Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
MetaRL
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Wang, Mia
MetaRL
Commits
c361532f
Commit
c361532f
authored
2 years ago
by
Max Ramsay King
Browse files
Options
Downloads
Patches
Plain Diff
stuff again fixing gen learner
parent
3fec11bd
No related branches found
No related tags found
No related merge requests found
Pipeline
#272604
passed
2 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
autoaug/autoaugment_learners/gen_learner.py
+0
-208
0 additions, 208 deletions
autoaug/autoaugment_learners/gen_learner.py
with
0 additions
and
208 deletions
autoaug/autoaugment_learners/gen_learner.py
deleted
100644 → 0
+
0
−
208
View file @
3fec11bd
import
torch
import
autoaug.child_networks
as
cn
from
autoaug.autoaugment_learners.AaLearner
import
AaLearner
import
random
class
Genetic_learner
(
AaLearner
):
def
__init__
(
self
,
# search space settings
sp_num
=
5
,
p_bins
=
11
,
m_bins
=
10
,
discrete_p_m
=
False
,
exclude_method
=
[],
# child network settings
learning_rate
=
1e-1
,
max_epochs
=
float
(
'
inf
'
),
early_stop_num
=
20
,
batch_size
=
8
,
toy_size
=
1
,
num_offspring
=
1
,
):
super
().
__init__
(
sp_num
=
sp_num
,
p_bins
=
p_bins
,
m_bins
=
m_bins
,
discrete_p_m
=
discrete_p_m
,
batch_size
=
batch_size
,
toy_size
=
toy_size
,
learning_rate
=
learning_rate
,
max_epochs
=
max_epochs
,
early_stop_num
=
early_stop_num
,
exclude_method
=
exclude_method
)
self
.
bin_to_aug
=
{}
for
idx
,
augmentation
in
enumerate
(
self
.
augmentation_space
):
bin_rep
=
'
{0:b}
'
.
format
(
idx
)
while
len
(
bin_rep
)
<
len
(
'
{0:b}
'
.
format
(
len
(
self
.
augmentation_space
))):
bin_rep
=
'
0
'
+
bin_rep
self
.
bin_to_aug
[
bin_rep
]
=
augmentation
[
0
]
self
.
just_augs
=
[
x
[
0
]
for
x
in
self
.
augmentation_space
]
self
.
mag_to_bin
=
{
'
0
'
:
"
0000
"
,
'
1
'
:
'
0001
'
,
'
2
'
:
'
0010
'
,
'
3
'
:
'
0011
'
,
'
4
'
:
'
0100
'
,
'
5
'
:
'
0101
'
,
'
6
'
:
'
0110
'
,
'
7
'
:
'
0111
'
,
'
8
'
:
'
1000
'
,
'
9
'
:
'
1001
'
,
'
10
'
:
'
1010
'
,
}
self
.
prob_to_bin
=
{
'
0
'
:
"
0000
"
,
'
0.0
'
:
'
0000
'
,
'
0.1
'
:
'
0001
'
,
'
0.2
'
:
'
0010
'
,
'
0.3
'
:
'
0011
'
,
'
0.4
'
:
'
0100
'
,
'
0.5
'
:
'
0101
'
,
'
0.6
'
:
'
0110
'
,
'
0.7
'
:
'
0111
'
,
'
0.8
'
:
'
1000
'
,
'
0.9
'
:
'
1001
'
,
'
1.0
'
:
'
1010
'
,
'
1
'
:
'
1010
'
,
}
self
.
bin_to_prob
=
dict
((
value
,
key
)
for
key
,
value
in
self
.
prob_to_bin
.
items
())
self
.
bin_to_mag
=
dict
((
value
,
key
)
for
key
,
value
in
self
.
mag_to_bin
.
items
())
self
.
aug_to_bin
=
dict
((
value
,
key
)
for
key
,
value
in
self
.
bin_to_aug
.
items
())
self
.
num_offspring
=
num_offspring
def
gen_random_subpol
(
self
):
choose_items
=
[
x
[
0
]
for
x
in
self
.
augmentation_space
]
trans1
=
str
(
random
.
choice
(
choose_items
))
trans2
=
str
(
random
.
choice
(
choose_items
))
prob1
=
float
(
random
.
randrange
(
0
,
11
,
1
)
/
10
)
prob2
=
float
(
random
.
randrange
(
0
,
11
,
1
)
/
10
)
if
self
.
aug_space_dict
[
trans1
]:
mag1
=
int
(
random
.
randrange
(
0
,
10
,
1
))
else
:
mag1
=
None
if
self
.
aug_space_dict
[
trans2
]:
mag2
=
int
(
random
.
randrange
(
0
,
10
,
1
))
else
:
mag2
=
None
subpol
=
((
trans1
,
prob1
,
mag1
),
(
trans2
,
prob2
,
mag2
))
return
subpol
def
gen_random_policy
(
self
):
pol
=
[]
for
_
in
range
(
self
.
sp_num
):
pol
.
append
(
self
.
gen_random_subpol
())
return
pol
def
bin_to_subpol
(
self
,
subpol
):
pol
=
[]
for
idx
in
range
(
2
):
if
subpol
[
idx
*
12
:(
idx
*
12
)
+
4
]
in
self
.
bin_to_aug
:
trans
=
self
.
bin_to_aug
[
subpol
[
idx
*
12
:(
idx
*
12
)
+
4
]]
else
:
trans
=
random
.
choice
(
self
.
just_augs
)
mag_is_none
=
not
self
.
aug_space_dict
[
trans
]
if
subpol
[(
idx
*
12
)
+
4
:
(
idx
*
12
)
+
8
]
in
self
.
bin_to_prob
:
prob
=
float
(
self
.
bin_to_prob
[
subpol
[(
idx
*
12
)
+
4
:
(
idx
*
12
)
+
8
]])
else
:
prob
=
float
(
random
.
randrange
(
0
,
11
,
1
)
/
10
)
if
subpol
[(
idx
*
12
)
+
8
:(
idx
*
12
)
+
12
]
in
self
.
bin_to_mag
:
mag
=
int
(
self
.
bin_to_mag
[
subpol
[(
idx
*
12
)
+
8
:(
idx
*
12
)
+
12
]])
else
:
mag
=
int
(
random
.
randrange
(
0
,
10
,
1
))
if
mag_is_none
:
mag
=
None
pol
.
append
((
trans
,
prob
,
mag
))
pol
=
[
tuple
(
pol
)]
return
pol
def
subpol_to_bin
(
self
,
subpol
):
pol
=
''
trans1
,
prob1
,
mag1
=
subpol
[
0
]
trans2
,
prob2
,
mag2
=
subpol
[
1
]
pol
+=
self
.
aug_to_bin
[
trans1
]
+
self
.
prob_to_bin
[
str
(
prob1
)]
if
mag1
==
None
:
pol
+=
'
1111
'
else
:
pol
+=
self
.
mag_to_bin
[
str
(
mag1
)]
pol
+=
self
.
aug_to_bin
[
trans2
]
+
self
.
prob_to_bin
[
str
(
prob2
)]
if
mag2
==
None
:
pol
+=
'
1111
'
else
:
pol
+=
self
.
mag_to_bin
[
str
(
mag2
)]
return
pol
def
choose_parents
(
self
,
parents
,
parents_weights
):
parent1
=
random
.
choices
(
parents
,
parents_weights
,
k
=
1
)[
0
][
0
]
parent2
=
random
.
choices
(
parents
,
parents_weights
,
k
=
1
)[
0
][
0
]
while
parent2
==
parent1
:
parent2
=
random
.
choices
(
parents
,
parents_weights
,
k
=
1
)[
0
][
0
]
parent1
=
self
.
subpol_to_bin
(
parent1
)
parent2
=
self
.
subpol_to_bin
(
parent2
)
return
(
parent1
,
parent2
)
def
generate_children
(
self
):
parent_acc
=
sorted
(
self
.
history
,
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
parents
=
[
x
[
0
]
for
x
in
parent_acc
]
parents_weights
=
[
x
[
1
]
for
x
in
parent_acc
]
new_pols
=
[]
for
_
in
range
(
self
.
num_offspring
):
parent1
,
parent2
=
self
.
choose_parents
(
parents
,
parents_weights
)
cross_over
=
random
.
randrange
(
1
,
int
(
len
(
parent2
)
/
2
),
1
)
cross_over2
=
random
.
randrange
(
int
(
len
(
parent2
)
/
2
),
int
(
len
(
parent2
)),
1
)
child
=
parent1
[:
cross_over
]
child
+=
parent2
[
cross_over
:
int
(
len
(
parent2
)
/
2
)]
child
+=
parent1
[
int
(
len
(
parent2
)
/
2
):
int
(
len
(
parent2
)
/
2
)
+
cross_over2
]
child
+=
parent2
[
int
(
len
(
parent2
)
/
2
)
+
cross_over2
:]
new_pols
.
append
(
child
)
return
new_pols
def
learn
(
self
,
train_dataset
,
test_dataset
,
child_network_architecture
,
iterations
=
100
):
for
idx
in
range
(
iterations
):
print
(
"
ITERATION:
"
,
idx
)
if
len
(
self
.
history
)
<
self
.
num_offspring
:
policy
=
[
self
.
gen_random_subpol
()]
else
:
policy
=
self
.
bin_to_subpol
(
random
.
choice
(
self
.
generate_children
()))
reward
=
self
.
_test_autoaugment_policy
(
policy
,
child_network_architecture
,
train_dataset
,
test_dataset
)
print
(
"
reward:
"
,
reward
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment