Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stable-diffusion
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Qin, Jiuming
stable-diffusion
Commits
f13bf9bf
Commit
f13bf9bf
authored
3 years ago
by
rromb
Browse files
Options
Downloads
Patches
Plain Diff
add vqgan loss with codebook statistic eval
parent
2b46bcb9
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ldm/modules/losses/vqperceptual.py
+167
-0
167 additions, 0 deletions
ldm/modules/losses/vqperceptual.py
with
167 additions
and
0 deletions
ldm/modules/losses/vqperceptual.py
0 → 100644
+
167
−
0
View file @
f13bf9bf
import
torch
from
torch
import
nn
import
torch.nn.functional
as
F
from
einops
import
repeat
from
taming.modules.discriminator.model
import
NLayerDiscriminator
,
weights_init
from
taming.modules.losses.lpips
import
LPIPS
from
taming.modules.losses.vqperceptual
import
hinge_d_loss
,
vanilla_d_loss
def
hinge_d_loss_with_exemplar_weights
(
logits_real
,
logits_fake
,
weights
):
assert
weights
.
shape
[
0
]
==
logits_real
.
shape
[
0
]
==
logits_fake
.
shape
[
0
]
loss_real
=
torch
.
mean
(
F
.
relu
(
1.
-
logits_real
),
dim
=
[
1
,
2
,
3
])
loss_fake
=
torch
.
mean
(
F
.
relu
(
1.
+
logits_fake
),
dim
=
[
1
,
2
,
3
])
loss_real
=
(
weights
*
loss_real
).
sum
()
/
weights
.
sum
()
loss_fake
=
(
weights
*
loss_fake
).
sum
()
/
weights
.
sum
()
d_loss
=
0.5
*
(
loss_real
+
loss_fake
)
return
d_loss
def
adopt_weight
(
weight
,
global_step
,
threshold
=
0
,
value
=
0.
):
if
global_step
<
threshold
:
weight
=
value
return
weight
def
measure_perplexity
(
predicted_indices
,
n_embed
):
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
encodings
=
F
.
one_hot
(
predicted_indices
,
n_embed
).
float
().
reshape
(
-
1
,
n_embed
)
avg_probs
=
encodings
.
mean
(
0
)
perplexity
=
(
-
(
avg_probs
*
torch
.
log
(
avg_probs
+
1e-10
)).
sum
()).
exp
()
cluster_use
=
torch
.
sum
(
avg_probs
>
0
)
return
perplexity
,
cluster_use
def
l1
(
x
,
y
):
return
torch
.
abs
(
x
-
y
)
def
l2
(
x
,
y
):
return
torch
.
pow
((
x
-
y
),
2
)
class
VQLPIPSWithDiscriminator
(
nn
.
Module
):
def
__init__
(
self
,
disc_start
,
codebook_weight
=
1.0
,
pixelloss_weight
=
1.0
,
disc_num_layers
=
3
,
disc_in_channels
=
3
,
disc_factor
=
1.0
,
disc_weight
=
1.0
,
perceptual_weight
=
1.0
,
use_actnorm
=
False
,
disc_conditional
=
False
,
disc_ndf
=
64
,
disc_loss
=
"
hinge
"
,
n_classes
=
None
,
perceptual_loss
=
"
lpips
"
,
pixel_loss
=
"
l1
"
):
super
().
__init__
()
assert
disc_loss
in
[
"
hinge
"
,
"
vanilla
"
]
assert
perceptual_loss
in
[
"
lpips
"
,
"
clips
"
,
"
dists
"
]
assert
pixel_loss
in
[
"
l1
"
,
"
l2
"
]
self
.
codebook_weight
=
codebook_weight
self
.
pixel_weight
=
pixelloss_weight
if
perceptual_loss
==
"
lpips
"
:
print
(
f
"
{
self
.
__class__
.
__name__
}
: Running with LPIPS.
"
)
self
.
perceptual_loss
=
LPIPS
().
eval
()
else
:
raise
ValueError
(
f
"
Unknown perceptual loss: >>
{
perceptual_loss
}
<<
"
)
self
.
perceptual_weight
=
perceptual_weight
if
pixel_loss
==
"
l1
"
:
self
.
pixel_loss
=
l1
else
:
self
.
pixel_loss
=
l2
self
.
discriminator
=
NLayerDiscriminator
(
input_nc
=
disc_in_channels
,
n_layers
=
disc_num_layers
,
use_actnorm
=
use_actnorm
,
ndf
=
disc_ndf
).
apply
(
weights_init
)
self
.
discriminator_iter_start
=
disc_start
if
disc_loss
==
"
hinge
"
:
self
.
disc_loss
=
hinge_d_loss
elif
disc_loss
==
"
vanilla
"
:
self
.
disc_loss
=
vanilla_d_loss
else
:
raise
ValueError
(
f
"
Unknown GAN loss
'
{
disc_loss
}
'
.
"
)
print
(
f
"
VQLPIPSWithDiscriminator running with
{
disc_loss
}
loss.
"
)
self
.
disc_factor
=
disc_factor
self
.
discriminator_weight
=
disc_weight
self
.
disc_conditional
=
disc_conditional
self
.
n_classes
=
n_classes
def
calculate_adaptive_weight
(
self
,
nll_loss
,
g_loss
,
last_layer
=
None
):
if
last_layer
is
not
None
:
nll_grads
=
torch
.
autograd
.
grad
(
nll_loss
,
last_layer
,
retain_graph
=
True
)[
0
]
g_grads
=
torch
.
autograd
.
grad
(
g_loss
,
last_layer
,
retain_graph
=
True
)[
0
]
else
:
nll_grads
=
torch
.
autograd
.
grad
(
nll_loss
,
self
.
last_layer
[
0
],
retain_graph
=
True
)[
0
]
g_grads
=
torch
.
autograd
.
grad
(
g_loss
,
self
.
last_layer
[
0
],
retain_graph
=
True
)[
0
]
d_weight
=
torch
.
norm
(
nll_grads
)
/
(
torch
.
norm
(
g_grads
)
+
1e-4
)
d_weight
=
torch
.
clamp
(
d_weight
,
0.0
,
1e4
).
detach
()
d_weight
=
d_weight
*
self
.
discriminator_weight
return
d_weight
def
forward
(
self
,
codebook_loss
,
inputs
,
reconstructions
,
optimizer_idx
,
global_step
,
last_layer
=
None
,
cond
=
None
,
split
=
"
train
"
,
predicted_indices
=
None
):
if
not
exists
(
codebook_loss
):
codebook_loss
=
torch
.
tensor
([
0.
]).
to
(
inputs
.
device
)
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
rec_loss
=
self
.
pixel_loss
(
inputs
.
contiguous
(),
reconstructions
.
contiguous
())
if
self
.
perceptual_weight
>
0
:
p_loss
=
self
.
perceptual_loss
(
inputs
.
contiguous
(),
reconstructions
.
contiguous
())
rec_loss
=
rec_loss
+
self
.
perceptual_weight
*
p_loss
else
:
p_loss
=
torch
.
tensor
([
0.0
])
nll_loss
=
rec_loss
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
nll_loss
=
torch
.
mean
(
nll_loss
)
# now the GAN part
if
optimizer_idx
==
0
:
# generator update
if
cond
is
None
:
assert
not
self
.
disc_conditional
logits_fake
=
self
.
discriminator
(
reconstructions
.
contiguous
())
else
:
assert
self
.
disc_conditional
logits_fake
=
self
.
discriminator
(
torch
.
cat
((
reconstructions
.
contiguous
(),
cond
),
dim
=
1
))
g_loss
=
-
torch
.
mean
(
logits_fake
)
try
:
d_weight
=
self
.
calculate_adaptive_weight
(
nll_loss
,
g_loss
,
last_layer
=
last_layer
)
except
RuntimeError
:
assert
not
self
.
training
d_weight
=
torch
.
tensor
(
0.0
)
disc_factor
=
adopt_weight
(
self
.
disc_factor
,
global_step
,
threshold
=
self
.
discriminator_iter_start
)
loss
=
nll_loss
+
d_weight
*
disc_factor
*
g_loss
+
self
.
codebook_weight
*
codebook_loss
.
mean
()
log
=
{
"
{}/total_loss
"
.
format
(
split
):
loss
.
clone
().
detach
().
mean
(),
"
{}/quant_loss
"
.
format
(
split
):
codebook_loss
.
detach
().
mean
(),
"
{}/nll_loss
"
.
format
(
split
):
nll_loss
.
detach
().
mean
(),
"
{}/rec_loss
"
.
format
(
split
):
rec_loss
.
detach
().
mean
(),
"
{}/p_loss
"
.
format
(
split
):
p_loss
.
detach
().
mean
(),
"
{}/d_weight
"
.
format
(
split
):
d_weight
.
detach
(),
"
{}/disc_factor
"
.
format
(
split
):
torch
.
tensor
(
disc_factor
),
"
{}/g_loss
"
.
format
(
split
):
g_loss
.
detach
().
mean
(),
}
if
predicted_indices
is
not
None
:
assert
self
.
n_classes
is
not
None
with
torch
.
no_grad
():
perplexity
,
cluster_usage
=
measure_perplexity
(
predicted_indices
,
self
.
n_classes
)
log
[
f
"
{
split
}
/perplexity
"
]
=
perplexity
log
[
f
"
{
split
}
/cluster_usage
"
]
=
cluster_usage
return
loss
,
log
if
optimizer_idx
==
1
:
# second pass for discriminator update
if
cond
is
None
:
logits_real
=
self
.
discriminator
(
inputs
.
contiguous
().
detach
())
logits_fake
=
self
.
discriminator
(
reconstructions
.
contiguous
().
detach
())
else
:
logits_real
=
self
.
discriminator
(
torch
.
cat
((
inputs
.
contiguous
().
detach
(),
cond
),
dim
=
1
))
logits_fake
=
self
.
discriminator
(
torch
.
cat
((
reconstructions
.
contiguous
().
detach
(),
cond
),
dim
=
1
))
disc_factor
=
adopt_weight
(
self
.
disc_factor
,
global_step
,
threshold
=
self
.
discriminator_iter_start
)
d_loss
=
disc_factor
*
self
.
disc_loss
(
logits_real
,
logits_fake
)
log
=
{
"
{}/disc_loss
"
.
format
(
split
):
d_loss
.
clone
().
detach
().
mean
(),
"
{}/logits_real
"
.
format
(
split
):
logits_real
.
detach
().
mean
(),
"
{}/logits_fake
"
.
format
(
split
):
logits_fake
.
detach
().
mean
()
}
return
d_loss
,
log
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment