Newer
Older
from flask import Blueprint, request, render_template, flash, send_file, current_app
import os
import torch
torch.manual_seed(0)
bp = Blueprint("training", __name__)
@bp.route("/start_training", methods=["GET", "POST"])
def response():
auto_aug_learner = current_app.config.get('AAL')
# search space & problem setting
ds = current_app.config.get('ds')
ds_name = current_app.config.get('DSN')
exclude_method = current_app.config.get('exc_meth')
num_funcs = current_app.config.get('NUMFUN')
num_policies = current_app.config.get('NP')
num_sub_policies = current_app.config.get('NSP')
toy_size = current_app.config.get('TS')
# child network
IsLeNet = current_app.config.get('ISLENET')
# child network training hyperparameters
batch_size = current_app.config.get('BS')
early_stop_num = current_app.config.get('ESN')
iterations = current_app.config.get('IT')
learning_rate = current_app.config.get('LR')
max_epochs = current_app.config.get('ME')
wapp_util.parse_users_learner_spec(
auto_aug_learner,
ds,
ds_name,
exclude_method,
num_funcs,
num_policies,
num_sub_policies,
toy_size,
IsLeNet,
batch_size,
early_stop_num,
iterations,
learning_rate,
max_epochs
)
return render_template("progress.html", auto_aug_learner=auto_aug_learner)