>=5.0.0
![Examples of the best ImageNet Policy](figures/Figure2_Paper.png)
------------------
## Example
```python
from autoaugment import ImageNetPolicy
image = PIL.Image.open(path)
policy = ImageNetPolicy()
transformed = policy(image)
```
To see examples of all operations and magnitudes applied to images, take a look at [AutoAugment_Exploration.ipynb](AutoAugment_Exploration.ipynb).
## Example as a PyTorch Transform - ImageNet
```python
from autoaugment import ImageNetPolicy
data = ImageFolder(rootdir, transform=transforms.Compose(
[transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(), ImageNetPolicy(),
transforms.ToTensor(), transforms.Normalize(...)]))
loader = DataLoader(data, ...)
```
## Example as a PyTorch Transform - CIFAR10
```python
from autoaugment import CIFAR10Policy
data = ImageFolder(rootdir, transform=transforms.Compose(
[transforms.RandomCrop(32, padding=4, fill=128), # fill parameter needs torchvision installed from source
transforms.RandomHorizontalFlip(), CIFAR10Policy(),
transforms.ToTensor(),
Cutout(n_holes=1, length=16), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
transforms.Normalize(...)]))
loader = DataLoader(data, ...)
```
## Example as a PyTorch Transform - SVHN
```python
from autoaugment import SVHNPolicy
data = ImageFolder(rootdir, transform=transforms.Compose(
[SVHNPolicy(),
transforms.ToTensor(),
Cutout(n_holes=1, length=20), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
transforms.Normalize(...)]))
loader = DataLoader(data, ...)
```
------------------
## Results with AutoAugment
### Generalizable Data Augmentations
> Finally, we show that policies found on one task can generalize well across different models and datasets.
> For example, the policy found on ImageNet leads to significant improvements on a variety of FGVC datasets. Even on datasets for
> which fine-tuning weights pre-trained on ImageNet does not help significantly [26], e.g. Stanford
> Cars [27] and FGVC Aircraft [28], training with the ImageNet policy reduces test set error by 1.16%
> and 1.76%, respectively. __This result suggests that transferring data augmentation policies offers an
> alternative method for transfer learning__.
### CIFAR 10
![CIFAR10 Results](figures/CIFAR10_results.png)
### CIFAR 100
![CIFAR10 Results](figures/CIFAR100_results.png)
### ImageNet
![ImageNet Results](figures/ImageNet_results.png)
### SVHN
![SVHN Results](figures/SVHN_results.png)
### Fine Grained Visual Classification Datasets
![SVHN Results](figures/FGVC_results.png)
File deleted
import numpy as np
from ops import *
class ImageNetPolicy(object):
""" Randomly choose one of the best 24 Sub-policies on ImageNet.
Example:
>>> policy = ImageNetPolicy()
>>> transformed = policy(image)
Example as a PyTorch Transform:
>>> transform = transforms.Compose([
>>> transforms.Resize(256),
>>> ImageNetPolicy(),
>>> transforms.ToTensor()])
"""
def __init__(self, fillcolor=(128, 128, 128)):
self.policies = [
SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor),
SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor),
SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor),
SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor),
SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor),
SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor),
SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor),
SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor),
SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor),
SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor),
SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor),
SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor),
SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor),
SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor),
SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor),
SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor),
SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor)
]
def __call__(self, img):
policy_idx = random.randint(0, len(self.policies) - 1)
return self.policies[policy_idx](img)
def __repr__(self):
return "AutoAugment ImageNet Policy"
class CIFAR10Policy(object):
""" Randomly choose one of the best 25 Sub-policies on CIFAR10.
Example:
>>> policy = CIFAR10Policy()
>>> transformed = policy(image)
Example as a PyTorch Transform:
>>> transform=transforms.Compose([
>>> transforms.Resize(256),
>>> CIFAR10Policy(),
>>> transforms.ToTensor()])
"""
def __init__(self, fillcolor=(128, 128, 128)):
self.policies = [
SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor),
SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor),
SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor),
SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor),
SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor),
SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor),
SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor),
SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor),
SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor),
SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor),
SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor),
SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor),
SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor),
SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor),
SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor),
SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor),
SubPolicy(0.2, "equalize", 8, 0.6, "equalize", 4, fillcolor),
SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor),
SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor),
SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor),
SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor),
SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor),
SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor),
SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor),
SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor)
]
def __call__(self, img):
policy_idx = random.randint(0, len(self.policies) - 1)
return self.policies[policy_idx](img)
def __repr__(self):
return "AutoAugment CIFAR10 Policy"
class SVHNPolicy(object):
""" Randomly choose one of the best 25 Sub-policies on SVHN.
Example:
>>> policy = SVHNPolicy()
>>> transformed = policy(image)
Example as a PyTorch Transform:
>>> transform=transforms.Compose([
>>> transforms.Resize(256),
>>> SVHNPolicy(),
>>> transforms.ToTensor()])
"""
def __init__(self, fillcolor=(128, 128, 128)):
self.policies = [
SubPolicy(0.9, "shearX", 4, 0.2, "invert", 3, fillcolor),
SubPolicy(0.9, "shearY", 8, 0.7, "invert", 5, fillcolor),
SubPolicy(0.6, "equalize", 5, 0.6, "solarize", 6, fillcolor),
SubPolicy(0.9, "invert", 3, 0.6, "equalize", 3, fillcolor),
SubPolicy(0.6, "equalize", 1, 0.9, "rotate", 3, fillcolor),
SubPolicy(0.9, "shearX", 4, 0.8, "autocontrast", 3, fillcolor),
SubPolicy(0.9, "shearY", 8, 0.4, "invert", 5, fillcolor),
SubPolicy(0.9, "shearY", 5, 0.2, "solarize", 6, fillcolor),
SubPolicy(0.9, "invert", 6, 0.8, "autocontrast", 1, fillcolor),
SubPolicy(0.6, "equalize", 3, 0.9, "rotate", 3, fillcolor),
SubPolicy(0.9, "shearX", 4, 0.3, "solarize", 3, fillcolor),
SubPolicy(0.8, "shearY", 8, 0.7, "invert", 4, fillcolor),
SubPolicy(0.9, "equalize", 5, 0.6, "translateY", 6, fillcolor),
SubPolicy(0.9, "invert", 4, 0.6, "equalize", 7, fillcolor),
SubPolicy(0.3, "contrast", 3, 0.8, "rotate", 4, fillcolor),
SubPolicy(0.8, "invert", 5, 0.0, "translateY", 2, fillcolor),
SubPolicy(0.7, "shearY", 6, 0.4, "solarize", 8, fillcolor),
SubPolicy(0.6, "invert", 4, 0.8, "rotate", 4, fillcolor),
SubPolicy(0.3, "shearY", 7, 0.9, "translateX", 3, fillcolor),
SubPolicy(0.1, "shearX", 6, 0.6, "invert", 5, fillcolor),
SubPolicy(0.7, "solarize", 2, 0.6, "translateY", 7, fillcolor),
SubPolicy(0.8, "shearY", 4, 0.8, "invert", 8, fillcolor),
SubPolicy(0.7, "shearX", 9, 0.8, "translateY", 3, fillcolor),
SubPolicy(0.8, "shearY", 5, 0.7, "autocontrast", 3, fillcolor),
SubPolicy(0.7, "shearX", 2, 0.1, "invert", 5, fillcolor)
]
def __call__(self, img):
policy_idx = random.randint(0, len(self.policies) - 1)
return self.policies[policy_idx](img)
def __repr__(self):
return "AutoAugment SVHN Policy"
class SubPolicy(object):
def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor=(128, 128, 128)):
ranges = {
"shearX": np.linspace(0, 0.3, 10),
"shearY": np.linspace(0, 0.3, 10),
"translateX": np.linspace(0, 150 / 331, 10),
"translateY": np.linspace(0, 150 / 331, 10),
"rotate": np.linspace(0, 30, 10),
"color": np.linspace(0.0, 0.9, 10),
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
"solarize": np.linspace(256, 0, 10),
"contrast": np.linspace(0.0, 0.9, 10),
"sharpness": np.linspace(0.0, 0.9, 10),
"brightness": np.linspace(0.0, 0.9, 10),
"autocontrast": [0] * 10,
"equalize": [0] * 10,
"invert": [0] * 10
}
func = {
"shearX": ShearX(fillcolor=fillcolor),
"shearY": ShearY(fillcolor=fillcolor),
"translateX": TranslateX(fillcolor=fillcolor),
"translateY": TranslateY(fillcolor=fillcolor),
"rotate": Rotate(),
"color": Color(),
"posterize": Posterize(),
"solarize": Solarize(),
"contrast": Contrast(),
"sharpness": Sharpness(),
"brightness": Brightness(),
"autocontrast": AutoContrast(),
"equalize": Equalize(),
"invert": Invert()
}
self.p1 = p1
self.operation1 = func[operation1]
self.magnitude1 = ranges[operation1][magnitude_idx1]
self.p2 = p2
self.operation2 = func[operation2]
self.magnitude2 = ranges[operation2][magnitude_idx2]
def __call__(self, img):
if random.random() < self.p1:
img = self.operation1(img, self.magnitude1)
if random.random() < self.p2:
img = self.operation2(img, self.magnitude2)
return img
MetaAugment/AutoAugmentDemo/figures/CIFAR100_results.png

24.6 KiB

MetaAugment/AutoAugmentDemo/figures/CIFAR10_results.png

40.3 KiB

MetaAugment/AutoAugmentDemo/figures/FGVC_results.png

35.3 KiB

MetaAugment/AutoAugmentDemo/figures/Figure2_Paper.png

625 KiB

MetaAugment/AutoAugmentDemo/figures/ImageNet_results.png

31.8 KiB

MetaAugment/AutoAugmentDemo/figures/SVHN_results.png

24.2 KiB

from PIL import Image, ImageEnhance, ImageOps
import random
class ShearX(object):
def __init__(self, fillcolor=(128, 128, 128)):
self.fillcolor = fillcolor
def __call__(self, x, magnitude):
return x.transform(
x.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0),
Image.BICUBIC, fillcolor=self.fillcolor)
class ShearY(object):
def __init__(self, fillcolor=(128, 128, 128)):
self.fillcolor = fillcolor
def __call__(self, x, magnitude):
return x.transform(
x.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0),
Image.BICUBIC, fillcolor=self.fillcolor)
class TranslateX(object):
def __init__(self, fillcolor=(128, 128, 128)):
self.fillcolor = fillcolor
def __call__(self, x, magnitude):
return x.transform(
x.size, Image.AFFINE, (1, 0, magnitude * x.size[0] * random.choice([-1, 1]), 0, 1, 0),
fillcolor=self.fillcolor)
class TranslateY(object):
def __init__(self, fillcolor=(128, 128, 128)):
self.fillcolor = fillcolor
def __call__(self, x, magnitude):
return x.transform(
x.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * x.size[1] * random.choice([-1, 1])),
fillcolor=self.fillcolor)
class Rotate(object):
# from https://stackoverflow.com/questions/
# 5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
def __call__(self, x, magnitude):
rot = x.convert("RGBA").rotate(magnitude * random.choice([-1, 1]))
return Image.composite(rot, Image.new("RGBA", rot.size, (128,) * 4), rot).convert(x.mode)
class Color(object):
def __call__(self, x, magnitude):
return ImageEnhance.Color(x).enhance(1 + magnitude * random.choice([-1, 1]))
class Posterize(object):
def __call__(self, x, magnitude):
return ImageOps.posterize(x, magnitude)
class Solarize(object):
def __call__(self, x, magnitude):
return ImageOps.solarize(x, magnitude)
class Contrast(object):
def __call__(self, x, magnitude):
return ImageEnhance.Contrast(x).enhance(1 + magnitude * random.choice([-1, 1]))
class Sharpness(object):
def __call__(self, x, magnitude):
return ImageEnhance.Sharpness(x).enhance(1 + magnitude * random.choice([-1, 1]))
class Brightness(object):
def __call__(self, x, magnitude):
return ImageEnhance.Brightness(x).enhance(1 + magnitude * random.choice([-1, 1]))
class AutoContrast(object):
def __call__(self, x, magnitude):
return ImageOps.autocontrast(x)
class Equalize(object):
def __call__(self, x, magnitude):
return ImageOps.equalize(x)
class Invert(object):
def __call__(self, x, magnitude):
return ImageOps.invert(x)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment