Skip to content
Snippets Groups Projects
Commit 48881894 authored by Sun Jin Kim's avatar Sun Jin Kim
Browse files

Merge branch 'master' of gitlab.doc.ic.ac.uk:yw21218/metarl

parents e0b8d2ee 900b832a
No related branches found
No related tags found
No related merge requests found
No preview for this file type
# Byte-compiled / optimized / DLL files
__pycache__/
**/__pycache__/
**/datasets/
*.py[cod]
*$py.class
*.pyc
*.pyo
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
MetaAugment/__pycache__/main.cpython-38.pyc
......@@ -230,20 +230,20 @@ def run_UCB1(policies, batch_size, learning_rate, ds, toy_size, max_epochs, earl
# open data and apply these transformations
if ds == "MNIST":
train_dataset = datasets.MNIST(root='./MetaAugment/train', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./MetaAugment/test', train=False, download=True, transform=transform)
train_dataset = datasets.MNIST(root='./MetaAugment/datasets/mnist/train', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./MetaAugment/datasets/mnist/test', train=False, download=True, transform=transform)
elif ds == "KMNIST":
train_dataset = datasets.KMNIST(root='./MetaAugment/train', train=True, download=True, transform=transform)
test_dataset = datasets.KMNIST(root='./MetaAugment/test', train=False, download=True, transform=transform)
train_dataset = datasets.KMNIST(root='./MetaAugment/datasets/kmnist/train', train=True, download=True, transform=transform)
test_dataset = datasets.KMNIST(root='./MetaAugment/datasets/kmnist/test', train=False, download=True, transform=transform)
elif ds == "FashionMNIST":
train_dataset = datasets.FashionMNIST(root='./MetaAugment/train', train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST(root='./MetaAugment/test', train=False, download=True, transform=transform)
train_dataset = datasets.FashionMNIST(root='./MetaAugment/datasets/fashionmnist/train', train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST(root='./MetaAugment/datasets/fashionmnist/test', train=False, download=True, transform=transform)
elif ds == "CIFAR10":
train_dataset = datasets.CIFAR10(root='./MetaAugment/train', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./MetaAugment/test', train=False, download=True, transform=transform)
train_dataset = datasets.CIFAR10(root='./MetaAugment/datasets/fashionmnist/train', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./MetaAugment/datasets/fashionmnist/test', train=False, download=True, transform=transform)
elif ds == "CIFAR100":
train_dataset = datasets.CIFAR100(root='./MetaAugment/train', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR100(root='./MetaAugment/test', train=False, download=True, transform=transform)
train_dataset = datasets.CIFAR100(root='./MetaAugment/datasets/fashionmnist/train', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR100(root='./MetaAugment/datasets/fashionmnist/test', train=False, download=True, transform=transform)
# check sizes of images
img_height = len(train_dataset[0][0][0])
......
No preview for this file type
......@@ -17,7 +17,7 @@ from tqdm import trange
torch.manual_seed(0)
# import agents and its functions
from MetaAugment import UCB1_JC_py as UCB1_JC
from MetaAugment import UCB1_JC as UCB1_JC
......
No preview for this file type
......@@ -6,8 +6,9 @@
<h3>Choose your dataset</h3>
<form action="/user_input">
<!-- upload dataset -->
<label for="dataset_upload">You can upload your dataset here:</label>
<input type="file" name="dataset_upload" class="upload"><br><br>
<label for="dataset_upload">You can upload your dataset folder here:</label>
<!-- <input type="file" name="dataset_upload" class="upload"><br><br> -->
<input type="file" webkitdirectory mozdirectory /><br><br>
<!-- dataset radio button -->
Or you can select a dataset from our database: <br>
......@@ -34,7 +35,7 @@
<!-- --------------------------------------------------------------- -->
<h3>Choose the network which the dataset is trained on</h3>
<h3>Choose the network the dataset is trained on</h3>
<!-- upload network -->
<label for="network_upload">Please upload your network here:</label>
<input type="file" name="network_upload" class="upload"><br><br>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment