Skip to content
Snippets Groups Projects
Commit daf6d1ce authored by John Carter's avatar John Carter
Browse files

UCB1 RL algorithm added (JC)

parent 6adbdc53
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id: tags:
```
import numpy as np
import torch
torch.manual_seed(0)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
import torchvision
import torchvision.datasets as datasets
```
%% Cell type:code id: tags:
```
class LeNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(256, 120)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(120, 84)
self.relu4 = nn.ReLU()
self.fc3 = nn.Linear(84, 10)
self.relu5 = nn.ReLU()
def forward(self, x):
y = self.conv1(x)
y = self.relu1(y)
y = self.pool1(y)
y = self.conv2(y)
y = self.relu2(y)
y = self.pool2(y)
y = y.view(y.shape[0], -1)
y = self.fc1(y)
y = self.relu3(y)
y = self.fc2(y)
y = self.relu4(y)
y = self.fc3(y)
y = self.relu5(y)
return y
```
%% Cell type:code id: tags:
```
"""Make toy dataset"""
def create_toy(train_dataset, test_dataset, batch_size, n_samples):
# shuffle and take first n_samples %age of training dataset
shuffled_train_dataset = torch.utils.data.Subset(train_dataset, torch.randperm(len(train_dataset)).tolist())
indices_train = torch.arange(int(n_samples*len(train_dataset)))
reduced_train_dataset = data_utils.Subset(shuffled_train_dataset, indices_train)
# shuffle and take first n_samples %age of test dataset
shuffled_test_dataset = torch.utils.data.Subset(test_dataset, torch.randperm(len(test_dataset)).tolist())
indices_test = torch.arange(int(n_samples*len(test_dataset)))
reduced_test_dataset = data_utils.Subset(shuffled_test_dataset, indices_test)
train_loader = torch.utils.data.DataLoader(reduced_train_dataset, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(reduced_test_dataset, batch_size=batch_size)
return train_loader, test_loader
```
%% Cell type:code id: tags:
```
"""Randomly generate 10 policies"""
"""Each policy has 5 sub-policies"""
"""For each sub-policy, pick 2 transformations, 2 probabilities and 2 magnitudes"""
def generate_policies(num_policies, num_sub_policies):
policies = np.zeros([num_policies,num_sub_policies,6])
# Policies array will be 10x5x6
for policy in range(num_policies):
for sub_policy in range(num_sub_policies):
# pick two sub_policy transformations (0=rotate, 1=shear, 2=scale)
policies[policy, sub_policy, 0] = np.random.randint(0,3)
policies[policy, sub_policy, 1] = np.random.randint(0,3)
while policies[policy, sub_policy, 0] == policies[policy, sub_policy, 1]:
policies[policy, sub_policy, 1] = np.random.randint(0,3)
# pick probabilities
policies[policy, sub_policy, 2] = np.random.randint(0,11) / 10
policies[policy, sub_policy, 3] = np.random.randint(0,11) / 10
# pick magnitudes
for transformation in range(2):
if policies[policy, sub_policy, transformation] <= 1:
policies[policy, sub_policy, transformation + 4] = np.random.randint(-4,5)*5
elif policies[policy, sub_policy, transformation] == 2:
policies[policy, sub_policy, transformation + 4] = np.random.randint(5,15)/10
return policies
```
%% Cell type:code id: tags:
```
"""Pick policy and sub-policy"""
"""Each row of data should have a different sub-policy but for now, this will do"""
def sample_sub_policy(policies, policy, num_sub_policies):
sub_policy = np.random.randint(0,num_sub_policies)
degrees = 0
shear = 0
scale = 1
if policies[policy, sub_policy][0] == 0:
if np.random.uniform() < policies[policy, sub_policy][2]:
degrees = policies[policy, sub_policy][4]
elif policies[policy, sub_policy][1] == 0:
if np.random.uniform() < policies[policy, sub_policy][3]:
degrees = policies[policy, sub_policy][5]
if policies[policy, sub_policy][0] == 1:
if np.random.uniform() < policies[policy, sub_policy][2]:
shear = policies[policy, sub_policy][4]
elif policies[policy, sub_policy][1] == 1:
if np.random.uniform() < policies[policy, sub_policy][3]:
shear = policies[policy, sub_policy][5]
if policies[policy, sub_policy][0] == 2:
if np.random.uniform() < policies[policy, sub_policy][2]:
scale = policies[policy, sub_policy][4]
elif policies[policy, sub_policy][1] == 2:
if np.random.uniform() < policies[policy, sub_policy][3]:
scale = policies[policy, sub_policy][5]
return degrees, shear, scale
```
%% Cell type:code id: tags:
```
"""Sample policy, open and apply above transformations"""
def run_UCB1(q_values, cnts, total_count, q_plus_cnt, policies, num_policies, num_sub_policies, initial_iteration, batch_size, toy_size, iterations):
#Pull each bandit arm just once
if initial_iteration:
iterations = num_policies
for policy in range(iterations):
# sample policy and get transformations
if not initial_iteration:
this_policy = np.argmax(q_plus_cnt)
else:
this_policy = policy
degrees, shear, scale = sample_sub_policy(policies, this_policy, num_sub_policies)
# create transformations
transform = torchvision.transforms.Compose(
[torchvision.transforms.RandomAffine(degrees=(degrees,degrees), shear=(shear,shear), scale=(scale,scale)),
torchvision.transforms.ToTensor()])
# open data and apply these transformations
train_dataset = datasets.MNIST(root='./MetaAugment/train', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./MetaAugment/test', train=False, download=True, transform=transform)
"""Make toy dataset"""
train_loader, test_loader = create_toy(train_dataset, test_dataset, batch_size, toy_size)
""" Run model"""
model = LeNet()
sgd = optim.SGD(model.parameters(), lr=1e-1)
cost = nn.CrossEntropyLoss()
best_acc = 0
early_stop_cnt = 0
# choose how many past best validation accuracy we go
early_stop_num = 10
# choose max number of epochs
epoch = 100
for _epoch in range(epoch):
model.train()
for idx, (train_x, train_label) in enumerate(train_loader):
label_np = np.zeros((train_label.shape[0], 10))
sgd.zero_grad()
predict_y = model(train_x.float())
loss = cost(predict_y, train_label.long())
loss.backward()
sgd.step()
correct = 0
_sum = 0
model.eval()
for idx, (test_x, test_label) in enumerate(test_loader):
predict_y = model(test_x.float()).detach()
predict_ys = np.argmax(predict_y, axis=-1)
label_np = test_label.numpy()
_ = predict_ys == test_label
correct += np.sum(_.numpy(), axis=-1)
_sum += _.shape[0]
acc = correct / _sum
if acc > best_acc :
best_acc = acc
early_stop_cnt = 0
else:
early_stop_cnt += 1
# exit if validation gets worse for
if early_stop_cnt >= early_stop_num:
break
# update q_values
if initial_iteration:
q_values[this_policy] += best_acc
else:
q_values[this_policy] = (q_values[this_policy]*cnts[this_policy] + best_acc) / (cnts[this_policy] + 1)
# update counts
cnts[this_policy] += 1
total_count += 1
# update q_plus_cnt values
if not initial_iteration:
for i in range(num_policies):
q_plus_cnt[i] = q_values[i] + np.sqrt(2*np.log(total_count)/cnts[i])
#print(q_values)
if initial_iteration:
for i in range(num_policies):
q_plus_cnt[i] = q_values[i] + np.sqrt(2*np.log(total_count)/cnts[i])
return q_values, cnts, total_count, q_plus_cnt
```
%% Cell type:code id: tags:
```
%%time
batch_size = 32
toy_size = 0.02
total_iterations = 50
num_policies = 10
num_sub_policies = 5
policies = generate_policies(num_policies, num_sub_policies)
#Initialize vector weights, counts and regret
q_values = [0]*num_policies
cnts = [0]*num_policies
q_plus_cnt = [0]*num_policies
total_count = 0
q_values, cnts, total_count, q_plus_cnt = run_UCB1(q_values, cnts, total_count, q_plus_cnt, policies, num_policies, num_sub_policies, True, batch_size, toy_size, 0)
print(q_values)
q_values, cnts, total_count, q_plus_cnt = run_UCB1(q_values, cnts, total_count, q_plus_cnt, policies, num_policies, num_sub_policies, False, batch_size, toy_size , total_iterations)
print(q_values)
```
%% Output
[0.81, 0.94, 0.835, 0.94, 0.775, 0.78, 0.96, 0.935, 0.97, 0.76]
[0.722, 0.8578571428571429, 0.7966666666666665, 0.8950000000000001, 0.7766666666666667, 0.8558333333333333, 0.8383333333333334, 0.688, 0.8041666666666666, 0.8766666666666668]
CPU times: user 14min 46s, sys: 10.9 s, total: 14min 57s
Wall time: 14min 58s
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment